
QA-Pagelet: Data Preparation Techniques for
Large-Scale Data Analysis of the Deep Web

James Caverlee, Student Member, IEEE, and Ling Liu, Member, IEEE Computer Society

Abstract—This paper presents the QA-Pagelet as a fundamental data preparation technique for large-scale data analysis of the Deep

Web. To support QA-Pagelet extraction, we present the Thor framework for sampling, locating, and partioning the QA-Pagelets from

the Deep Web. Two unique features of the Thor framework are 1) the novel page clustering for grouping pages from a Deep Web

source into distinct clusters of control-flow dependent pages and 2) the novel subtree filtering algorithm that exploits the structural and

content similarity at subtree level to identify the QA-Pagelets within highly ranked page clusters. We evaluate the effectiveness of the

Thor framework through experiments using both simulation and real data sets. We show that Thor performs well over millions of Deep

Web pages and over a wide range of sources, including e-Commerce sites, general and specialized search engines, corporate Web

sites, medical and legal resources, and several others. Our experiments also show that the proposed page clustering algorithm

achieves low-entropy clusters, and the subtree filtering algorithm identifies QA-Pagelets with excellent precision and recall.

Index Terms—Deep Web, data preparation, data extraction, pagelets, clustering.

�

1 INTRODUCTION

ONE of the most promising new avenues of large-scale
data analysis is the large and growing collection of

Web-accessible databases known as the Deep Web. Unlike
the traditional or “surface” Web—where Web pages are
accessible by traversing hyperlinks from one page to the
next—Deep Web data is accessible by interacting with a
Web-based query interface. This Deep Web provides access
to huge and growing data repositories, offering a tremen-
dous opportunity for a new generation of large-scale data
analysis—from supporting advanced search operators, to
data integration, to data mining applications, and so on.

For the Deep Web to be successfully leveraged as an
information platform, we assert that a fundamental data
preparation approach is the identification and extraction of
the high-quality query-related content regions in Deep Web
pages (we call them theQuery-Answer Pagelets orQA-Pagelets,
for short). Deep Web pages tend to consist of one or more
primary content regions that are directly related to the user
query, and other less relevant data regions like advertise-
ments, navigational elements, and standard boilerplate that
obscure the high-quality query-related data that is of primary
interest to the user. Data preparation of the query-related
information-rich content provides the basis for the rest of any
Deep Web data analysis platform by supplying the basic
building blocks for supporting search, composition, and
reuse of Deep Web data across various applications. Deep
Web data preparation is especially challenging since the
algorithms should be designed independently of the pre-
sentation features or specific content of the Web pages, such
as the specificways inwhich the query-related information is
laid out or the specific locations where the navigational links
and advertisement information are placed in the Web pages.

To support large-scale data analysis over the Deep Web,
we have begun a research effort called Thor for extracting,
indexing, searching, and supporting advanced operators like
composition and comparison overDeepWeb sources. Thor is
designedasa suite of algorithms to support the entire scopeof
a Deep Web information platform. In this paper, we present
the fundamentaldatapreparationcomponent—theThordata
extraction and preparation subsystem—that supports a
robust approach to the sampling, locating, and partitioning
of the QA-Pagelets in four phases:

. Collecting Deep Web Pages: The first phase probes
the Deep Web data sources to sample a set of pages
rich in content.

. Clustering Deep Web Pages: The second phase uses
a novel page clustering algorithm to segment Deep
Web pages according to their control-flow depen-
dence similarities, aiming at separating pages that
contain query matches from pages that contain no
matches.

. Identifying QA-Pagelets: In the third phase, pages
from top-ranked page clusters are examined at a
subtree level to locate and rank the query-related
content regions of the pages (the QA-Pagelets).

. Partitioning QA-Pagelets: The final phase uses a set
of partitioning algorithms to separate and locate
itemized objects in each QA-Pagelet.

In our experiments section, we show that Thor performs
well over millions of Deep Web pages and over a wide
range of sources, including e-Commerce sites, general and
specialized search engines, corporate Web sites, medical
and legal resources, and several others. Our experiments
show three important and interesting results. First, our page
cluster algorithm achieves high quality of clusters with very
low entropy across a wide range of sources. Second, our
algorithms for identifying the query-related content regions
by filtering subtrees across pages within a page cluster
achieve excellent recall (96 percent, meaning significant
query-related content regions are left out only in rare cases),
and precision (97 percent, meaning nearly all regions

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 9, SEPTEMBER 2005 1247

. The authors are with the College of Computing, Georgia Institute of
Technology, 801 Atlantic Drive, Atlanta, GA 30332.
E-mail: {caverlee, lingliu}@cc.gatech.edu.

Manuscript received 28 Mar. 2005; revised 6 Apr. 2005; accepted 11 Apr.
2005; published online 19 July 2005.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number TKDESI-0444-1104.

1041-4347/05/$20.00 � 2005 IEEE Published by the IEEE Computer Society

identified and extracted are correct) over all the pages we
have tested. Most significantly, Thor’s algorithms are robust
against changes in presentation and content of Deep Web
pages, and scale well with the growing number of Deep
Web sources.

2 RELATED WORK

The notion of a Deep (or Hidden or Invisible) Web has been
a subject of interest for a number of years, with a growing
body of literature. A number of researchers have discussed
the problems inherent in accessing, searching, and categor-
izing the contents of Deep Web databases. The problem of
automatically discovering and interacting with Deep Web
search forms is a problem examined in [19]. Other
researchers [11] have proposed methods to categorize Deep
Web sites into searchable hierarchies. More recently, there
have been efforts to improve source selection for meta-
searching Deep Web sources [16] and to match Deep Web
query interfaces [25], [23], [22].

As a first step toward supporting Deep Web data
analysis, several hand-tuned directories have been built
(e.g., www.completeplanet.com and www.invisibleweb.
com), and several domain-specific information integration
portal services have emerged, such as the NCBI bioportal.
These integration services offer uniform access to hetero-
geneous Deep Web collections using wrappers—programs
that encode semantic knowledge about specific content
structures of Web sites, and use such knowledge to aid
information extraction from those sites. The current gen-
eration of wrappers are mainly semiautomatic wrapper
generation systems (e.g., [1], [15]) that encode program-
mers’ understanding of specific content structure of the set
of pages to guide the data extraction process. As a result,
most data analysis services based on wrappers have serious
limitations on their breadth and depth coverage.

Most closely related to Thor are a number of data
extraction approaches that emphasize identifying and
extracting certain portions of Web data. For example, the
WHIRL system [9] uses tag patterns and textual similarity
of items stored in a deductive database to extract simple
lists or lists of hyperlinks. The system relies on previously
acquired information in its database to recognize data in
target pages. For data extraction across heterogeneous
collections of Deep Web databases, this approach is
infeasible. Similarly, Arasu and Garcia-Molina [2] have
developed an extraction algorithm that models page
templates and uses equivalence classes for data segmenta-
tion. In both cases, there is an assumption that all pages
have been generated by the same underlying template,
whereas Thor automatically partitions a set of diverse pages
into control-flow dependent groupings. Thor builds on
previous work in a related publication [8].

Bar-Yossef and Rajagopalan [4] call the functionally
distinct portions of a page pagelets. They use this formula-
tion to guide template discovery, which is ancillary to the
data extraction problem. Their template discovery algo-
rithm relies on close content similarity between pagelets,
whereas we consider both structural and content attributes
of a page and its component subtrees.

3 PRELIMINARIES

In this section, we define the fundamental representations
used by Thor. We begin by discussing the modeling of Web

pages as tag trees, including the definition of several related
components. We build on these representations to develop
our notion of a QA-Pagelet.

3.1 Modeling Web Pages as Tag Trees

Using avariation of thewell-knownDocumentObjectModel,
wemodel aWeb page as a tag tree consisting of tags and text.
By tag, we mean all of the characters between an opening
bracket “< ” and a closing bracket “> ,” where each tag has a
tag name (e.g. BR, TD) and a set of attributes. The text is the
sequence of characters between consecutive tags.

To convert a Web page into a tag tree requires that the
page be well-formed. The requirements of a well-formed
page include, but are not limited to, the following: all start
tags, including standalone tags, must have a matching end
tag; all attribute values must be in quotes; tags must strictly
nest. Pages that do not satisfy these criteria are automati-
cally transformed into well-formed pages using Tidy
(http://tidy.sourceforge.net). A well-formed Web page
can be modeled as a tag tree T consisting of tag nodes and
content nodes. A tag node consists of all the characters from a
particular start tag to its corresponding end tag, and is
labeled by the name of the start tag. A content node consists
of all the characters between a start tag and its correspond-
ing end tag or between an end tag and the next start tag. We
label a content node by its content. All content nodes are
leaves of the tag tree.

Definition 1 (Tag Tree). A tag tree of a page p is defined as a
directed tree T ¼ ðV ;EÞ, where V ¼ VT [VC , VT is a finite set
of tag nodes andVC is a finite set of content nodes;E � ðV � V Þ,
representing the directed edges. T satisfies the following
conditions: 8ðu; vÞ 2 E; ðv; uÞ 62 E; 8u 2 V ; ðu; uÞ 62 E; and
8u 2 VC , 6 9v 2 V such that ðu; vÞ 2 E.

In Fig. 1, we show an abridged sample tag tree for a
dynamically-generated page at IBM.com. Given a tag tree,
there is a path from the root node to every other node in the
tree. For a givennode, thepath expression from the root of the
tree to the node can uniquely identify the node. In Fig. 1, the
path from the root node to the title node can be expressed as
html¼)� title. By using an XPath-style notation, the example
path could also bewritten ashtml/head/title.Whenever
a node has siblings of the same tag name,we assign a number
to uniquely identify the appearance order of the node in the
tag tree, e.g., html/body/table[3] refers to the gray-
shaded table node in Fig. 1.

