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Abstract

In this paper, we introduce the concept of a QA-Pagelet
to refer to the content region in a dynamic page that con-
tains query matches. We present THOR, a scalable and
efficient mining system for discovering and extracting QA-
Pagelets from the Deep Web. A unique feature of THOR is
its two-phase extraction framework. In the first phase, pages
from a deep web site are grouped into distinct clusters of
structurally-similar pages. In the second phase, pages from
each page cluster are examined through a subtree filtering
algorithm that exploits the structural and content similarity
at subtree level to identify the QA-Pagelets.

1. Introduction

The Deep Web (or Hidden Web) comprises all informa-
tion that resides in autonomous databases behind portals and
information providers’ web front-ends. Web pages in the
Deep Web are dynamically-generated in response to a query
through a web site’s search form and often contain rich con-
tent. A recent study has estimated the size of this “deep
web” to be more than 500 billion pages, whereas the size of
the “crawlable” web is only 1% of the Deep Web (i.e., less
than 5 billion pages) [4]. Even those web sites with some
static links that are “crawlable” by a search engine often have
much more information available only through a query inter-
face. Unlocking this vast deep web content presents a major
research challenge.

In analogy to search engines over the “crawlable” web,
which fully automate the crawling of static web pages, we
argue that one way to achieve robustness and scalability re-
quired for Internet-scale information integration service is
to employ a fully automated approach to extracting, index-
ing, and searching the query-related information-rich regions
from dynamic web pages. We envision that a search en-
gine over the Deep Web will require three unique features
that are not present in traditional search engines: (1) an ef-
ficient means of discovering and categorizing deep web data

sources1, (2) an effective method for indexing dynamic web
pages in terms of content category and the data returned by a
query over the search interface, and (3) a retrieval engine that
supports searching by sites (e.g., list all bioinformatic web
sites supporting BLAST queries) and supports searching by
fine-grained content (e.g., list seller and price information of
all digital cameras from Sony).

A basic building block for developing such a deep web
search engine is a fully automated approach to extracting the
query-related information-rich content from dynamic web
pages, including scalable and robust methods for analyzing
dynamic web pages of a given web site, discovering and
locating the query-related information-rich content regions,
and extracting itemized objects within each region. Fully au-
tomated query-related content extraction is possible because
dynamic web pages typically consist of a handful of presen-
tation region types. Three common examples include:

1. The query-answer regions, which present the primary
content directly related to a query posed to the search
interface of the content provider. Some web sites sup-
port multiple primary content regions.

2. The advertisement region, which presents the infor-
mation about other products offered by the content
provider or about related products offered by other
companies.

3. The navigational region, which presents a collection
of navigational links, often to other web sites provided
by the same content provider (such as Amazon’s music
site, Amazon’s DVD site, and so on).

With these observations in mind, we introduce the con-
cept of aQuery-Answer Pagelet(or QA-Pageletfor short) to
refer to the query-related content region in a dynamic page
that contains query matches. With the QA-Pagelet as our
fundamental basis, we present THOR – a fully automated ap-
proach for discovering and extracting the query-related con-
tent from dynamically-generated pages. A unique character-

1Other researchers [16] have proposed methods to categorize deep web
sites into searchable hierarchies.



istic of THOR is its novel two-phase algorithm for extract-
ing the QA-Pagelets from dynamic pages. In the first phase,
pages are clustered according to their structural similarities,
aiming at separating pages that contain query matches from
pages that contain no matches (like exception pages, error
pages, and so on). A ranked list of page clusters is pro-
duced by applying a tag-tree signature based TFIDF simi-
larity function with a K-Means clustering algorithm. In the
second phase, pages from top-ranked page clusters are exam-
ined at a subtree level to identify the smallest subtrees that
contain the QA-Pagelets.

We evaluated the first implementation of the THOR sys-
tem using more than 5000 pages over 50 diverse deep web
sources and a synthetic data set of over 5 million pages.
Our experiments show three important and interesting re-
sults. First, our page cluster algorithm achieves high quality
of clusters with very low entropy. Second, our algorithms
for identifying the query-related content regions by filtering
subtrees across pages within a page cluster achieve excel-
lent recall (96%, meaning significant query-related content
regions are left out only in rare cases), and precision (97%,
meaning nearly all regions identified and extracted are cor-
rect) over all the pages we have tested. Most significantly,
THOR’s algorithms are robust against changes in presenta-
tion and content of deep web pages, and scale well with the
growing number of deep web sources.

2. Focused QA-Pagelet Extraction: Overview

We model web pages as tag trees using a variation of the
well-known Document Object Model [30]. Each tag treeT
consists oftag nodesandcontent nodes. A tag node consists
of all the characters from a particular start tag to its corre-
sponding end tag, and is labeled by the name of the start tag.
A content node consists of all the characters between a start
tag and its corresponding end tag or between an end tag and
the next start tag. We label a content node by its content. All
content nodes are leaves of the tag tree.

In Figure 1 we show an abridged sample tag tree for a
dynamically-generated page at IBM.com. Given a tag tree,
there is a path from the root node to every other node in the
tree. The path expression from the root of the tree to a node
identifies the subtree rooted at that node. Using an XPath-
style notation, we may refer to the subtree rooted at the gray-
shaded table node in Figure 1 ashtml/body/table[3].

In the context of the Deep Web, the content-rich regions
in a dynamically-generated web page are the ones that con-
tain direct answers to a user’s query. We refer to these re-
gions as theQA-Pagelets. The termpageletwas first intro-
duced in [2] to describe a region of a web page that is dis-
tinct in terms of its subject matter or its content. In THOR,
we use the term QA-Pagelet to refer to a subtree in the tag
tree of a page that: (1) is dynamically-generated in response
to a query and (2) is a page fragment that serves as the pri-
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Figure 1: Sample Tag Tree from IBM.com

mary query-answer content on the page. The first condition
excludes all static portions of a page that are common across
many deep web pages, such as navigation bars, standard
explanatory text, boilerplate, etc. But not all dynamically-
generated content regions in a page are meant to be direct
answers to a query. One example is a personalized adver-
tisement that may be targeted to a particular query. The
second condition is necessary to exclude from consideration
those regions – like advertisements – that are dynamically-
generated but are of secondary importance. In Figure 1,
the subtree corresponding to the QA-Pagelet is shown in the
dashed box. The root of the QA-Pagelet is the black-shaded
table node.

