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ABSTRACT
This paper connects equal opportunity to popularity bias in implicit

recommenders to introduce the problem of popularity-opportunity

bias. That is, conditioned on user preferences that a user likes both

items, the more popular item is more likely to be recommended

(or ranked higher) to the user than the less popular one. This type

of bias is harmful, exerting negative effects on the engagement of

both users and item providers. Thus, we conduct a three-part study:

(i) By a comprehensive empirical study, we identify the existence

of the popularity-opportunity bias in fundamental matrix factor-

ization models on four datasets; (ii) coupled with this empirical

study, our theoretical study shows that matrix factorization models

inherently produce the bias; and (iii) we demonstrate the potential

of alleviating this bias by both in-processing and post-processing

algorithms. Extensive experiments on four datasets show the effec-

tive debiasing performance of these proposed methods compared

with baselines designed for conventional popularity bias.

CCS CONCEPTS
• Information systems → Recommender systems.
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1 INTRODUCTION
Statistical parity and equal opportunity are two important concepts

for studying fairness and bias in classification and recommendation

tasks [7, 8, 13, 39, 42]. Statistical parity requires the same positive
rate over individuals or groups [18, 41]. On the other hand, equal

opportunity requires the same true positive rate [7, 42]. Because
statistical parity investigates algorithmic bias without conditioning

on the ground truth, the bias identified and removed based on

statistical parity is not necessarily an undesired harmful bias [7, 42].
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Figure 1: Examples of (a) uPO bias and (b) iPO bias inML1M.

In this paper, we re-examine popularity bias from the perspective

of equal opportunity.We observe that previous studies of popularity

bias [3, 4, 6, 9, 10, 27] are mainly governed by statistical parity, and

so inherit its limitations. We then connect the concept of equal op-

portunity to this conventional popularity bias to introduce the new

problem of popularity-opportunity bias in implicit recommenders.

Suppose we consider the popularity of items as the number of

feedback actions toward each item (clicks or views). Conventional

popularity bias [3, 4, 6, 9, 10, 27] refers to the phenomenon that

high rankings are tend to assigned for popular items at the expense

of lower rankings for less popular items. These studies of conven-

tional popularity bias examine the impact of item popularity on

recommendation results alone, without taking user preferences into

account. That is, the positive rate difference over items of different

popularity is calculated for measuring the conventional popularity

bias, which is essentially aligned with the concept of statistical

parity [8, 13, 39]. However, such a bias definition is problematic

because without conditioning on user preferences, the recommen-

dation result (or positive rate) alone is not necessarily evidence

of bias. For example, for a user 𝑢, one popular item 𝑖 and one less

popular item 𝑗 , better ranking for the popular item 𝑖 than the less

popular item 𝑗 is a biased recommendation defined by conventional

popularity bias. Yet, if we know that𝑢 likes 𝑖 but dislikes 𝑗 , then this

ranking result is in fact reasonable and not a harmful bias. Moreover,

forcing similar rankings for 𝑖 and 𝑗 as in previous works [32, 33]

to remove conventional popularity bias could actually hurt user

satisfaction and engagement of the popular item 𝑖 .

Thus, inspired by equal opportunity, we propose to investigate

the popularity-opportunity bias: conditioned on user preferences
that a user likes both items, is the more popular item more likely

to be recommended (or ranked higher) to the user than the less

popular one? That is, we calculate the true positive rate difference

over items of different popularity for measuring the bias during
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testing, and require the true positive rate to be the same for items

of different popularity to achieve equal opportunity. To our best

knowledge, this is the first work which studies popularity bias from

the view of equal opportunity for recommender systems.

To identify popularity-opportunity bias during testing, one criti-

cal question is how do we know user preferences to measure the

bias? That is, how do we know whether 𝑢 likes 𝑖 or 𝑗? In practice,

the utility of a recommender system is typically evaluated through

a train-test split, where a learned model (based on the training data)

is evaluated over the testing data, where the testing data contains

held-out evidence of user preferences (e.g., by likes, views, or clicks).

In a similar way, we can leverage the same testing data as indicators

of user preferences to identify popularity-opportunity bias.