We denote the number of children of a node u as
fanoutðuÞ. For any node u 2 V , fanoutðuÞ denotes the
cardinality of the set of children of u. fanoutðuÞ ¼
jchildrenðuÞj if u 2 VT and fanoutðuÞ ¼ 0 if u 2 VC . We

1248 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 9, SEPTEMBER 2005

Fig. 1. Sample tag tree from IBM.com.

denote the content of a node u as contentðuÞ. For any node
u 2 V , if u 2 VC , then contentðuÞ denotes the content of
node u. Otherwise, if u 2 VT , then contentðuÞ ¼ ;. Addi-
tionally, each node in a tag tree corresponds to the root of a
subtree in the tag tree. For a tag tree T ¼ ðV ;EÞ, the total
number of subtrees is jV j, where a subtree is defined as:

Definition 2 (Subtree). Let T ¼ ðV ;EÞ be the tag tree for a
page d, and T 0 ¼ ðV 0; E0Þ is called a subtree of T anchored at
node u, denoted as subtreeðuÞ (u 2 V 0), if and only if the
following conditions hold: 1) V 0 � V , and 8v 2 V , v 6¼ u, if
u ¼)�v then v 2 V 0; and 2) E0 � E, and 8v 2 V 0, v 6¼ u,
v 62 VC , 9w 2 V 0, w 6¼ v, and ðv; wÞ 2 E0.

The content of a subtree rooted at node u, denoted
subtreeContentðuÞ, is the union of the content of all nodes in
the subtree. For any node u 2 V , if u 2 VC , then
subtreeContentðuÞ ¼ contentðuÞ. Otherwise, if u 2 VT , then
subtreeContentðuÞ is the union of the node content of all the
leaf nodes reachable from node u, i.e., subtreeContentðuÞ
¼ [ðcontentðvÞÞ, 8v 2 VC such that u ¼)�v.

3.2 Modeling the QA-Pagelet

Since Deep Web pages are generated in response to a query
submitted through a Web interface, we are interested in
locating the portion of a Deep Web page that answers the
query. Hence, we refer to the content-rich regions in a Deep
Web page that contain direct answers to a user’s query as
Query-Answer Pagelets (or QA-Pagelets for short). The term
pagelet was first introduced in [4] to describe a region of a
Web page that is distinct in terms of its subject matter or its
content. Critical to our formulation of a QA-Pagelet is a
minimal subtree:

Definition 3 (Minimal Subtree with Property P). Let T ¼
ðV ;EÞ be the tag tree for a page p, and subtree ðuÞ ¼ ðV 0; E0Þ
be a subtree of T anchored at node u. We call subtree ðuÞ a
minimal subtree with property P , denoted as subtree ðu; P Þ, if
and only if 8v 2 V ; v 6¼ u, if subtreeðvÞ has the property P ,
then v ¼)�u holds.

In Thor, we use the term QA-Pagelet to refer to a
dynamically-generated content region that contains
matches to a query.

Definition 4 (QA-Pagelet). A QA-Pagelet is a minimal subtree
that satisfies the following two conditions: 1) A QA-Pagelet is
dynamically-generated in response to a query and 2) it is a

page fragment that serves as the primary query-answer content
on the page.

Condition 1 of the definition excludes all static portions
of a page that are common across many Deep Web pages,
such as navigation bars, standard explanatory text,
boilerplate, etc. But, not all dynamically-generated content
regions in a page are meant to be direct answers to a
query. One example is a personalized advertisement that
may be targeted to a particular query. Condition 2 of the
definition is necessary to exclude from consideration those
regions—like advertisements—that are dynamically-gener-
ated but are of secondary importance. In Fig. 1, the
subtree corresponding to the QA-Pagelet is shown in the
dashed box. The root of the QA-Pagelet is the black-
shaded table node.

4 QA-PAGELET ARCHITECTURE

We now present the overall framework for supporting large-
scale data analysis of the DeepWeb, with an emphasis on the
core data preparation modules, as illustrated in Fig. 2. The
Thor framework is intended to provide a wide variety of
Deep Web analysis services, including data extraction,
indexing, searching, Deep Web mining, and supporting
advanced operators like composition and comparison over
Deep Web sources. To support these services, we have
developed a fundamental data preparation component—the
Thor data extraction and preparation subsystem—that
supports a robust approach to the sampling, locating, and
partitioning of the QA-Pagelets. This data preparation is
critical to the efficient and effective deployment of tools that
operate over Deep Web data.

In the rest of this section, we present the intuition behind
the Thor data preparation algorithms and the detailed QA-
Pagelet extraction architecture. The QA-Pagelet algorithms
are motivated by the observation that even though the Web
as a whole is a mélange of content, structure, and
organization, in the small, however, particular subsets tend
to be very closely related both in terms of structure and
content. We identify two levels of relevance that lay the
foundation for our data extraction algorithm:

Control-Flow Relevance: Unlike pages on the surface
Web, Deep Web pages are generated in response to a
query submitted through a Web interface. Although the

CAVERLEE AND LIU: QA-PAGELET: DATA PREPARATION TECHNIQUES FOR LARGE-SCALE DATA ANALYSIS OF THE DEEP WEB 1249

Fig. 2. Overall architecture.

underlying page generation process is hidden from the
end user, we observe that many Deep Web sources tend to
structure particular classes of pages in a similar fashion
(often using templates), reflecting the underlying control
flow process. For example, the control flow process that
generates a “no matches” page differs from the control
flow process that generates a list of matches. These
differences in control flow are reflected in the layout and
structure of the resulting pages. Hence, by analyzing the
structure of the resulting pages, we can group pages—
such as single match pages, list of matches pages, and “no
matches” pages—that were generated by a common
control flow process.

Topical Diversity: Given a group of pages generated by a
common control flow process at a particular Deep Web
source—say, a set of n normal answer pages from eBay,
each generated in response to a different query—the topical
relevance across pages may yield clues as to which
fragments of a page contain QA-Pagelets. Some portions
of the page contain topically-related information that is
common across all pages in the cluster, while other portions
are dynamically-generated in response to a particular user
query and, hence, topically-diverse. Each of the n pages
from eBay may display different content due to queries
with different search keywords, but each page also has a
similar content layout and a similar page presentation
structure. The navigation bar, advertisements, and other
boilerplate often co-occur across all of the pages.

These observations naturally suggest the approach we
take in Thor’s four phases, as illustrated in Fig. 2. The first
phase collects the sample answer pages generated in
response to queries over a Deep Web source. The second
phase clusters the sample answer pages into distinct groups
of pages that are linked by their common control-flow
dependence, each corresponding to one type of answer
page: be it multimatch pages, single-match pages, no-match
pages, or exception pages. The third phase identifies the
QA-Pagelets in each highly-ranked page cluster by parti-
tioning the set of subtrees in a single page cluster into a list
of common subtree sets ranked by their topical diversity.
Each common subtree set corresponds to one type of
content region in the set of control-flow dependent answer
pages. We then use intracluster content metrics to filter out
the common content and hone in on the QA-Pagelets. At the
conclusion of the third phase, Thor recommends a ranked
list of QA-Pagelets. The fourth phase partitions the highly-
ranked QA-Pagelets into itemized QA-Objects, which are in
turn fed into the rest of the Thor Deep Web information
platform.

Since the data preparation algorithms in phases 2 and 3
are the core Thor data preparation modules, we briefly
summarize the first and fourth phase below before
continuing with a detailed discussion of the core Thor
modules in the following sections.

CollectingDeepWebPages: In this first phase forQA-Pagelet
extraction,wecollect sampleanswerpagesbyprobingaDeep
Web source with a set of carefully designed queries to
generate a representative set of sample answer pages.
Efficiently and appropriately probing a data source is an
area of active research with a number of open issues. In our
context, we are interested in probing techniques that scale
well to many sources and that support the generation of a
variety of page types to capture all possible classes of possible
control-flow answer pages. In the first prototype of Thor, we
implement a technique that uses random words from a

dictionary and a set of nonsensewords unlikely to be indexed
in any Deep Web database. Our sampling approach repeat-
edly queries a Deep Web source with single word queries
taken from our two sets of candidate terms. At a minimum,
this approachmakes it possible togenerate at least twoclasses
of pages—normal answer pages and “no matches” pages.
Our technique improves on the naive technique of simply
using dictionary words, and is effective in collecting samples
of diverse classes of answerpages. In the future,weanticipate
expanding our probing approach to include domain-specific
probing techniques to increase the coverage of sources. The
sampledpages are thenpassed to the secondand thirdphases
toperform thepage clustering and to extract theQA-Pagelets.

QA-Object Partitioning: The extracted QA-Pagelets are
finally partitioned into itemized QA-Objects, which are in
turn fed into the rest of the Thor Deep Web information
platform. Each QA-Pagelet is analyzed by a partitioning
algorithm to discover the object boundaries and separate out
any component objects within the QA-Pagelet. We call these
subobjects QA-Objects. A QA-Object is contained in a QA-
Pagelet and is a close coupling of related information about a
particular item or concept. In Fig. 1, the QA-Pagelet contains
10 QA-Objects corresponding to 10 different query matches
(note: only three are shown for illustration). These QA-
Objects may then be incorporated into advanced services, for
example, for searching the DeepWeb, integrating DeepWeb
data from multiple database sources, or reusing Deep Web
data across various applications. A critical challenge of the
QA-Object partitioning phase is to develop methods that are
robust to the various types of QA-Objects. Some may simply
be lists of hyperlinks that are neatly divided by theHTML list
tag < li >. Others may be complicated nested table
structures. To isolate the QA-Objects within a QA-Pagelet,
the fourth phase first takes into consideration a list of
recommended QA-Objects from Thor’s second stage, exam-
ines each candidate’s particular structure, and then searches
the rest of the QA-Pagelet for similar structures using several
different metrics that assess the size, layout, and depth of
potential QA-Objects.