In THOR, the problem of focused extraction of QA-
Pagelets from deep web pages is addressed in three stages,
illustrated in Figure 2. The first stage collects the sample an-
swer pages generated in response to queries over a deep web
site. The second stage identifies and locates the QA-Pagelets
in dynamically-generated web pages. The third stage parti-
tions a QA-Pagelet into itemized QA-Objects, which are in
turn fed into the deep web search or information integration
system.

Stage 1: Sample Page Collection by Query Probing
In this preprocessing stage for focused extraction of QA-
Pagelets, we collect sample answer pages by probing a deep
web site with a set of carefully designed queries to gener-
ate a representative set of sample answer pages. Researchers
have previously studied the problem of repeatedly querying
an unknown database in an effort to generate a summary of
the database internals [17, 7, 15, 22]. Our problem is slightly
different. In addition to generating pages that are represen-
tative of the content of the underlying database, we need to
sample the answer pages from a deep web site to allow us
to generate a diverse set of pages, which capture all possi-
ble classes of structurally different answer pages. In the first
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Figure 2: THOR System Architecture

prototype of THOR, we implement a technique that uses ran-
dom words from a dictionaryand a set of nonsense words
unlikely to be indexed in any deep web database. Our sam-
pling approach repeatedly queries a deep web site with single
word queries taken from our two sets of candidate terms. At
a minimum, this approach makes it possible to generate at
least two classes of pages – normal answer pages and “no
matches” pages. Our technique improves on the naive tech-
nique of simply using dictionary words, and is effective in
collecting samples of diverse classes of answer pages.

Stage 2: Two-Phase QA-Pagelet Extraction
The heart of the THOR system is the Two-Phase QA-
Pagelet Extraction stage, which consists of thePage Clus-
tering Phaseand theQA-Pagelet Identification Phase. This
stage takes the collection ofn sample pages generated in
response to probing queries over a single deep web site.
In the first phase, it generates page clusters by grouping
structurally-similar pages together to separate pages with
multiple matches in response to a query from pages with no
matches at all. As a result, a ranked list of page clusters
is generated. In the second phase, THOR examines pages
from top-ranked page clusters at a subtree level to identify
the smallest subtrees that contain the QA-Pagelets. The main
techniques used include a subtree filtering algorithm that per-
forms single-page analysis and cross-page analysis to group
subtrees of similar tree shapes together and to prune those
subtrees that are unlikely to contain QA-Pagelets. The output
of the second stage is a set of QA-Pagelets from the probed
pages. We discuss this two-phase approach in great detail in
Section 3.

Stage 3: QA-Object Partitioning
In THOR’s third and final stage, each QA-Pagelet is an-
alyzed by a partitioning algorithm to discover the object
boundaries and separate out any component objects within
the QA-Pagelet. We call these sub-objectsQA-Objects. A
QA-Object is contained in a QA-Pagelet and is a close cou-
pling of related information about a particular item or con-
cept. In Figure 1, the QA-Pagelet contains ten QA-Objects
corresponding to ten different query matches (note: only

three are shown for illustration). To isolate the QA-Objects
within a QA-Pagelet, the third stage first takes into consider-
ation a list of recommended QA-Objects from THOR’s sec-
ond stage. One of the attractive features of the second stage
is that the same techniques for extracting the QA-Pagelets
can also be used to identify QA-Objects. Given a list of
QA-Object candidates, the third stage examines each can-
didate’s particular structure and then searches the rest of the
QA-Pagelet for similar structures. Some of the parameters
considered include the size, layout, and depth of the other
potential QA-Objects. We then deduce the correct object
separators and partition the QA-Objects.

Due to the space restriction, in the subsequent sections
we focus on the two-phase extraction algorithms for iden-
tifying and locating QA-Pagelets in dynamically-generated
web pages. Readers may refer to our technical report [8]
for a more detailed discussion on the QA-Object partition-
ing techniques.

3. Two-Phase QA-Pagelet Extraction

A unique feature of the THOR system is its two-phase
extraction framework for QA-Pagelet extraction. We iden-
tify two levels of relevance corresponding to structure and to
content that lay the foundation for our system:

1. Structural relevance: Web pages dynamically-generated
by a particular search form for a particular site tend to dis-
play certain traits not found in a random collection of pages
from the Web. Many web sites tend to structure dynamically-
generated pages in a similar fashion. There are clearly a
handful of templates used to represent different types of an-
swers to a search query over the deep web database source:
be it an answer page with a list of matches, a single match
page, or a “no matches” page.

2. Content relevance: For a particular class of dynamically-
generated pages from a particular site – say, a set ofn normal
answer pages from Amazon, each generated in response to a
different query – cross-page content information may yield
clues as to which fragments of a page contain QA-Pagelets.
Some portions of the page contain information that is sim-
ilar across all pages in the cluster, while other portions are
dynamically-generated in response to a particular user query.

These two levels of relevance naturally suggest a two-
phase approach. The first phase partitions a set ofn sam-
ple answer pages intok clusters, each corresponding to one
type of answer page: be it multi-match pages, single-match
pages, no-match pages, or exception pages. We refer to this
phase as thePage Clustering Phase. The second phase parti-
tions the set of subtrees in a single page cluster into a ranked
list of common subtree sets, each corresponding to one type
of content region in the set of structurally similar answer
pages. We then use intra-cluster content metrics to filter out
the common content and hone in on the QA-Pagelets. We
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Figure 3: Three Page Types from AllMusic.com

call this second phase theQA-Pagelet Identification Phase.
At the conclusion of the second phase, THOR recommends a
ranked list of QA-Pagelets. This two-phase approach forms
the core of the THOR system.

3.1. The Page Clustering Phase

THOR’s QA-Pagelet extraction begins with a set of pages
from a particular web site sampled at the query probing stage
(recall Section 2). The goal of the page clustering is to find
structurally-similar groupings such that pages that share sim-
ilar content structure or are generated from the same page
templates will be clustered together.2 Figure 3 shows three
page types for AllMusic.com: a multi-matches page consist-
ing of a list of query matches; a single match page with de-
tailed information on a particular artist (Elvis Presley, in this
case); and a no matches page. Page clustering enhances the
quality of focused extraction of QA-Pagelets by distinguish-
ing between these page types: so multi-match pages may be
analyzed separately from single match pages, and both of
these rich response types may be analyzed separately from
the no matches type.