User-side popularity-opportunity bias. More specifically, in

this paper, we investigate the proposed popularity-opportunity

bias from the views of users and items separately. To illustrate,

let’s first consider the example in Figure 1a. Here we show four

items from the MovieLens 1M dataset [14] that user ID5003 likes

during testing. That is, these items are not seen during training

but are in the test set of this user, and the user will interact with

these items once recommended (i.e., they are true positives). Item

ID116 is the most popular one with 1588 feedback actions, while

item ID1955 is the least popular with only 185 feedback records.

Then, we show the ranking positions of these four items for user

ID5003 according to two fundamental collaborative filtering models

– matrix factorization with Root Mean Square Error loss (denoted

as MF) [23] and Bayesian Personalized Ranking loss (denoted as

BPR) [30]. We observe that popular items are ranked higher than

less popular items by both models, even though we know the user
likes all of them. We refer to this as user-side popularity-opportunity
bias or uPO bias for short.

Item-side popularity-opportunity bias. Complementary to this

user-side perspective, we show an example of five items in Figure 1b.

Item ID213 is the most popular, while item ID3001 is the least pop-

ular. If we consider only the matched users who like each item in

testing data (i.e., for item 𝑖 , only the ranking positions for matched

users who have 𝑖 in their test set are considered), we observe that

more popular items will have better rankings and higher proba-

bilities of being ranked in the top-100. For example, item ID213 is

ranked by MF in the top-100 for 94% of all matched users, whereas

item ID3001 is never ranked in the top-100 for its matched users.

This reveals a systematic low recommendation opportunity for low-

popularity items.We refer to this as item-side popularity-opportunity
bias or iPO bias for short.

Both this user-side and item-side bias raise critical issues. User-

side (uPO) bias is harmful because a user’s need corresponding to

these low-popularity items is not acknowledged and not satisfied by

the recommender. Moreover, low-popularity items sometimes are

more important than popular items because they can be serendip-

itous and novel for users, crucial for extending the area of users’

interests and promoting user engagement [6, 31]. Item-side (iPO)

bias brings damaging outcomes that long-tail items may not have

any chance to become popular or even known, and providers of

these items will receive less engagement in the system. In the

long-term, iPO bias could accumulate, leading to a recommender

dominated by well-known popular items.

Our contributions. Hence, this paper proposes a three-part study
of both user-side and item-side popularity-opportunity bias.

i) Figure 1 shows cases of the bias, but is it prevalent beyond these

examples? To answer this, we conduct a comprehensive data-driven

study over four datasets to investigate the presence of popularity-

opportunity bias. We focus on two fundamental collaborative filter-

ing approaches (MF and BPR) that serve as foundations of many

recommenders including recent neural ones [16]. We empirically

demonstrate both models produce user-side and item-side bias.

ii) While this data-driven study showcases the prevalence of

the bias, is it truly inherent to these models or an artifact of these

datasets? To answer this, we theoretically analyze the impact of

item popularity on ranking by MF and BPR to confirm the existence

of the bias in both methods.

iii) Last, we investigate the potential of two approaches to reduce

this bias: a post-processing approach to compensate for popularity

in recommendation; and an in-processing approach that regularizes

predicted scores and item popularity. Through experiments on four

datasets, we explore the trade-offs between debiasing effectiveness

and recommendation utility, showing the more effective debiasing

performance of the two proposed methods over existing debiasing

baselines designed for conventional popularity bias.

2 RELATED CONCEPTS
In this section, we discuss two topics that are highly related to the

studied popularity-opportunity bias: conventional popularity bias,

and item-side recommendation fairness.

Conventional Popularity Bias refers to the phenomenon that

recommenders tend to assign high rankings for popular items at the

expense of lower recommendation opportunities for less popular

items [3, 4, 6, 9, 10, 27]. This concept and its influence on recom-

mendations has been studied in [6, 9, 27], and later, Jannach et

al. [17] empirically showed that different recommendation algo-

rithms have different vulnerabilities to popularity bias. Long-tail

items are considered valuable because they often represent novelty

and serendipity [6, 11, 31], thus, they are important in terms of

promoting user satisfaction and preventing the monopoly by big

brands [3]. To mitigate the harmful effects of popularity bias, many

debiasing approaches have been proposed [2–4, 20, 32, 33].

However, existing works [3, 4, 10, 20] mainly study the effects

of item popularity on the ranking results themselves – e.g., are

popular items recommended more often or ranked higher than

less popular ones? – without considering what are the user prefer-

ences toward them (aligned with the concept of statistical parity).