In the next two sections, we discuss the core Thor
phases—the Deep Web Page Clustering Phase and the
QA-Pagelet Identification Phase—in great detail.

5 DEEP WEB PAGE CLUSTERING PHASE

In this section, we describe our design consideration by
analyzing several known page clustering approaches with
respect to the extraction of QA-Pagelets. We then present
our page clustering algorithm, the ranking criteria, and the
metrics used for evaluating the quality and effectiveness of
our page clustering algorithm. The goal of the page
clustering phase is to take the collection of n sample pages
generated in response to probing queries over a single Deep
Web source and automatically cluster the set of pages into
groupings based upon common control-flow dependencies,
and then give higher ranking to those page clusters that
more likely to contain content-rich QA-Pagelets.

For example, the music site AllMusic.com generates at
least three page types, where each corresponds to a distinct
control-flow: a multimatches page consisting of a list of
query matches, a single match page with detailed informa-
tion on a particular artist (e.g., Elvis Presley), and a no
matches page. These structural and presentational differ-
ences reflect the differing underlying control flow processes
that generate each page. By grouping pages by type, we

1250 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 9, SEPTEMBER 2005

may apply QA-Pagelet extraction techniques that are
specialized for each group of pages, resulting in more
accurate and efficient extraction.

5.1 The Page Clustering Problem

In our context, we define Deep Web page clustering as
follows: Given a set of sample pages from a particular Deep
Web source, which approach is most effective for clustering
the pages into control-flow dependent groups, and distin-
guishing the pages that contain QA-Pagelets from those
answer pages that report no matches or exceptions?
Formally, given a set of n pages, denoted by P ¼ fp1;
p2; . . . ; png, a page clustering algorithm can segment these n
pages into a clustering C of k clusters: C ¼ fCluster1;
. . . ; Clusteri; . . . ; Clusterkj

Sk
i¼1 Clusteri ¼ fp1; . . . ; png and

Clusteri \ Clusterj ¼ ;g.
Apage clustering approach ingeneral consists of twobasic

building blocks: the similarity metric and the algorithm that
performs partitioning over the set of n pages to produce
k clusters (1 � k � n). The similarity metric involves both the
conceptual definition of similarity or dissimilarity metric,
and the formula that calculates and implements such
similarity measure. It plays a critical role in implementing
the specific objectives of clustering. The concrete clustering
algorithm utilizes the concrete similarity metric to divide the
set of n pages into k clusters such that pages in one cluster are
more similar to one another andpages indifferent clusters are
more dissimilar with each other. Given a set of pages, there
are multiple ways to partition the set into k clusters. Most
clustering approaches differ from one another in terms of the
similarity metric they use and how well such a similarity
metric can reflect the objectives of clustering.

5.2 Alternative Approaches

Below, we briefly discuss several popular page clustering
approaches, emphasizing on their similarity metrics and
discuss how well these concrete similarity metrics meet the
specific objectives of page clustering in the context of QA-
Pagelet extraction and the impact of the similarity metric on
the effectiveness of the page clustering algorithm.

5.2.1 URL-Based

Clustering based on URL-similarity is effective for
partitioning pages from different Deep Web databases
by their point of origin [5], but it is not suitable for
focused extraction of QA-Pagelets for a number of
reasons. First, different queries over a single Deep Web
database often result in pages with similar URLs. Second,
pages with similar URLs may be generated using totally
different templates and present completely different types
of data contents. For example, a query of Superman and
a query of a nonsense word like xfghae on eBay yield
URLs of the form, http://search.ebay.com/search/
search.dll?query=superman, and http://search.ebay.com/
search/search.dll?query=xfghae. The two queries generate
pages belonging to two distinct classes—the normal
listing of results for Superman versus a “no matches”
page for the nonsense word. Furthermore, the class of
page returned by a single query may change over time,
even though the URL may remain exactly the same. In
either case, the URLs alone provide insufficient informa-
tion to distinguish between the two classes.

5.2.2 Link-Based

Link-based approaches cluster pages based on their
similarity of both in-links (citations) and out-links (refer-
ences). Various link-based approaches have been proposed
that are extremely effective for discovering groups of
related pages (e.g., [6], [13], [14]). These techniques
represent the Web as a graph where pages are nodes and
hyperlinks are edges. Clusters are deduced by analyzing the
graph (or link) structure. However, link-based approaches
are not suitable for clustering dynamically generated Web
pages. Most of the dynamic pages from the Deep Web tend
to have few or no links pointing to them since the pages are
generated dynamically. It is not a surprise that a collection
of pages from the Deep Web have no common in-links.
Additionally, some Deep Web sources like Google or
AllTheWeb generate answer pages with out-links to
external domains, but lack sufficient in-links pointing to
them. As a result, the link-based approaches are not
effective for focused extraction of QA-Pagelets from the
Deep Web since the underlying link-based graph structure
is sparse and possibly populated with too many discon-
nected nodes.

5.2.3 Content-Based

Content-based clustering techniques rely on discovering
common characteristics of data content presented in the
pages to glean similarities. There are many flavors of the
content-based approach. The technique presented in [7]
performs a syntactic comparison between pages to find
clusters of similar pages. Alternatively, the technique
presented in [24] uses a suffix-tree representation to find
groups of similar documents. These techniques may be
effective at finding pages that share similar content, but
they do poorly in separating answer pages that contain
query matches from those exception pages such as error
reporting pages or “no matches” pages. This is because the
pages to be clustered are generated in response to different
queries and, by design, tend to differ greatly in content.
Hence, we expect content-based methods to be poor
differentiators of structurally-similar pages.

5.2.4 Size-Based

A clustering technique based solely on the size of
pages—thinking that “no matches” pages are significantly
smaller than normal answer pages with multiple match-
es—will fail when page size is not a clear predictor of the
structural similarity of pages. In many Deep Web sources,
an answer page with a single match returned in response to
a query is nearly equal in size to a page with no matches,
even though the two pages are clearly generated using two
different templates and should belong to two different
classes.

5.3 The Thor Page Clustering Algorithm

The common theme in each of the techniques discussed
above is the reliance on nonstructural similarity character-
istics of the pages to find groupings. In contrast, Thor relies
on a tag-tree based clustering approach to group pages with
similar tag-tree representations into clusters, to reflect the
underlying control flow process. This approach is simple
and yet very effective in its ability to efficiently differentiate
dissimilar pages for focused extraction of QA-Pagelets from
the Deep Web. First, the tag-tree representation naturally
encodes much of the structural information (corresponding
to the underlying control flow) useful for clustering

CAVERLEE AND LIU: QA-PAGELET: DATA PREPARATION TECHNIQUES FOR LARGE-SCALE DATA ANALYSIS OF THE DEEP WEB 1251

different groups of answer pages provided by a Deep Web
source in response to a query. Second, pages generated
using different templates tend to be produced by different
control flow processes and have very different tag-tree
structures.

We next introduce the three basic components of Thor’s
second phase: the tag-tree signature, the tag-tree similarity
metric, and the page clustering algorithm using tag-tree
signatures. The tag-tree similarity metric is introduced in the
context of a vector-space model and relies on two conven-
tional similarity functions. The page clustering algorithm
relies on two well-known clustering algorithms—Simple K-
Means and Bisecting K-Means.

5.3.1 Tag-Tree Signature

To capture the structural similarity among pages gener-
ated by a common control flow process at a Deep Web
source, we adopt a tag-tree-based similarity metric. Such
a similarity metric can be defined in two steps: First, we
need to represent the pages in some specific format that
is required for calculating distance between pages. One
approach is to define a vector space model that
represents each dynamically-generated page as a vector
of tags and weights [3]. Given a set of n pages and a total
number of N distinct tags, a page can be described by:
pi ¼ ðtag1; wi1Þ; ðtag2; wi2Þ; � � � ; ðtagN; wiNÞf g.

We call such a tag-tree-based vector representation of a
page the tag-tree signature approach.

The design of the weight system is critical to the quality
of the tag-tree signature-based similarity metric. There are
several ways to define the weights. A simple approach is to
assign the weight to be the frequency of the tag’s occurrence
within the page. However, simply using the raw tag-
frequency as the weight in page vectors may result in poor
quality of clusters when there are pages that have very
similar tag signatures but belong to different classes. For
example, a “no results” page and a “single result” page may
share the exact same tag signature except for a single < b >
tag surrounding the single query result. To increase the
distinguishing weight of this single critical tag, Thor weighs
all tag-tree signatures using term-frequency inverse-docu-
ment-frequency (TFIDF), a technique that weights all term
vectors based on the characteristics of all the pages across
the entire source-specific page space. Concretely, we use a
variation of TFIDF, which defines the weight for tag k in
page i as wik ¼ TF � IDF ¼ log tfik þ 1ð Þ � log nþ 1ð Þ=nkð Þ,
where tfik denotes the frequency of tag k in page i; n is the
total number of pages; and nk denotes the number of pages
that contain tag k. We then normalize each vector. TFIDF
weights tags highly if they frequently occur in some pages,
but infrequently occur across all pages (like the < b >
example above). For Web languages that allow user-defined
tags like XML and XHTML, we may expect to find unique
tags in different classes of pages, meaning the TF and IDF
factors will each play a significant weighting role. Alter-
natively, since the set of possible HTML tags is limited, we
might expect many HTML tags to occur across all pages,
regardless of the page class. Our version of TFIDF is
intuitively appealing since it ensures that even a tag that
may occur in all pages—say, < table >—will still have a
nonzero impact on the tag signature if it occurs in varying
degrees in different pages. And, for those sets of HTML
pages in which certain tags occur in some but not all pages,
the IDF factor will have added distinguishing power.
Empirically, we have found that many Web sources do

indeed use unique tags for some classes of pages but not all,
enhancing the quality of the TFIDF weighting.