3.1.1 Design Choices

In general the problem of page clustering can be defined
as follows: Given a set of sample pages from a particular
web site, which approach is most effective for clustering the
pages into structurally-similar groups, and distinguishing the
pages that contain QA-Pagelets from those answer pages that
report no matches or exceptions? Formally, given a set ofn
pages, denoted byP = {p1, p2, ..., pn}, a page clustering
algorithm can segment thesen pages into a clusteringC of k

clusters:C = {Cluster1, . . . , Clusteri, . . . , Clusterk |
k⋃

i=1

Clusteri = {p1, ..., pn} and Clusteri ∩ Clusterj = ∅}
A page clustering approach in general consists of two ba-

sic building blocks: the similarity metric and the algorithm
that performs partitioning over the set ofn pages to produce

2See [18] or [13] for a general introduction to clustering.

k clusters (1 ≤ k ≤ n). The similarity metric involves both
the conceptual definition of similarity or dissimilarity metric,
and the formula that calculates and implements such simi-
larity measure. It plays a critical role in implementing the
specific objectives of clustering. The concrete clustering al-
gorithm utilizes the concrete similarity metric to divide the
set ofn pages intok clusters such that pages in one clus-
ter are more similar to one another and pages in different
clusters are more dissimilar with each other. Given a set of
pages, there are multiple ways to partition the set intok clus-
ters. Most clustering approaches differ from one another in
terms of the similarity metric they use and how well such a
similarity metric can reflect the objectives of clustering.

Several popular page grouping approaches are possible,
including URL-based [3], link-based [14, 5, 11, 19, 20],
content-based [6, 31], and size-based. These techniques
find groupings based on non-structural similarity charac-
teristics of the pages, and hence are inappropriate for our
task. For example, clustering based on URL-similarity
– though effective at partitioning pages fromdifferent
deep web databases by their point of origin – is not
suitable here. A query ofSuperman and a query of a
nonsense word likexfghae on eBay yield URLs of the form,
“http://search.ebay.com/search/search.dll?query=superman”,
and “http://search.ebay.com/search/search.dll?query=xfghae”.
Even though the URLs are very similar, the two pages be-
long to two distinct classes – the normal listing of results
for Superman versus a “no matches” page for the nonsense
word. Similarly, the other popular approaches group pages
along other non-structural features. For a more detailed
discussion of these techniques, we refer readers to our
technical report [8].

3.1.2 Our Approach

In contrast, THOR relies on a tag-tree based clustering ap-
proach to group pages with similar tag-tree representations
into clusters. This approach is simple and yet very effective
in its ability to efficiently differentiate dissimilar pages for
focused extraction of QA-Pagelets from the Deep Web. First,
the tag-tree representation naturally encodes much of the
structural information useful for clustering different groups
of answer pages provided by a deep web site in response to
a query. Second, pages generated using different templates
tend to have very different tag-tree structures.

Tag-Tree based Similarity Metric
In THOR a tag-tree based approach is used to define the
structural similarity between pages generated in response to
different queries. Such a similarity metric can be defined
in two steps. First, we need to represent the pages in some
specific format that is required for calculating distance be-
tween pages. One approach is to define a vector space model
that represents each dynamically-generated page as a vector
of tags and weights [26, 27]. Concretely, given a set ofn



pages and a total number ofN distinct tags, a page can be
described by:

pi =
{

(tag1, wi1), (tag2, wi2), · · · , (tagN , wiN )
}

We call such a tag-tree based vector representation of a page
the tag-tree signature approach.

The design of the weight system is critical to the quality
of the tag-tree signature based similarity metric. There are
several ways to define the weights. A simple approach is
to assign the weight to be the frequency of the tag’s occur-
rence within the page. However, simply using the raw tag-
frequency as the weight in page vectors may result in poor
quality of clusters when there are pages that have very simi-
lar tag signatures but belong to different classes. For exam-
ple, a “no results” page and a “single result” page may share
the exact same tag signature except for a single<b> tag
surrounding the single query result. To increase the distin-
guishing weight of this single critical tag, THOR weighs all
tag-tree signatures using term-frequency inverse-document-
frequency (TFIDF), a technique that weights all term vectors
based on the characteristics of all the pages across the entire
site-specific page space. Concretely, we use a variation of
TFIDF, which defines the weight for tagk in pagei as fol-
lows:

wik = log (tfik + 1) · log
(

n + 1
nk

)

wheretfik denotes the frequency of tagk in pagei; n is
the total number of pages; andnk denotes the number of
pages that contain tagk. We then normalize each vector.
TFIDF weights tags highly if they frequently occur in some
pages, but infrequently occur across all pages (like the<b>
example above). Since the set of possible tags is limited, we
expect many tags to occur across all pages. Our version of
TFIDF is intuitively appealing since it ensures that even a tag
that may occur in all pages – say,<table> – will still have
a non-zero impact on the tag signature if it occurs in varying
degrees in different pages.

Once all the pages are represented as tag-tree signature
vectors, we can compute the similarity between pages using
a number of well-known similarity (or distance) metrics, in-
cluding the simple vector product, the cosine similarity, or
the Minkowski distance. In this paper, we choose the co-
sine similarity because of its appealing characteristics and
widespread use in the information retrieval community.

Given a set ofn pages, letN be the total number of dis-
tinct tags in the set ofn pages, letwik denote the weight for
tagk in pagei. The cosine similarity between pagesi andj
is:

simCos(pi, pj) =




∑N
k=1 wikwjk√∑N

k=1 w2
ik ·

√∑N
k=1 w2

jk




Orthogonal page vectors in our normalized space will
have a cosine similarity of 0.0, whereas identical page vec-

tors will have a cosine similarity of 1.0. In the first proto-
type of THOR, we define our tag-tree based similarity met-
ric by combining the tag-tree signature vector model of the
pages, the TFIDF weight system, and a cosine similarity.
Such a similarity metric ensures that tags like<html> and
<body> that occur equally across many pages will not per-
versely force two otherwise dissimilar vectors to be consid-
ered similar.

Page Clustering Using Tag-tree Signatures
Given the tag-tree signatures of pages and the similarity (or
distance) function, a number of clustering algorithms can
be applied to partition the set ofn pages intok clusters
(1 ≤ k ≤ n). In the first prototype of THOR, we choose
Simple K-Means since it is conceptually simple and com-
putationally efficient. The algorithm starts by generatingk
random cluster centers. Each page is assigned to the cluster
with the most similar (or least distant) center. The similarity
is computed based on the closeness of the tag-tree signature
of the page and each of the cluster centers. Then the algo-
rithm refines thek cluster centers based on the centroid of
each cluster. Pages are then reassigned to the cluster with
the most similar center. The cycle of calculating centroids
and assigning pages to clusters repeats until the cluster cen-
troids stabilize. Let C denote both a cluster and the set of
pages in the cluster. We define the centroid of clusterC as:

centroidC =




(tag1,
1
|C|

∑
i∈C

wi1)

(tag2,
1
|C|

∑
i∈C

wi2)

· · ·
(tagN , 1

|C|
∑
i∈C

wiN )




wherewij is the TFIDF weight of tagj in pagei, and the
formula 1

|C|
∑
i∈C

wij denotes the average weight of the tagj

in all pages of the clusterC.
To evaluate the effectiveness of our tag signature based

approach in terms of time complexity and clustering qual-
ity, we compare our approach with several alternatives in
our experiments section. To understand the time complex-
ity of the tag-tree signature based page clustering algorithm,
we compare it with a more sophisticated algorithm based
on tree-edit distance, where the similarity between two tag
trees is computed using a tree-edit distance measure [23].
Although this technique is quite powerful at discerning sub-
tle differences between tag trees, the tree-edit distance is a
few orders-of-magnitude slower than the simple tag signa-
ture approach used in the first prototype of THOR. To assess
the effectiveness of our approach with respect to clustering
quality, we compare our approach against a URL-based, a
page size-based, and a content-based clustering approach.
For the content-based approach we consider the raw content
signature and the TFIDF-weighted content signature of each
page. The content signature uses content terms in place of
tags. Porter’s stemming algorithm [24] is applied to gener-



ate content terms.

3.1.3 Ranking the Page Clusters

Once a set of pages has been clustered, we expect that some
of the clusters will contain QA-Pagelets, while others (like
error and exception pages) will not. Rather than pass along
all possible clusters to the QA-Pagelet Identification phase,
we rank the clusters according to their likelihood to contain
QA-Pagelets and forward only the top-ranked clusters. Sev-
eral ranking criteria could be used based on the tag-tree char-
acteristics defined in Section 2. We briefly discuss three cri-
teria that are considered in the first prototype of THOR for
ranking page clusters:
AverageDistinct Terms:Since content-rich pages are gen-
erated in response to different probe queries that are care-
fully designed to sample a given deep web database, we ex-
pect to find a higher number of unique words on content-
rich pages than on non-content rich pages. The average
number of distinct terms for aClusteri is the average of
distinct term counts of each page in the cluster, namely

1
|Clusteri|

∑
p∈Clusteri

distinctT ermsCount(p).
Average Fanout: Clusters that have pages with higher
average fanout are more likely to contain QA-Pagelets. The
average fanout for aClusteri can be computed by the aver-
age of the largest fanout of a node in each page of the cluster.
Namely, 1

|Clusteri|
∑

p∈Clusteri
maxu∈p.V {fanout(u)},

where p.V denotes the set of nodes in pagep.

Average PageSize:Larger pages may tend to be more likely
to contain QA-Pagelets. We define the average page size
for a Clusteri as 1

|Clusteri|
∑

p∈Clusterc
Size(p), where

Size(p) denotes the size of pagep in bytes.

Each ranking criterion works well for some pages and
poor for some other pages. Our initial experiments show
that a simple linear combination of the three ranking criteria
works quite well.

3.1.4 Evaluating the Page Clusters

In THOR, we use internal similarity and entropy to mea-
sure the quality of clusters and to evaluate our clustering ap-
proach.

Internal Similarity
Given a set ofn pages, the quality of clustering thesen pages
into k clusters can be measured by the internal similarity of
the clustering, which is defined in terms of the internal sim-
ilarities of each of thek clusters. We measure the internal
similarity of a single cluster by a summation of the similari-
ties of each pagej to its cluster centroid (1 ≤ j ≤ n):

Similarity(Clusteri) =
∑

pj∈Clusteri

simCos(pj , centroidi)

It is shown [29, 32] that measuring the similarity between
each page and its cluster centroid is equivalent to merely

finding the length of the cluster centroid. This calculation
is appealing since it is computationally inexpensive. The
similarity of the entire clusteringC can be computed by a
weighted sum of the similarities of all component clusters:

Similarity(C) =
k∑

i=1

ni

n
Similarity(Clusteri)

We say a clustering has higher quality if its internal simi-
larity is higher. In addition to evaluating the cluster quality,
the internal similarity can also be used to as an internal clus-
tering guidance metric to produce the best clustering since it
is simple to calculate and requires no outside knowledge of
the actual class assignments.

Recall our K-Means clustering algorithm discussed in
Section 3.1.2. The quality of this K-Means algorithm can
be affected by how thek initial cluster centers are selected.
One way to address this problem is to run the K-Means al-
gorithm repeatedly for M iterations. On each iteration we
start withk randomly selected cluster centers, and calculate
the internal similarity of the clustering produced by this it-
eration. Finally, we choose the best clustering for the given
set ofn pages on the iteration that yields the clusters with
highest internal similarities.

Entropy
Entropy is a well-known measure of the randomness or dis-
order in a system [28]. For a particular clustering, entropy
measures the quality of assignments of pages to clusters [12].
In the best case, a clustering of a collection ofn pages be-
longing to c classes intok clusters would result ink = c
clusters, where each cluster contains only pages from a par-
ticular class. In the worst case, the pages from each class
would be equally divided among thek clusters, resulting in
valueless clusters.