Interesting to note is that, although the tag-tree signature
does not capture the subtle differences in content between
two pages (say, two otherwise perfectly similar pages, but
with a pair of transposed subtrees), it is effective to
distinguish those pages that contain query matches from
those that do not. Our experiments in Section 8 show that
the tag-tree based page clustering is more than sufficient to
separate pages generated from different templates of a
Deep Web source into different clusters. Pages with query
matches will be distinguished from those with no matches.

5.3.2 Tag-Tree Similarity

Given a tag-tree signature vector for all pages, we can then
compute the similarity between pages using a number of
similarity (or distance) metrics. In this paper, we consider
two metrics: 1) the cosine similarity because of its appealing
characteristics and widespread use in the information
retrieval community; and 2) the well-known Euclidean
distance.

Given a set of n pages, let N be the total number of
distinct tags in the set of n pages, let wik denote the weight
for tag k in page i. The cosine similarity between pages i
and j is:

simCosðpi; pjÞ ¼
PN

k¼1 wikwjkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
k¼1 w

2
ik

q
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

k¼1 w
2
jk

q
and the Euclidean distance function is:

distanceðpi; pjÞ ¼
Xn
k¼1

jwik � wjkj2
 !1

2

:

Orthogonal page vectors in our normalized space will
have a cosine similarity of 0.0 (and a nonzero Euclidean
distance), whereas identical page vectors will have a cosine
similarity of 1.0 (and a Euclidean distance of 0.0). In the first
prototype of Thor, we define our tag-tree-based similarity
metric by combining the tag-tree signature vector model of
the pages, the TFIDF weight system, and the cosine (or
Euclidean distance) function. Such a similarity metric
ensures that tags like < html > and < body > that occur
equally across many pages will not perversely force two
otherwise dissimilar vectors to be considered similar.

5.3.3 Page Clustering Using Tag-Tree Signatures

Given the tag-tree signatures of pages and the similarity (or
distance) function, a number of clustering algorithms can be
applied to partition the set of n pages into k clusters
(1 � k � n). In this paper, we consider two popular
clustering algorithms: 1) Simple K-Means and 2) Bisecting
K-Means.

Simple K-Means: Simple K-Means is appealing since it is
conceptually very simple and computationally efficient. The
algorithm starts by generating k random cluster centers.
Each page is assigned to the cluster with the most similar
(or least distant) center. The similarity is computed based
on the closeness of the tag-tree signature of the page and
each of the cluster centers. Then, the algorithm refines the
k cluster centers based on the centroid of each cluster. Pages
are then reassigned to the cluster with the most similar
center. The cycle of calculating centroids and assigning
pages to clusters repeats until the cluster centroids stabilize.

1252 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 9, SEPTEMBER 2005

Let C denote both a cluster and the set of pages in the
cluster. We define the centroid of cluster C as:

centroidC¼ ðtag1;
1

jCj
X

i2C wi1Þ;� � �; ðtagN;
1

jCj
X

i2C wiNÞ
� �

;

where wij is the TFIDF weight of tag j in page i, and the

formula 1
jCj
P

i2C wij denotes the average weight of the tag j

in all pages of the cluster C. A sketch of the Simple K-Means

page clustering algorithm based on tag-tree signatures is

provided in Fig. 3.
Bisecting K-Means: Bisecting K-Means is a divisive variant

of Simple K-Means. Rather than initially generating k cluster
centers, this algorithm begins with a single cluster. It then
divides the single cluster into two,where the twonewclusters
are found by the application of Simple K-Means. The
algorithm repeatedly runs Simple K-Means for k ¼ 2 for a
specified number of iterations. The best cluster division is
selected and the algorithm continues. Clusters continue to
divideuntil thereareexactlykclusters.Thishas theadvantage
over Simple K-Means of generating a hierarchy of clusters. A
sketch of the Bisecting K-Means page clustering algorithm
basedon tag-tree signatures isprovided inFig. 4.At eachstep,
we choose the largest cluster as the candidate cluster to be
divided.We evaluate the quality of the cluster division using
an internal similarity metric that is discussed below.

5.3.4 Improved Page Clustering

In Thor, we improve the quality of page clustering by
relying on a number of clustering refinements. A sketch of
the enhanced version of our page clustering algorithm is

given in Fig. 5. The algorithm may be tuned for either the
Simple K-Means or Bisecting K-Means algorithm.

First, we attempt to optimize the choice of the number of
clusters k, since the quality of both the Simple K-Means and
Bisecting K-Means clustering algorithms can be greatly
affected by this parameter choice. Selecting the optimal
number of clusters is an open research problem with no
approach guaranteed to select the optimal k. In general,
most approaches select a reasonable value for k based on
domain knowledge as a starting point, then update the
value of k by learning from the clustering runs [12]. In our
context, we run the K-Means algorithm repeatedly for k
ranging from 1 to M. On each iteration, we start with
k randomly selected cluster centers and calculate a quality
metric to evaluate the clustering produced by this iteration.

Given a set of n pages, the quality of clustering these
n pages into k clusters can be measured by the internal
similarity of the clustering, which is defined in terms of the
internal similarities of each of the k clusters. We measure
the internal similarity of a single cluster by a summation of
the similarities of each page j to its cluster centroid
(1 � j � n):

SimilarityðClusteriÞ ¼
X

pj2Clusteri

simCosðpj; centroidiÞ:

It has been shown [21], [26] that measuring the similarity
between each page and its cluster centroid is equivalent to
merely finding the length of the cluster centroid. This
calculation is appealing since it is computationally inexpen-
sive. The quality of the entire clustering C can be computed
by a weighted sum of the similarities of all component
clusters:QualityðCÞ ¼

Pk
i¼1

ni

n SimilarityðClusteriÞ. We say a
clustering has higher quality if its internal similarity is
higher. We use the internal similarity as an internal
clustering guidance metric to produce the best clustering
since it is simple to calculate and requires no outside
knowledge of the actual class assignments. One of the

CAVERLEE AND LIU: QA-PAGELET: DATA PREPARATION TECHNIQUES FOR LARGE-SCALE DATA ANALYSIS OF THE DEEP WEB 1253

Fig. 3. Tag tree signature simple k-means page clustering algorithm.

Fig. 4. Tag tree signature bisecting k-means page clustering algorithm.

Fig. 5. Thor enhanced k-means clustering algorithm.

advantages of the Thor approach is the selection of a k that
is specific to the Deep Web source under analysis.

Second, for agiven choiceofk,we searcha largerportionof
the solution space by repeatedly running the clustering
algorithm. Each iteration of the K-Means algorithm is
guaranteed to converge [10], though the convergence may
be to a local maxima. Hence, for each choice of k, we
additionally run the K-Means algorithm N times; for each
iteration, we choose a random starting set of cluster centers.
Finally, we choose the best clustering for the given set of
n pages on the iteration that yields the clusters with highest
quality.

5.4 Recommending Page Clusters

The final step of the second phase is to filter out clusters that
are unlikely to contain QA-Pagelets (like error and exception
pages), and to recommend clusters that are likely to contain
QA-Pagelets. Clusters are ranked according to their like-
lihood to contain QA-Pagelets and only the top-ranked
clusters are passed along to the third phase. Several ranking
criteria could be used based on the tag-tree characteristics
defined in Section 3. We briefly discuss three criteria that are
considered by Thor for ranking page clusters:

Average Distinct Terms: We expect to find a higher
number of unique words on content-rich pages than on
noncontent rich pages. The average number of distinct
terms for a Clusteri is the average of distinct term counts of
each page in the cluster, namely,

1

jClusterij
X

p2Clusteri
distinctTermsCountðpÞ:

Average Fanout: Clusters that have pages with higher
average fanout may be more likely to contain QA-Pagelets.
The average fanout for a Clusteri can be computed by the
average of the largest fanout of a node in each page of the
cluster. Namely,

1

jClusterij
X

p2Clusteri
maxu2p:V ffanoutðuÞg;

where p.V denotes the set of nodes in page p.
Average Page Size: Larger pages may tend to be more

likely to contain QA-Pagelets. We define the average page
size for a Clusteri as

1

jClusterij
X

p2Clusterc
SizeðpÞ;

where SizeðpÞ denotes the size of page p in bytes.
Each ranking criterion works well for some pages and

poorly for some other pages. Our initial experiments over a
wide range of sources show that a simple linear combina-
tion of the three ranking criteria works quite well, though it
may be appropriate to revise the page ranking criteria based
on domain-specific knowledge.

5.5 Incremental Evaluation

In our discussion above, the page clustering takes a set of
sample pages and clusters them in a batch process. The Thor
algorithm can also be applied incrementally to handle online
queries of a Deep Web source. After an initial collection of
sample pages and page cluster generation, we will have
constructed cluster centers and ranked the clusters. As new

online queries are issued to the Deep Web source, the
resulting pages can be compared to the previously computed
cluster centers and assigned to the most similar cluster. As
additional new pages are incrementally assigned, the page
clustering canbe rerun to recalculate cluster centers. Thepage
clusters (both in the batch and incremental case) may then be
further processed according to the third and fourth phases to
be described next.