Let p(z) = Prob(pagep belongs to classj | pagep is in
clusteri). For a single cluster, we measure entropy as:

Entropy(Clusteri) =
−1

log(c)

c∑
j=1

(p(z) log p(z))

where we may approximatep(z) by
nj

i

ni
whereni = the num-

ber of pages inClusteri; andnj
i = the number of pages in

Clusteri that belong toClassj.
For an entire clusteringC of n pages, the total entropy is

the weighted sum of the component cluster entropies:

Entropy(C) =
k∑

i=1

ni

n
Entropy(Clusteri)

Our goal is to choose the clustering that minimizes total en-
tropy. Since entropy requires external knowledge about the
correct assignment of documents toc classes, we may use
entropy only for evaluation of THOR, not as an internal clus-
tering guidance metric, as we do with similarity.



3.2. The QA-Pagelet Identification Phase

On completion of the Page Clustering Phase, only those
top-rankedm page clusters that are likely to contain QA-
Pagelets are passed to the second phase. The QA-Pagelet
Identification Phase takes as input a single cluster ofnc

pages, and outputs a list of QA-Pagelets. The main challenge
of the second phase is how to effectively discover and lo-
cate QA-Pagelets from each of them page clusters. Though
the pages under consideration may contain QA-Pagelets, the
QA-Pagelets are often buried by a variety of irrelevant in-
formation. As discussed in Section 2, each QA-Pagelet in a
page is a subtree of the corresponding tag tree of the page.
In THOR we perform the QA-Pagelet identification task in
two steps: (1) filtering and ranking candidate subtrees, and
(2) selecting the subtrees containing QA-Pagelets. The QA-
Pagelets, once identified, are passed to the THOR Object Ex-
traction module, which partitions each QA-Pagelet into a set
of QA-Objects. We measure the success of the QA-Pagelet
identification phase with precision and recall statistics.

3.2.1 Filtering and Ranking Candidate Subtrees

The goal of filtering candidate subtrees is to discover sub-
trees from each page that contain dynamically-generated
content. The main idea is to identify those subtrees that are
likely to contain QA-Pagelets and remove those that are un-
likely. Given a web pagei and its tag treeT , let subtrees(i)
denote the set of subtrees of the pagei. Obviously not all
the subtrees are likely to contain QA-Pagelets. Thus the task
of filtering candidate subtrees is carried out by combining
single-page analysiswith cross-page analysis. The former
prunes away subtrees that cannot possibly correspond to QA-
Pagelets. The latter uses cross-page information to identify
and rank those subtrees that have resemblance in multiple
pages with respect to tree shape and structural characteris-
tics.

Single-Page Analysis.
The task of single-page analysis takes one of the top-ranked
page clusters resulting from the page clustering phase and
outputs a set of candidate subtrees for each page in the given
cluster ofnc pages. The goal of single-page analysis is to
eliminate those subtrees that do not contribute to the identi-
fication of QA-Pagelets. It starts out with all the subtrees in
the page and proceeds as follows: First, it removes all sub-
trees that contain no content, then it removes those subtrees
that contain equivalent content but are not minimal. Further-
more if the subtree anchored atu is a candidate subtree, then
for any descendantw of u, the fanout(w) is greater than one.

Cross-Page Analysis
The goal of cross-page analysis is to group the candidate
subtrees that correspond to the same type of content region
into one subtree cluster and produce a ranked list of common
subtree sets. It takes thenc sets of candidate subtrees, one

set for each page in the given page cluster, and produces a
ranked list ofk common subtree sets. Each set contains at
most one subtree per page and represents one type of con-
tent region in all pages of the given page cluster. Since QA-
Pagelets in a page are generated in response to a particular
query, the subtrees corresponding to the QA-Pagelets should
contain content that varies from page to page. In contrast,
the common subtree set that corresponds to the navigational
bar in each of thenc pages contains the same or very similar
content across all pages. Based on these observations, we
leverage the cross-page subtree content to eliminate or give
low ranking scores to the subtrees with fairly static content.
Cross-page analysis is carried out in two steps: finding com-
mon subtree sets by grouping subtrees with a common pur-
pose and ranking the candidate subtrees according to their
likelihood of being QA-Pagelets.

Step 1: Finding Common Subtree Sets
For the k page clusters generated in the Page Clustering
Phase, only the top-m page clusters are passed to the sec-
ond phase for QA-Pagelet identification. Consider the set of
nc pages in one of them page clusters, a common subtree
may be a subtree corresponding to the navigation bar, the
advertisement region, or the QA-Pagelet.

The algorithm for finding common subtree sets starts by
randomly choosing a page, saypr, from the set ofnc pages
in a given page cluster. We callpr the prototype page. Let
CandidateSubtrees(pr) be the set of candidate subtrees re-
sulting from the single-page analysis. For any subtree an-
chored at nodeu of the tag tree ofpr, we find a subtree that is
most similar tou in terms of subtree shape and subtree struc-
ture. In THOR we introduce four metrics that are content-
neutral but structure-sensitive to approximate theshapeof
each subtree. The goal is to identify subtrees from across
the set of pages that share many shape characteristics. The
metrics we consider are: (1) the path (Pj) to the root of the
subtree, (2) the fanout (Fj) of the subtree’s root, (3) the depth
(Dj) of the subtree’s root, and (4) the total number of nodes
(Nj) in the subtree. Each subtree, saysubtreej, is modeled
by a quadruple :< Pj , Fj , Dj , Nj >.

For a collection ofnc pages, we will identifyk sets
of common subtrees (1≤ k < |CandidateSubtrees(pr)|).
Each common subtree set is composed of a single subtree
from each page, and a subtree labeledj from pagel is de-
noted assubtreel

j):

CommonSubtreeSeti = {subtree1
i,1, ...subtreenc

i,nc
}

The criterion for assigning a subtree to one of thek com-
mon subtree sets is defined based on the four metrics using
the following distance function:

distance(subtreei, subtreej) = w1
EditDist(Pi, Pj)

max(len(Pi), len(Pj))

+w2
|Fi − Fj |

max(Fi, Fj)
+ w3

|Di − Dj|
max(Di, Dj)

+ w4
|Ni − Nj|

max(Ni, Nj)



where
∑4

i=1 wi = 1.
This distance function measures the distance between

subtreei and subtreej. It is designed to minimize the dis-
tance between subtrees that share a similar shape (and hence,
a similar function in the pages). Any two subtrees within one
common subtree set are more similar to one another accord-
ing to the four distance metrics. Similarly any two subtrees
coming from two different common subtrees are less similar
in terms of subtree shape and structural characteristics.

The first term measures the string edit-distance between
the paths of the two subtrees. String edit-distance [21] cap-
tures the number of “edits” needed to transform one string
into another. The edit-distance between the strings “cat” and
“cake” would be two; there are two edits necessary, chang-
ing the “t” to a “k” and adding an “e”. To compare two paths,
we first simplify each tag name to a unique identifier of fixed
length ofq letters. This ensures that comparing longer tags
with shorter tags will not perversely affect the distance met-
ric. We then normalize the edit-distance by the maximum
length of the two paths to normalize the distance to range
between 0.0 and 1.0. For example, withq = 1 we convert
html to h, head to e, and so on. The pathshtml/headand
html/head/titlewould first be simplified tohe andhet. The
edit-distance between the paths is 1, which would then be
scaled to1/3.

The second term |Fi−Fj |
max(Fi,Fj)

of the distance function will
be 0.0 for the two subtrees with the same fanout. Conversely,
the term will be 1.0 when comparing a subtree with no chil-
dren to a subtree with 10 children. A similar relationship
holds for the third and fourth terms as well.

Intuitively, our distance function is designed to quickly
assess the shape of each subtree. We expect subtrees with
a similar shape to serve a similar purpose across the set of
pages in one page cluster. Note that each unweighted term
ranges in value from 0.0 (when the two subtrees share the
exact same feature) to 1.0, so the overall weighted distance
between any two subtrees also ranges from 0.0 to 1.0. Ini-
tially we weight each component equally (i.e.w1 = w2 =
w3 = w4 = 0.25). Our experiments (see Section 4) show
that this distance metric provides an effective mechanism for
identifying common subtrees.

Step 2: Ranking the common subtree sets
This step ranks thek common subtree sets by the likelihood
that each contains QA-Pagelets. In THOR we determine the
probability that a common subtree set corresponds to a QA-
Pagelet by calculating its internal similarity and giving the
highest ranking score to the common subtree set that has the
lowest internal similarity. We first represent each subtree un-
der consideration by a weighted term vector and then provide
the similarity function to compute the internal similarity for
each common subtree set.

To determine which common subtrees contain dynamic
content generated in response to a query, we first transform

each subtree’s content into a vector of terms and weights,
similar to the method described for tag-tree signature based
vector model in Section 3.1.2. Here, we are interested not
in each subtree’s tags, but only in its content. THOR uses
the subtree’s content vector for cross-page content analysis
to reveal the QA-Pagelets.

We preprocess each subtree’s content by stemming the
prefixes and suffixes from each term [24]. Then we apply
the TFIDF method and the cosine similarity metric to com-
pute the internal similarity of each common subtree set. We
havek common subtree sets, each containingnj subtrees
(1 ≤ j ≤ k). Let subtreeij denote the ith subtree in the
jth common subtree set. LetNj denote the total number of
distinct terms in the jth common subtree sets. Each of the
subtrees is represented by a term-subtree vector:

subtreeij =




(term1, wi1)
(term2, wi2)

· · ·
(termNj , wiNj )




The weightwiq for subtreej is defined using the TFIDF
weight function given below:

wiq = log (tfiq + 1) · log
(

nj + 1
nqj

)

where1 ≤ i ≤ nj , tfiq denotes the frequency of the term
indexed byq (1 ≤ q ≤ Nj) in subtreei, nj is the total
number of subtrees in common subtree setj, andn qj denotes
the number of subtrees in common subtree setj that contain
the term with indexq. As discussed before, TFIDF weights
terms highly if they frequently occur in some subtrees but
infrequently occur across all subtrees. This allows THOR
to easily distinguish and to identify the subtrees containing
terms that vary from subtree to subtree and thus from page
to page.

With the content term-subtree vector model, we can com-
pute the internal similarity for each of thek common subtree
sets, denoted byIntraSubtreeSetSimi (1 ≤ i ≤ k):

IntraSubtreeSetSimi =
n∑

j=1

n∑
l �=j

sim(subtreej, subtreel)

Note that the cosine similarity of two identical subtrees is
zero. For a particular cluster of similarly-structured domain-
specific pages, we expect some subtrees to be relatively
static; the QA-Pagelets should vary dramatically from page
to page, since it is generated in response to a specific query
and these queries differ from page to page. That is, the intra-
subtree set similarity should be high for the static subtrees
that are the same for all pages. In contrast, for QA-Pagelets,
the intra-subtree set similarity should be low since the QA-
Pagelets vary in content greatly. Hence, we rank thek sub-
tree sets in ascending order of the intra-similarity of the sub-
sets and then prune out all subtree sets with similarity greater



than 0.5. Our experiments show that the common subtree
sets are clearly divided into static-content (high similarity)
groups and dynamic-content (low similarity) groups, so that
the choice of the exact threshold is not essential.

3.2.2 Selecting the Minimal Subtrees with QA-Pagelets

In this final step of THOR’s second phase, the only sub-
trees left in consideration are those that contain dynamically-
generated content. Among these subtrees, some may cor-
respond to QA-Pagelets, some to the QA-Objects within a
QA-Pagelet, and some to certain personalized content that
is dynamically-generated (perhaps based on cookies main-
tained at the deep web sites).

We adopt a QA-Pagelet selection criterion that favors sub-
trees that (1) contain many other dynamically-generatedcon-
tent subtrees; and (2) are deep in the tag tree. The first
guideline captures the notion that a QA-Pagelet will contain
many sub-elements that are dynamically-generated (which
we have termed QA-Objects). The second guideline is de-
signed to discourage the selection of overly large (and broad)
subtrees – say, the subtree corresponding to the entire page.

Readers may refer to our technical report [8] for a more
detailed discussion on the QA-Pagelet selection.

At the end of our two-phase extraction algorithm, we have
a list of QA-Pagelets. There are some circumstances where
the subtree corresponding to the QA-Pagelet may contain
data in addition to the QA-Pagelet. As a result, we annotate
each QA-Pagelet with a list of the other dynamic content
subtrees that it contains to guide the QA-Object partition-
ing stage. These QA-Pagelets are then sent through THOR’s
third and final stage to partition each QA-Pagelet and gener-
ate the QA-Objects.