6 QA-PAGELET IDENTIFICATION PHASE

In the thirdphase,Thorexaminespages fromtop-rankedpage
clusters at a subtree level to identify the smallest subtrees that
contain the QA-Pagelets. This phase takes as input a single
clusterofncpages,andoutputsa listofQA-Pagelets.Themain
challenge of the third phase is how to effectively discover and
locate QA-Pagelets from each of them page clusters. Though
the pages under consideration may contain QA-Pagelets, the
QA-Pagelets are often buried by a variety of irrelevant
information. As discussed in Section 3, each QA-Pagelet in a
page is a subtree of the corresponding tag tree of the page.
Thor relies on three main steps to identify QA-Pagelets:
1) single-pagesubtree filtering, 2) cross-pagesubtree filtering,
and3)selecting thesubtreescontainingQA-Pagelets.Thegoal
of the single-page and cross-page filtering steps is to identify
subtrees from each page that are candidate QA-Pagelets and
remove those subtrees that are unlikely to be QA-Pagelets.
The QA-Pagelet selection algorithm then ranks the resulting
subtrees and recommends the QA-Pagelet for each page.

6.1 Single-Page Subtree Filtering

Single-page filtering takes oneof the top-rankedpage clusters
resulting from the page clustering phase and outputs a set of
candidate subtrees for each page in the given cluster of nc

pages. The goal of single-page filtering is to eliminate those
subtrees that do not contribute to the identification of QA-
Pagelets. It starts out with all the subtrees in the page and
proceeds as follows: First, it removes all subtrees that contain
no content, then it removes those subtrees that contain
equivalent content but are not minimal. Furthermore, if the
subtree anchored at u is a candidate subtree, then for any
descendant w of u, the fanout (w) is greater than one.
Formally, let candidateSubtreesðpÞ be the set of candidate
subtrees of page p produced by the single-page analysis step.
The candidate subtree set can be defined as follows:

CandidateSubtreesðpÞ ¼
fu 2 V jsubtreeContentðuÞ 6¼ ;; 8v 2 V ; v 6¼ u and

v ¼)�u; subtreeContentðuÞ 6¼ subtreeContentðvÞ;
8w 6¼ u 2 V ; u ¼)�w; fanoutðwÞ > 1g:

6.2 Cross-Page Subtree Filtering

Cross-page filtering groups the candidate subtrees that
correspond to the same typeof content region intoonesubtree
cluster and produces a ranked list of common subtree sets. It
takes thenc sets of candidate subtrees, one set for eachpage in
thegivenpagecluster,andproducesarankedlistofkcommon
subtree sets. Each set contains at most one subtree per page
and represents one type of content region in all pages of the
givenpage cluster. SinceQA-Pagelets in a page are generated
in response to a particular query, the subtrees corresponding
to the QA-Pagelets should contain content that varies from
page to page. In contrast, the common subtree set that

1254 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 9, SEPTEMBER 2005

corresponds to the navigational bar in each of the nc pages
contains the same or very similar content across all pages.
Based on these observations, we leverage the cross-page
subtree content to eliminate or give low ranking scores to the
subtrees with fairly static content. Cross-page filtering is
carried out in two steps: finding common subtree sets by
grouping subtrees with a common purpose and ranking the
candidate subtrees according to their likelihood of beingQA-
Pagelets.

6.2.1 Step 1: Finding Common Subtree Sets

For the k page clusters generated in the Page Clustering
Phase, only the top-m page clusters are passed to the second
phase for QA-Pagelet identification. Consider the set of
nc pages in one of the m page clusters, a common subtree
may be a subtree corresponding to the navigation bar, the
advertisement region, or the QA-Pagelet.

The algorithm for finding common subtree sets starts by
randomly choosing a page, say pr, from the set of nc pages
in a given page cluster. We call pr the prototype page. Let
CandidateSubtreesðprÞ be the set of candidate subtrees
resulting from the single-page filtering. For any subtree
anchored at node u of the tag tree of pr, we find a subtree
that is most similar to u in terms of subtree shape and
subtree structure. In Thor, we introduce four metrics that
are content-neutral but structure-sensitive to approximate
the shape of each subtree. The goal is to identify subtrees
from across the set of pages that share many shape
characteristics. The metrics we consider are: the path (Pj)
to the root of the subtree, the fanout (Fj) of the subtree’s
root, the depth (Dj) of the subtree’s root, and the total
number of nodes (Nj) in the subtree. Each subtree, say
subtreej, is modeled by a quadruple: < Pj; Fj;Dj;Nj > .

For a collection of nc pages, we will identify k sets
(1 � k � jCandidateSubtreesðprÞj) of common subtrees.
Each common subtree set is composed of a single subtree
from each page, and a subtree labeled j from page l is
denoted as subtreelj:

CommonSubtreeSeti ¼ fsubtree1i;1; . . . subtree
nc

i;nc
g:

This distance function measures the distance between
subtree i and subtree j. It is designed to minimize the
distance between subtrees that share a similar shape (and,
hence, a similar function in the pages). Any two subtrees
within one common subtree set are more similar to one
another according to the four distance metrics. Similarly,
any two subtrees coming from two different common
subtrees are less similar in terms of subtree shape and
structural characteristics.

The first term measures the string edit-distance between
the paths of the two subtrees. String edit-distance [3]
captures the number of “edits” needed to transform one
string into another. The edit-distance between the strings
“cat” and “cake” would be two; there are two edits
necessary, changing the “t” to a “k” and adding an “e.”
To compare two paths, we first simplify each tag name to a
unique identifier of fixed length of q letters. This ensures
that comparing longer tags with shorter tags will not
perversely affect the distance metric. We then normalize the
edit-distance by the maximum length of the two paths to
normalize the distance to range between 0.0 and 1.0. For
example, with q ¼ 1 we convert html to h, head to e, and

so on. The paths html/head and html/head/title would first be
simplified to he and het. The edit-distance between the paths
is 1, which would then be scaled to 1=3.

The second term
jFi�Fjj

maxðFi;FjÞ of the distance function will be

0.0 for the two subtrees with the same fanout. Conversely,

the term will be 1.0 when comparing a subtree with no

children to a subtree with 10 children. A similar relation-

ship holds for the third and fourth terms as well.
Intuitively, our distance function is designed to quickly

assess the shape of each subtree. We expect subtrees with a
similar shape to serve a similar purpose across the set of
pages in one page cluster. Note that each unweighted term
ranges in value from 0.0 (when the two subtrees share the
exact same feature) to 1.0, so the overall weighted distance
between any two subtrees also ranges from 0.0 to 1.0.
Initially, we weight each component equally (i.e.,
w1 ¼ w2 ¼ w3 ¼ w4 ¼ 0:25). Our experiments show that this
distance metric provides an effective mechanism for
identifying common subtrees.

6.2.2 Step 2: Filtering the Common Subtree Sets

This step ranks the k common subtree sets by the likelihood
that each contains QA-Pagelets and filters out low-ranked
subtree sets. In Thor, we determine the probability that a
common subtree set corresponds to a QA-Pagelet by
calculating its internal similarity and giving the highest
ranking score to the common subtree set that has the lowest
internal similarity. We first represent each subtree under
consideration by a weighted term vector and then provide
the similarity function to compute the internal similarity for
each common subtree set.

To determine which common subtrees contain dynamic
content generated in response to a query, we first transform
each subtree’s content into a vector of terms and weights,
similar to the method described for tag-tree signature-based
vector model in Section 5.3. Here, we are interested not in
each subtree’s tags, but only in its content. Thor uses the
subtree’s content vector for cross-page content analysis to
reveal the QA-Pagelets.

We preprocess each subtree’s content by stemming the
prefixes and suffixes from each term [18]. Then, we apply
the TFIDF method and the cosine similarity metric to
compute the internal similarity of each common subtree set.
We have k common subtree sets, each containing nj subtrees
(1 � j � k). Let subtreeij denote the ith subtree in the jth
common subtree set. Let Nj denote the total number of
distinct terms in the jth common subtree sets. Each of the
subtrees is represented by a term-subtree vector:

subtreeij ¼ ðterm1; wi1Þ; ðterm2; wi2Þ; � � � ; ðtermNj
; wiNj

Þ
� �

:

The weight wiq for subtree j is defined using the TFIDF

weight function wiq ¼ log tfiq þ 1
� �

� log njþ1
nqj

� 	
, where 1 � i

� nj, tfiq denotes the frequency of the term indexed by q

(1 � q � Nj) in subtree i, nj is the total number of subtrees in

common subtree set j, andnqj denotes the number of subtrees

in common subtree set j that contain the termwith index q. As

discussed before, TFIDF weights terms highly if they

frequently occur in some subtrees but infrequently occur

across all subtrees. This allows Thor to easily distinguish and

to identify the subtrees containing terms that vary from

CAVERLEE AND LIU: QA-PAGELET: DATA PREPARATION TECHNIQUES FOR LARGE-SCALE DATA ANALYSIS OF THE DEEP WEB 1255

subtree to subtree and thus from page to page. With the

content term-subtree vector model, we can compute the

intrasubtree set similarity for each of the k common subtree

sets using the centroid-based internal similarity metric

presented in Section 5.3.4.
For a particular cluster of similarly-structured domain-

specific pages, we expect some subtrees to be relatively
static; the QA-Pagelets should vary dramatically from page
to page, since it is generated in response to a specific query
and these queries differ from page to page. That is, the
intrasubtree set similarity should be high for the static
subtrees that are the same for all pages. In contrast, for QA-
Pagelets, the intrasubtree set similarity should be low since
the QA-Pagelets vary in content greatly. Hence, we rank the
k subtree sets in ascending order of the intrasimilarity of the
subsets and then prune out all subtree sets with similarity
greater than 0.5. Our experiments show that the common
subtree sets are clearly divided into static-content (high
similarity) groups and dynamic-content (low similarity)
groups, so that the choice of the exact threshold is not
essential.