4. Experiments

In this section we report three sets of experiments. The
first set studies the effectiveness of the page clustering phase.
In the second set, we investigate the effectiveness of the QA-
Pagelet identification phase. The final set of experiments
evaluates the overall effectiveness of the THOR system.

Using a breadth first crawl of the Web starting at a seed
URL and Google, we identified over 3,000 unique search
forms. We randomly selected 50 of the 3,000 search forms.
We then submitted to each form 110 queries, each with one
keyword selected from 100 random words in the standard
Unix dictionary and 10 nonsense words. This results in a set
of 5,500 pages in a local cache for analysis and testing. We
labeled each page by hand with the appropriate class (e.g.
“normal results”, “no results”, etc.), and identified the QA-
Pagelets in each page if they exist. Based on the overall class
distribution, we randomly generated three much larger syn-
thetic data sets. If x% of the pages in the set of 5,500 sampled
pages belong to classc, approximately x% of the synthetic
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pages will also belong to classc. To create a new synthetic
page of a particular class, we randomly generated a tag and
content signature based on the overall distribution of the tag
and content signatures for the entire class. We applied this
method repeatedly to create data sets of 55,000 pages (1,100
pages per site), 550,000 pages (11,000 pages per site), and
5,500,000 pages (110,000 pages per site).

The software underlying the THOR architecture is written
in Java 1.4. All experiments were run on a dual-processor
Sun Ultra-Sparc III 733MHz with 8GB of RAM. All pages
were pre-processed by the HTML Tidy utility [25]. Pages
took on average 1.2 seconds to parse.

4.1. Effectiveness of Page Clustering

In the first set of experiments we examine THOR’s page
clustering phase and evaluate the effectiveness of both the
similarity metrics and the clustering algorithm. To show
the benefits of our TFIDF tag-tree signature based weighting
scheme, we evaluated the entropy and time complexity of
our approach against several alternatives mentioned in Sec-
tion 3.1, including the raw tags, the TFIDF-weighted con-
tent, the raw content, the URL, and the size of each page. For
the tag and content-based approaches, we generated the vec-
tor space representation described in Section 3.1.2. For the
URL-based approach, we described each page by its URL
and used a string edit distance metric to measure the similar-
ity of two pages. For the size-based approach, we described
each page by its size in bytes and measured the distance be-
tween two pages by the difference in bytes. As a baseline, we
also considered an approach that randomly assigned pages to
clusters.

Initially, we selectedn pages from each of the 50 collec-
tions and ran each set through our enhanced K-Means clus-
tering algorithm. We repeated this process 10 times to gen-
erate an average entropy and clustering time for collections
ranging from 5 to 110 pages. In Figure 4, we show the aver-
age entropy across the 50 page collections for each collection
size. Note that our entropy measure ranges from 0 (the best)
to 1 (the worst).

Clearly, our TFIDF weighted tag-tree signature approach
outperforms all the other techniques. It results in clusters
with entropy on the order of 6-times lower (0.04 versus
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0.24) than the raw tags technique, between 7 and 10-times
lower than the content-based techniques (0.04 versus 0.28
and 0.38), and between 11 and 17-times lower than the size,
URL, and random approaches (0.04 versus 0.44, 0.56, and
0.65). There are at least two reasons for such success. First,
the objective of THOR’s page clustering is simply to sepa-
rate answer pages with query matches from those with no
matches or errors. Thus the tag-tree signature approach is
sufficient and effective. Second, the use of TFIDF to weight
each tag-tree signature accentuates the distance between dif-
ferent classes, resulting in very successful clustering.

Note that the average entropy is fairly low when cluster-
ing few pages, then increases sharply before levelling off at
around 40 pages. For small page samples, we would expect
that very few different page classes would be represented;
hence any clustering should result in low entropy. As the
number of pages to be clustered increases so does the diver-
sity of the page classes represented in the sample; so entropy
should increase until the distribution of pages stabilizes.

In Figure 5, we show the average time to run one itera-
tion of our page clustering algorithm for each of the sam-
ple sizes over the 50 collections and compare it with the al-
ternative clustering approaches. The tag-based approaches
take on average an order-of-magnitude less time to complete
than the content-based approaches, and can scale better to
much larger data sets. The tag-based approach dominates
the content-based approach primarily due to the sharp differ-
ence in size between the tag and the content signature. On
average, each page in our collection of 5,500 pages contains
22.3 distinct tags and 184.0 distinct content terms.

To further understand the time complexity of tag-tree
based approach, we compared our tag-tree signature ap-
proach with a tree-edit distance metric based approach [23].
We found that for a single collection of 110 pages, tree-
edit distance based clustering took between 1 and 5 hours,
whereas our TFIDF-tag approach took less than 0.1 seconds.
Given the excessive cost of the tree-edit-distance, we did not
consider it in our other experiments.

To assess the efficiency and scalability of our algorithm,
we next compared the alternative approaches against the
TFIDF-weighted tag signature approach over the three syn-
thetic data sets. In Figure 6, we report the average entropy
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over each of the 50 collections, where we consider from
110 to 110,000 pages per collection. The average entropy is
nearly constant, even though the collections grow by 1,000
times. In Figure 7, we report the average time to run one
iteration for each of the 50 collections, again considering the
three synthetic data sets. The average clustering time grows
linearly with the increase in collection size, as we would
expect in a K-Means-based clustering algorithm. Overall,
these results confirm that the TFIDF-weighted tag signature
approach grows linearly as the size of the page collection
grows by three orders of magnitude, and thus it can scale up
smoothly.

Finally, we conducted extensive experiments with various
cluster settings – ranging the number (k) of clusters from 2 to
5 and ranging the internal cluster iterations from 2 to 20. We
found that varying the cluster number resulted in only mi-
nor changes to the overall performance of the system. If we
set the number of clusters greater than the number of actual
clusters, the clustering algorithm will merely generate more
refined clusters. This is not a problem in our context, since
QA-Pagelet identification is dependent only on the quality of
each cluster; a sufficiently good cluster will yield reasonable
results regardless of the grain of the cluster. We also found
that running the clusterer 10 times provided a balance be-
tween the faster running times using fewer iterations and the
increased cluster quality using more iterations.

4.2. Effectiveness of QA-Pagelet Identification

In the second set of experiments, we assess precision and
recall of the QA-Pagelet identification phase. To consider
this phase in isolation from the page clustering phase, we
considered as input only those pages from each site that
had been pre-labeled as containing QA-Pagelets. In the fi-
nal set of experiments, we combine the two phases to report
THOR’s overall performance.

We measure precision and recall as:

Precision =
Number of QA-Pagelets Correctly Identified

Number of Subtrees Identified as QA-Pagelets

Recall =
Number of QA-Pagelets Correctly Identified

Total Number of QA-Pagelets in the Set of Pages
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To validate our choice of subtree distance function (see
Section 3.2.1), we considered several variations: a distance
based solely on each of the four subtree features – path (P ),
fanout (F ), depth (D), and nodes (N ) – and our distance
based on a linear combination of all four (All). In Figure 8,
we report the precision and recall of THOR’s second phase
with respect to the five distance metrics. As we might ex-
pect, simply judging subtree similarity by a single feature
underperforms the combined metric. Our combined metric
achieves precision and recall over 98%.

For our combined distance metric, on a careful inspec-
tion of the mis-labeled pages, we discovered that THOR
was sometimes confused by pages with a region of dynamic
non-query-related data. For example, some pages gener-
ate an advertisement region that varies somewhat across the
space of pages. As a result, the intra-cluster content analy-
sis may incorrectly identify the dynamic advertisement as a
QA-Pagelet.

We now illustrate the role of our TFIDF-weighting
scheme for computing the internal similarity of the common
subtree sets. We show in the left-hand side of Figure 9 a
histogram of the intra-similarity scores for the common sub-
tree sets with no TFIDF-weighting. The number of common
subtree sets with high dissimilarity is very low, whereas the
number of common subtree sets with high similarity is very
high. Extracting the QA-Pagelets in this case would be pro-
hibitive. In contrast, in the right-hand side of Figure 9 we
show a histogram of the intra-similarity scores for the com-
mon subtree setsusingour TFIDF-weighting scheme. Note
that there are many subtree sets at both the low end and the
high end of the similarity scale. This shows that the common
subtree sets clearly either have query-independentstatic con-
tent (i.e. high similarity) or query-dependent dynamic con-
tent (i.e. low similarity). The precise choice of threshold –
0.5 in the first prototype of THOR – is not very important.

4.3. Effectiveness of the Two-Phase Approach

In the final set of experiments, we report the overall per-
formance of THOR’s two-phase extraction algorithm. In
Figure 10, we compare the overall impact on precision and
recall of THOR’s TFIDF-tag clustering approach (TTag)

versus the raw tag (RTag), TFIDF content (TCon), raw
content (RCon), size, URLs, and random approaches. In
all cases we used the combined subtree distance metric dis-
cussed above. The overall THOR approach achieves very
high precision (97%) and recall (96%) in contrast to the
alternatives, mostly since the quality of clusters generated
in THOR’s first phase doubly impacts the overall perfor-
mance of the system. First, if a normal results page is mis-
clustered into a “no results” cluster, it won’t advance to the
QA-Pagelet identification phase, and hence its QA-Pagelets
will be overlooked. Second, any “no results” pages that do
advance to the second phase will worsen QA-Pagelet identi-
fication by hampering the cross-page analysis. Hence, it is
of critical importance to generate quality clusters in the first
phase.

Finally, in Figure 11 we show the trade-off in precision
and recall as a function of the number of clusters passed
from the page clustering phase to the QA-Pagelet identifica-
tion phase, considering only the TFIDF-tag approach. In this
experiment, the page clustering phase generates three clus-
ters. If we pass along only one cluster to the second phase,
the precision will be very high, since only pages that con-
tain QA-Pagelets will be considered in the second phase. In
contrast, recall will be much lower since many QA-Pagelets
may occur in one of the clusters not passed on to the sec-
ond phase. The reverse holds when we pass all three clusters
on to the second phase. Precision falls, since many of the
pages in consideration do not contain QA-Pagelets, but re-
call increases since every page in the original data set will be
considered for QA-Pagelet extraction. In this case, there is a
good compromise when passing two clusters.

5. Related Work

The WHIRL system [9] uses tag patterns and textual sim-
ilarity of items stored in a deductive database to extract sim-
ple lists or lists of hyperlinks. The system relies on previ-
ously acquired information in its database in order to recog-
nize data in target pages. For data extraction across hetero-
geneous collections of deep web databases, this approach is
infeasible.

RoadRunner [10] automatically generates wrappers for
extracting data from web pages. The RoadRunner algorithm
compares pages generated by the same query form and con-
structs a regular expression based on the differences between
the pages. Similarly, Arasu and Garcia-Molina [1] have de-
veloped an extraction algorithm that models page templates
and uses equivalence classes for data segmentation. In both
cases, there is an assumption that all pages have been gen-
erated by the same underlying template, whereas our THOR
system automatically partitions a set of diverse pages into
structurally-similar groupings. Secondly, the two techniques
make no attempt to identify the primary query-related con-
tent on a page.



Bar-Yossef and Rajagopalan [2] call the functionally dis-
tinct portions of a page pagelets. They use this formulation
to guide template discovery, which is ancillary to the data
extraction problem. Their template discovery algorithm re-
lies on close content similarity between pagelets, whereas
we consider both structural and content attributes of a page
and its component subtrees.

6. Conclusions

The continued growth of the Deep Web poses a major
challenge for searching the Deep Web, integrating deep web
data from multiple sources, and reusing deep web data across
various applications. In this paper, we have presented a scal-
able and efficient mining system for discovering and extract-
ing content-rich query-related information from the Deep
Web. Our THOR system relies on a novel two-phase extrac-
tion approach to locate QA-Pagelets. In the first phase, pages
from each web site are grouped into clusters of structurally-
similar pages by combining a tag-tree signature based vector
model of pages, a TFIDF-based cosine similarity function,
and a simple k-means clustering algorithm, resulting in a
ranked list of page clusters. In the second phase, pages from
the top-ranked page clusters are examined through a subtree
filtering algorithm. Our experiments show that THOR is ro-
bust against changes in presentation and content of deep web
pages, and scales well with respect to the growing number of
deep web sources.
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