6.3 QA-Pagelet Selection

After the single and cross-page filtering steps, the only
subtrees left in consideration are those that contain dynami-
cally-generated content. Among these subtrees, some may
correspond to QA-Pagelets, some to the QA-Objects within a
QA-Pagelet, and some to certain personalized content that is
dynamically-generated (perhaps based on cookies main-
tained at the Deep Web sources).

We adopt a QA-Pagelet selection criterion that favors
subtrees that 1) contain many other dynamically-generated
content subtrees and 2) are deep in the tag tree. The first
guideline captures the notion that a QA-Pagelet will contain
many subelements that are dynamically-generated (which
we have termed QA-Objects). The second guideline is
designed to discourage the selection of overly large
subtrees—say, the subtree corresponding to the entire page.

For each page p, we denote the remaining top-ranked
subtrees (i.e., those subtrees that have passed both the
single and cross-page filtering steps) as DynamicContent
SubtreesðpÞ or simply DCSðpÞ. Let countDCSðuÞ = the
number of subtrees in DCSðpÞ that are contained in
subtree u, u 2 DCSðpÞ. Let hopsDCSðu; vÞ = the number of
subtrees in DCSðpÞ that are rooted along the path below
u up to and including v, if v is reachable from u; 0,
otherwise. The hopsðu; vÞ function is 1 if there are no
other subtrees in DCSðpÞ rooted along the path between
u and v.

The QA-Pagelet selection algorithm in Fig. 6 begins by
finding the subtree that contains the most other dynamic
content subtrees, since we expect the QA-Pagelet to also
contain many subregions with dynamic content. Consider-
ing all the subtrees that are one “hop” deeper in the

candidate subtree, it then chooses the subtree that contains
the most dynamic content subtrees. This process continues
until the stopping condition is met. By varying the
parameter �, we may control the relative depth of the
selected QA-Pagelet. In our initial experiments, we find
good results with � ¼ 2. We anticipate refining this
parameter in the future based on source-specific informa-
tion to improve the accuracy of Thor.

At the end of the third phase, we have a list of QA-
Pagelets. The current selection algorithm supports the
identification of a single subtree as the QA-Pagelet for a
given page. Depending on the application scenario, it may
be advantageous to relax this condition. For example, in
cases in which the interesting dynamic content spans
several subtrees, Thor could recommend the top-k candi-
date QA-Pagelets for further analysis. Similarly, there are
some circumstances where the subtree corresponding to the
QA-Pagelet may contain data in addition to the QA-Pagelet.
As a result, we annotate each QA-Pagelet with a list of the
other dynamic content subtrees that it contains to guide the
QA-Object partitioning stage. These QA-Pagelets are then
sent through Thor’s final phase to partition the QA-Objects.

7 EXPERIMENTAL SETTING

In this section, we discuss the data and metrics used to
evaluate the quality of QA-Pagelet extraction. The software
underlying the Thor architecture is written in Java 1.4. All
experiments were run on a dual-processor Sun Ultra-Sparc
733MHz with 8GB RAM. Pages took on average 1.2 seconds
to parse.

7.1 Data

To evaluate Thor, we rely on two data sets: 1) a collection of
more than 5,000 pages from 50 diverse real-world Web data
sources and 2) a synthetic data set of more than 5 million
pages designed to emulate the diversity and scope of real-
world Deep Web sources.

7.1.1 Web Data

Using a breadth first crawl of the Web starting at several
randomly selected College of Computing personal home-
pages, we identified more than 3,000 unique search forms.
We randomly selected 50 of the 3,000 search forms. The
Web sites chosen represent a wide range of sources,
including e-Commerce sites, general and specialized search
engines, corporate Web sites, medical and legal resources,
and several others. We then submitted to each form
110 queries, each with one keyword selected from 100 ran-
domwords in the standard Unix dictionary and 10 nonsense
words. This results in a set of 5,500 pages in a local cache for
analysis and testing. We labeled each page by hand with the
appropriate class (e.g., “normal results,” “no results,” etc.),
and identified the QA-Pagelets in each page if they exist. In
Table 1, we list more detailed information about the 50 Web
sites, including relevant information on the average page
size, number of terms per page, and tags per page.

7.1.2 Synthetic Data

With the Web data, we can evaluate the Thor algorithm, but

we are also interested in assessing the scalability of the

algorithm to ensure that the Thor approach is valid over

increasingly large data sets. Since evaluating Thor’s two

1256 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 9, SEPTEMBER 2005

Fig. 6. QA-Pagelet selection algorithm.

phases requires the burdensome task of hand-labeling each

page and QA-Pagelet, we rely on a synthetic data set

designed to closely match the real-world data to evaluate

Thor’s scalability. Based on the overall class distribution, we

randomly generated three much larger synthetic data sets.

If x percent of the pages in the set of 5,500 sampled pages

belong to class c, approximately x percent of the synthetic

pages will also belong to class c. To create a new synthetic

page of a particular class, we randomly generated a tag and

content signature based on the overall distribution of the

tag and content signatures for the entire class. We applied

this method repeatedly to create data sets of 55,000 pages

(1,100 pages per site), 550,000 pages (11,000 pages per site),

and 5,500,000 pages (110,000 pages per site).

7.2 Metrics

We evaluate the Thor page clustering approach against

several alternatives by measuring the time to cluster and the

entropy of the clustering result. Entropy is a well-known

measure of the randomness or disorder in a system [20]. For

a particular clustering, entropy measures the quality of

assignments of pages to clusters. In the best case, a

clustering of a collection of n pages belonging to c classes

into k clusters would result in k ¼ c clusters, where each

cluster contains only pages from a particular class. In the

worst case, the pages from each class would be equally

divided among the k clusters, resulting in valueless clusters.

Let pðzÞ ¼ Prob(page p belongs to class j j page p is in

cluster i). For a single cluster, we measure entropy as:

EntropyðClusteriÞ ¼ �1
logðcÞ

Pc
j¼1 pðzÞ log pðzÞð Þ, where we may

approximate pðzÞbynj
i=niwhereni ¼ thenumber of pages in

Clusteri andnj
i ¼ thenumberofpages inClusteri thatbelong

to Classj. For an entire clustering C of n pages, the total

entropy is the weighted sum of the component cluster

entropies: EntropyðCÞ ¼
Pk

i¼1
ni

n EntropyðClusteriÞ. Our goal

is to choose the clustering that minimizes total entropy. Since

entropy requires external knowledge about the correct

assignment of documents to c classes, we may use entropy

only for evaluation of Thor, not as an internal clustering

guidance metric as described in Section 5.
To evaluate the quality of QA-Pagelet identification, we

rely on measures of precision and recall. Let x ¼ Number
of QA-Pagelets Correctly Identified, y ¼ Number of

CAVERLEE AND LIU: QA-PAGELET: DATA PREPARATION TECHNIQUES FOR LARGE-SCALE DATA ANALYSIS OF THE DEEP WEB 1257

TABLE 1
Web Data Set Summary: 110 Pages per Site

Subtrees Identified as QA-Pagelets, and z ¼ Total Number
of QA-Pagelets in the Set of Pages. Then, precision ¼ x=y
and recall ¼ x=z.

8 EXPERIMENTAL RESULTS

In this section, we report a number of experimental results
to evaluate the overall effectiveness of the Thor approach.

8.1 Clustering Deep Web Pages

We first examine the quality of Thor’s Deep Web page
clustering to evaluate the effectiveness of both the similarity
metric and the clustering algorithm. To show the benefits of
our TFIDF tag-tree signature-based weighting scheme, we
evaluated the entropy and time complexity of the Thor
approach against several alternatives, including the raw
tags, the TFIDF-weighted content, the raw content, the URL,
and the size of each page. For the tag and content-based
approaches, we generated the vector space representation
described in Section 5. For the URL-based approach, we
described each page by its URL and used a string edit
distance metric to measure the similarity of two pages.
Since a URL-based centroid cannot be easily defined, we
assigned pages to clusters based on the average similarity of
the page to each page in the candidate cluster. For the size-
based approach, we described each page by its size in bytes,
measured the distance between two pages by the difference
in bytes, and calculated each cluster centroid as the average
size in bytes of the cluster members. As a baseline, we also
considered an approach that randomly assigned pages to
clusters.

We selected n pages from each of the 50 collections and
ran each set through our enhanced K-Means clustering
algorithm using the cosine similarity function. We repeated
this process 10 times to generate an average entropy and
clustering time for collections ranging from 5 to 110 pages.
In Fig. 7, we show the average entropy across the 50 page
collections for each collection size. Note that our entropy
measure ranges from 0 (the best) to 1 (the worst). Internally,
the clustering algorithm ran 10 times, at each iteration
assessing the overall similarity of the clustering. The
clustering with the highest similarity was then recom-
mended as the final clustering for evaluation.

The TFIDF weighted tag-tree signature approach outper-
forms all the other techniques. It results in clusters with
entropy on the order of 6-times lower (0.04 versus 0.24) than
the raw tags technique, between 7 and10 times lower than the
content-based techniques (0.04 versus 0.28 and 0.38), and
between 11 and 17 times lower than the size, URL, and

random approaches (0.04 versus 0.44, 0.56, and 0.65). The
TFIDF approach also results in more consistently good
clusters across all 50 Deep Web sources, with a standard
deviation signicantly less than the other techniques. There are
at least two reasons for such success. First, the objective of
Thor’s page clustering is simply to separate answer pages
with query matches from those with no matches or errors.
Thus, the tag-tree signature approach is sufficient and
effective. Second, we discovered that many Deep Web sites
do use some tags in some page types but not others, resulting
in the better performance of the TFIDF-weighted approach.
Hence, the use of TFIDF to weight each tag-tree signature
accentuates the distance between different classes, resulting
in very successful clustering.Note that the average entropy is
fairly low when clustering few pages, then increases sharply
before levelling off at around 40 pages. For small page
samples,wewouldexpect thatvery fewdifferentpageclasses
would be represented; hence, any clustering should result in
lowentropy.As the number of pages to be clustered increases
so does the diversity of the page classes represented in the
sample; so entropy should increase until the distribution of
pages stabilizes. InFig. 8,weshowtheaverage time to runone
iteration of our page clustering algorithm for each of the
sample sizes over the 50 collections and compare it with the
alternative clustering approaches. The tag-based approaches
take on average an order-of-magnitude less time to complete
than the content-based approaches, and can scale better to
much larger data sets. The tag-based approach dominates the
content-basedapproachprimarilydue to the sharpdifference
in size between the tag and the content signature.On average,
each page in our collection of 5,500 pages contains 22.3
distinct tags and 184.0 distinct content terms.

To further understand the time complexity of tag-tree-
based approach, we compared our tag-tree signature
approach with a tree-edit distance metric-based approach
[17]. We found that for a single collection of 110 pages, tree-
edit distance-based clustering took between 1 and 5 hours,
whereas our TFIDF-tag approach took less than 0.1 seconds.
Given the excessive cost of the tree-edit-distance, we did not
consider it in our other experiments.

To assess the efficiency and scalability of our algorithm,
we next compared the alternative approaches against the
TFIDF-weighted tag signature approach over the three
synthetic data sets. In Fig. 9, we report the average entropy
over each of the 50 collections, where we consider from 110
to 110,000 pages per collection. The average entropy is
nearly constant, even though the collections grow by
1,000 times. In Fig. 10, we report the average time to run
one iteration for each of the 50 collections, again considering

1258 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 9, SEPTEMBER 2005

Fig. 7. Entropy (a).
Fig. 8. Time (a).

the three synthetic data sets. The average clustering time
grows linearly with the increase in collection size, as we
would expect in a K-Means-based clustering algorithm.
Overall, these results confirm that the TFIDF-weighted tag
signature approach grows linearly as the size of the page
collection grows by three orders of magnitude and, thus, it
can scale up smoothly.

In Fig. 11, we show the average clustering time as a
function of the number of unique terms in the signature of the
page for both the TFIDF-tag approach and the TFIDF-content
approach. This experiment was conducted over each of the
50 collections. The dense group in the bottom-lefthand corner
corresponds to the TFIDF-tag approach, which further
validates the time advantage of the tag-based approach over
the content-based approach. We also note the approximately
linear growth of clustering time as a function of the total
number of distinct tags or terms in the signature.

In Fig. 12, we compare the effectiveness of the Simple K-
Means clustering algorithm versus the Bisecting K-Means
version over the original 5,500 page data set using the TFIDF-
tag approach and the cosine similarity function for several
cluster number settings. As we would expect, both report
better results forhighernumbersof clusters. Interestingly, the
Simple K-Means algorithm results in slightly lower entropy
clusters. We attribute this advantage to the lack of a clear
hierarchical nature to the underlying data. We would expect
Bisecting K-Means to be preferred in cases in which such a
hierarchical structure is more pronounced.

In Table 2, we compare the effect of the underlying
similarity metric on the performance of page clustering. We
show the average entropy and standard deviation over the
original 5,500 page data set. In the presence of the TFIDF-

tag-weighting, both metrics perform approximately the
same (i.e., 0.038 versus 0.037). But, in the unnormalized
cases, the cosine significantly outperforms the Euclidean
distance in cluster quality. We attribute this improvement
to the cosine’s implicit vector normalization; in contrast, the
Euclidean distance may overstate the difference between
vectors of different lengths.

To further illustrate the effectiveness of the TFIDF-
weighted tag signature approach, we list in Table 3 the
dominant tags in the centroid for the “Normal” page cluster
and the “No Results” page cluster for one of the Deep Web
data sources (ClinicalTrials.com) we have tested. Our page
clustering successfully segmented the two types of pages. On
a closer examination of these tag signatures, we can see why
the clustering was so successful. The tag signatures differ in
both the presence of certain tags and in the relative
contribution of each tag to the overall signature. The TFIDF-
weighting scheme has emphasized the presence of the tag
< i > in the “Normal” page cluster versus the highly-
weighted< div >, and< p > tags in the“NoResults” cluster.

In contrast, Table 4 shows the dominant centroid terms
for the same collection of pages, but using the raw normal-
ized tag signatures for each page instead of the TFIDF
weighted tag signatures. Interesting to note is that the
distinguishing tag terms in the successful TFIDF case do not
significantly contribute to the raw tag signature. And, for the
top three tags that are significant, the relative contribution of
each is quite similar for both classes of pages (e.g., < font >
is 0.57 in one case, 0.60 in the other). This illustrates how our

CAVERLEE AND LIU: QA-PAGELET: DATA PREPARATION TECHNIQUES FOR LARGE-SCALE DATA ANALYSIS OF THE DEEP WEB 1259

Fig. 9. Entropy (b).

Fig. 10. Time (b).

Fig. 11. Time versus signature size.

Fig. 12. Comparison of clustering algorithms.

TFIDF-weighting scheme is effective at focusing on the
critical differentiating tags in each class of pages.

Finally,we conducted extensive experimentswith various
cluster settings—ranging the number (k) of clusters from 2 to
5 and ranging the internal cluster iterations from 2 to 20. We
found that varying the cluster number resulted in onlyminor
changes to the overall performance. If we set the number of
clusters greater than the number of actual clusters, the
clustering algorithmwill generatemore refined clusters. This
is not a problem in our context, since QA-Pagelet identifica-
tion is dependent only on the quality of each cluster; a
sufficiently good cluster will yield reasonable results regard-
less of the grain of the cluster.We also found that running the
clusterer 10 times provided a balance between the faster
running timesusing fewer iterationsand the increasedcluster
quality using more iterations.

8.2 Identifying QA-Pagelets

We next evaluate the quality of the Thor QA-Pagelet
identification by measuring precision and recall statistics.
To consider this phase in isolation from the page clustering
phase, we considered as input only those pages from each
Deep Web source that had been prelabeled as containing
QA-Pagelets.

We considered several variations of the subtree distance
function in an effort to validate the Thor approach. These
variations include a distance based solely on each of the
four subtree features—path (P), fanout (F), depth (D), and
nodes (N)—and our distance based on a linear combination
of all four (All). In Fig. 13, we report the average precision
and recall of Thor’s second phase with respect to the five
distance metrics. As we might expect, simply judging
subtree similarity by a single feature underperforms the
combined metric. Our combined metric achieves precision
and recall over 98 percent. The combined distance metric
performs better in nearly all cases (49 of 50) versus the next-
best metric, achieving a standard deviation precision

significantly less for the combined metric (2 percent) versus
the other metrics (which range from 13 percent to
40 percent). For our combined distance metric, on a careful
inspection of the mislabeled pages, we discovered that Thor
was sometimes confused by pages with a region of dynamic
nonquery-related data. For example, some pages generate
an advertisement region that varies somewhat across the
space of pages. As a result, the intracluster content analysis
may incorrectly identify the dynamic advertisement as a
QA-Pagelet.

We now illustrate the role of our TFIDF-weighting
scheme for computing the internal similarity of the common
subtree sets. We show in the left-hand side of Fig. 14 a
histogram of the intrasimilarity scores for the common
subtree sets with no TFIDF-weighting. The number of
common subtree sets with high dissimilarity is very low,
whereas the number of common subtree sets with high
similarity is very high. Extracting the QA-Pagelets in this
case would be prohibitive. In contrast, in the right-hand
side of Fig. 14, we show a histogram of the intrasimilarity
scores for the common subtree sets using our TFIDF-
weighting scheme. Note that there are many subtree sets
at both the low end and the high end of the similarity scale.
This shows that the common subtree sets clearly either have
query-independent static content (i.e., high similarity) or
query-dependent dynamic content (i.e., low similarity). The
precise choice of threshold—0.5 in the first prototype of
Thor—is not very important.

8.3 Evaluating Overall Performance

We conclude by reporting the overall performance of the
Thor QA-Pagelet extraction. In Fig. 15, we compare the
overall impact on precision and recall of Thor’s TFIDF-tag
clustering approach (TTag) versus the raw tag (RTag),
TFIDF content (TCon), raw content (RCon), size, URLs, and

1260 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 9, SEPTEMBER 2005

TABLE 2
Cosine versus Euclidean: Entropy

TABLE 3
Centroids for ClinicalTrials

TABLE 4
Raw Centroids for ClinicalTrials

Fig. 13. Distance comparison.

random approaches. In all cases, we used the combined
subtree distance metric discussed above. The overall Thor
approach achieves very high precision (97 percent) and
recall (96 percent) in contrast to the alternatives, performing
better in nearly all cases (47 of 50) versus the next-best
metric, and achieving a standard deviation precision
significantly less for the combined metric (8 percent) versus
the other metrics (which range from 28 percent to
35 percent). The quality of clusters generated in the first
phase doubly impacts the overall performance. First, if a
normal results page is misclustered into a “no results”
cluster, it will not advance to the QA-Pagelet identification
phase and, hence, its QA-Pagelets will be overlooked.
Second, any “no results” pages that do advance to the third
phase will worsen QA-Pagelet identification by hampering
the cross-page analysis. Hence, it is of critical importance to
generate quality clusters.

Finally, in Fig. 16, we show the trade-off in precision and
recall as a function of the number of clusters passed from
the page clustering phase to the QA-Pagelet identification
phase, considering only the TFIDF-tag approach. In this
experiment, the page clustering phase generates three
clusters. If we pass along only one cluster to the second
phase, the precision will be very high, since only pages that
contain QA-Pagelets will be considered in the second phase.
In contrast, recall will be much lower since many QA-
Pagelets may occur in one of the clusters not passed on to
the second phase. The reverse holds when we pass all three
clusters on to the second phase. Precision falls, since many
of the pages in consideration do not contain QA-Pagelets,
but recall increases since every page in the original data set
will be considered for QA-Pagelet extraction. In this case,
there is a good compromise when passing two clusters. In

general, we expect the optimal number to be domain
specific.

9 CONCLUSIONS

To support large-scale data analysis over the Deep Web, we
have introduced a fundamental data preparation approach
for the robust sampling, identification, and extraction of the
high-quality query-related content regions in Deep Web
pages. We have introduced the concept of a QA-Pagelet and
presented the Thor framework for efficiently extracting QA-
Pagelets from the Deep Web in four phases. The first phase
probes the Deep Web data sources to sample a set of pages
rich in content. The second phase uses a novel page
clustering algorithm to segment Deep Web pages according
to their structural similarities, aiming at separating pages
that contain query matches from pages that contain no
matches (like exception pages, error pages, and so on). A
ranked list of page clusters is produced by applying a tag-
tree signature-based TFIDF similarity function with a K-
Means clustering algorithm. In the third phase, pages from
top-ranked page clusters are examined at a subtree level to
locate and rank the query-related content regions of the
pages (the QA-Pagelets). The final phase uses a set of of
partitioning algorithms to separate and locate itemized
objects in each QA-Pagelet. We show that Thor performs
well over millions of Deep Web pages and over a wide
range of sources, including e-Commerce sites, search
engines, corporate Web sites, medical and legal resources,
and several others. Our experiments also show that the
proposed page clustering algorithm achieves low-entropy
clusters, and the subtree filtering algorithm identifies QA-
Pagelets with excellent precision and recall.

ACKNOWLEDGMENTS

This work is partially supported by the US National Science
Foundation under a CNS Grant, an ITR grant, and a
Department of Energy SciDAC grant, an IBM SUR grant, an
IBM faculty award, and an HP equipment grant. The
authors wish to thank the reviewers and the special issue
guest editors for their helpful comments.

REFERENCES

[1] B. Adelberg, “NoDoSE—A Tool for Semi-Automatically Extract-
ing Structured and Semistructured Data from Text Documents,”
Proc. SIGMOD, 1998.

CAVERLEE AND LIU: QA-PAGELET: DATA PREPARATION TECHNIQUES FOR LARGE-SCALE DATA ANALYSIS OF THE DEEP WEB 1261

Fig. 14. Subtree similarity.

Fig. 15. Overall precision and recall.

Fig. 16. Precision/recall trade-off.

[2] A. Arasu and H. Garcia-Molina, “Extracting Structured Data from
Web Pages,” Proc. SIGMOD, 2003.

[3] R.A. Baeza-Yates and B.A. Ribeiro-Neto, Modern Information
Retrieval. ACM Press, 1999.

[4] Z. Bar-Yossef and S. Rajagopalan, “Template Detection via Data
Mining and Its Applications,” Proc. World Wide Web Conf., 2002.

[5] D. Beeferman and A. Berger, “Agglomerative Clustering of a
Search Engine Query Log,” Knowledge Discovery and Data Mining,
pp. 407-416, 2000.

[6] K. Bharat and M.R. Henzinger, “Improved Algorithms for Topic
Distillation in a Hyperlinked Environment,” Proc. ACM SIGIR
Conf., 1998.

[7] A.Z. Broder, S.C. Glassman, M.S. Manasse, and G. Zweig,
“Syntactic Clustering of the Web,” Proc. World Wide Web Conf.,
1997.

[8] J. Caverlee, L. Liu, and D. Buttler, “Probe, Cluster, and Discover:
Focused Extraction of QA-Pagelets from the Deep Web,” Proc. Int’l
Conf. Data Eng., 2004.

[9] W. Cohen, “Recognizing Structure in Web Pages Using Similarity
Queries,” Proc. Am. Assoc. for Artificial Intelligence Conf., 1999.

[10] I.S. Dhillon and D.S. Modha, “Concept Decompositions for Large
Sparse Text Data Using Clustering,” Machine Learning, vol. 42,
nos. 1/2, pp. 143-175, 2001.

[11] L. Gravano, P.G. Ipeirotis, and M. Sahami, “QProber: A System for
Automatic Classification of Hidden-Web Databases,” ACM Trans.
Information Systems, vol. 21, no. 1, pp. 1-41, 2003.

[12] M. Halkidi, Y. Batistakis, and M. Vazirigiannis, “Clustering
Validity Checking Methods: Part II,” SIGMOD Record, vol. 31,
no. 3, pp. 19-27, 2002.

[13] J.M. Kleinberg, “Authoritative Sources in a Hyperlinked Environ-
ment,” J. ACM, vol. 46, no. 5, pp. 604-632, 1999.

[14] R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins,
“Trawling the Web for Emerging Cyber-Communities,” Proc.
World Wide Web Conf., 1999.

[15] L. Liu, C. Pu, and W. Han, “XWRAP: An XML-Enabled Wrapper
Construction System for Web Information Sources,” Proc. Int’l
Conf. Data Eng., 2000.

[16] Z. Liu, C. Luo, J. Cho, and W. Chu, “A Probabilistic Approach to
Metasearching with Adaptive Probing,” Proc. Int’l Conf. Data Eng.,
2004.

[17] A. Nierman and H.V. Jagadish, “Evaluating Structural Similarity
in XML Documents,” Proc. Fifth Int’l Workshop Web and Databases,
2002.

[18] M.F. Porter, “An Algorithm for Suffix Stripping,” Program, vol. 14,
no. 3, pp. 130-137, 1980.

[19] S. Raghavan and H. Garcia-Molina, “Crawling the Hidden Web,”
Proc. Very Large Databases Conf., 2001.

[20] C.E. Shannon, “A Mathematical Theory of Communication,” The
Bell System Technical J., vol. 27, pp. 379-423, 623-656, July, Oct.
1948.

[21] M. Steinbach, G. Karypis, and V. Kumar, “A Comparison of
Document Clustering Techniques,” Proc. KDD Workshop Text
Mining, 2000.

[22] J. Wang, J.-R. Wen, F. Lochovsky, and W.-Y. Ma, “Instance-Based
Schema Matching for Web Databases by Domain-Specific Query
Probing,” Proc. Very Large Databases Conf., 2004.

[23] W. Wu, C.T. Yu, A. Doan, and W. Meng, “An Interactive
Clustering-Based Approach to Integrating Source Query Inter-
faces on the Deep Web,” Proc. SIGMOD, 2004.

[24] O. Zamir and O. Etzioni, “Web Document Clustering: A
Feasibility Demonstration,” Proc. SIGIR, 1998.

[25] Z. Zhang, B. He, and K.C. -C. Chang, “Understanding Web Query
Interfaces: Best-Effort Parsing with Hidden Syntax,” Proc. SIG-
MOD, 2004.

[26] Y. Zhao and G. Karypis, “Criterion Functions for Document
Clustering: Experiments and Analysis,” technical report, Univ. of
Minnesota, Dept. of Computer Science, Minneapolis, 2002.

James Caverlee received the MS degree in
engineering-economic systems & operations
research in 2000 and the MS degree in
computer science in 2001, both from Stanford
University. He is currently a PhD student in the
College of Computing at the Georgia Institute of
Technology. His research interests are focused
on the Deep Web, Web services, and workflow
systems. He is a student member of the IEEE.

Ling Liu is currently an associate professor in
the College of Computing at the Georgia
Institute of Technology. There, she directs the
research programs in distributed data intensive
systems, examining research issues, and tech-
nical challenges in building large-scale distrib-
uted computing systems that can grow without
limits. Dr. Liu and the DiSL research group have
been working on various aspects of distributed
data intensive systems, ranging from decentra-

lized overlay networks, examplified by peer-to-peer computing and grid
computing, to mobile computing systems and location-based services,
sensor network systems, and enterprise computing technology. She has
published more than 100 international journal and conference articles.
Her research group has produced a number of software systems that
are either open sources or directly accessible online, among which the
most popular ones are WebCQ and XWRAPElite. She and her students
have received a best paper award from IEEE ICDCS 2003 for their work
on PeerCQ and a best paper award from the International Conference of
World Wide Web (2004) for their work on caching dynamic Web content.
Most of Dr. Liu’s current research projects are sponsored by the US
National Science Foundation, Department of Energy, Defense Ad-
vanced Research Projects Agency, IBM, and HP. She was a recipient of
IBM Faculty Award (2003) and a participant of the Yamacraw program in
Georgia. She is a member of the IEEE Computer Society.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1262 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 9, SEPTEMBER 2005