This is problematic because without conditioning on user prefer-

ences, recommendation difference is not necessarily evidence of

bias. Thus, we propose popularity-opportunity bias in this work,

which studies the impact of item popularity conditioned on user

preferences (which is aligned with the concept of equal opportu-

nity). Furthermore, most prior works study the group-level impact

of popularity on recommendations by grouping items based on

their popularity [2–5, 10, 17, 20]. These studies often consider two

groups – popular items vs. long-tail items – which ignores the

subtle distinction between individual items at different ranking

positions. In contrast, this paper directly investigates rankings and

popularity of individual items.



Item-side Recommendation Fairness is another related concept
to the popularity-opportunity bias, which studies whether the rec-

ommender system treats different groups of items differently. These

groups are often determined by sensitive attributes (e.g., gender,

race). For example, some works study statistical parity based fair-

ness [18, 19, 21, 25, 38, 41], to see whether different groups of

items receive equal exposure in the recommender. Some recent

works take user preferences into account to study equal opportu-

nity based item group fairness [7, 12, 28], which is similar to the

philosophy of this paper, but we consider the equal opportunity for

individual items based on their item popularity. Many researchers

have explored methods to enhance recommendation fairness for

items [7, 12, 18, 19, 21, 25, 28, 38, 41]. Our work complements these

prior efforts as popularity is one key reason driving unfairness for

different groups of items.

3 PRELIMINARIES
In this section, we first describe the implicit recommendation prob-

lem, then introduce matrix factorization based collaborative filter-

ing models with two different objective functions.

Implicit Recommendation. Suppose we have a user set U =

{1, 2, . . . , 𝑁 } and an item set I = {1, 2, . . . , 𝑀}. We need to recom-

mend a list of 𝑘 items to every user𝑢 based on her implicit feedback

record O+
𝑢 = {𝑖, 𝑗, . . .}, where 𝑖, 𝑗, . . . are the items 𝑢 has provided

positive feedback to before, which are used as training data for

model learning. Besides, we have another item set Õ+
𝑢 to represent

the items that user will like during testing, which are the test data

for evaluating recommendation utility and recommendation bias.

Matrix Factorization. Matrix factorization based collaborative

filtering [23, 30] is the foundation of many state-of-the-art rec-

ommendation models [15, 24], as well as recent neural-network

based models [16, 35, 36] that use matrix factorization as the final

layer for predicting preference scores. The main idea is to learn

low-dimensional latent representations for users and items based

on existing user-item interactions, and then to predict preference

scores for unobserved user-item pairs by the dot-product of latent

representations: R̂𝑢,𝑖 = P⊤𝑢 Q𝑖 , where P𝑢 ∈ R𝐻×1
is the latent repre-

sentation of user 𝑢, Q𝑖 ∈ R𝐻×1
is the latent representation of item

𝑖 , and 𝐻 is the latent dimension.

There are two main categories of objective functions for matrix

factorization models: point-wise objective functions (include Root

Mean Square Error (RMSE) [23], Cross-Entropy [16], among others)

and pair-wise objective functions (include Bayesian Personalized

Ranking loss (BPR) [30], Hinge loss [40], and others). Since RMSE

and BPR are two of the most widely applied objective functions, we

focus on these two in the rest of the paper. We denote the matrix

factorization model with RMSE asMF, and the one with BPR loss

as BPR. The formulations are shown below:

min

Θ
L𝑀𝐹 =

∑
𝑢∈U

∑
𝑖∈O+

𝑢∪O−
𝑢

√
(R̂𝑢,𝑖 − R𝑢,𝑖 )2, (1)

min

Θ
L𝐵𝑃𝑅 = −

∑
𝑢∈U

∑
𝑖∈O+

𝑢

𝑗 ∈O−
𝑢

𝑙𝑛 𝜎 (R̂𝑢,𝑖 − R̂𝑢,𝑗 ),
(2)

Table 1: Characteristics of the four public datasets.

#users #items density pop_avg pop_std

ML1M 6,040 3,260 3.55% 214.41 276.85

Ciao 5,047 8,102 0.21% 10.82 19.13

Epinions 12,168 11,283 0.18% 21.88 33.07

App 16,201 4,869 0.23% 37.96 66.34

where O−
𝑢 is the randomly sampled negative item set for 𝑢; 𝜎 (·) is

the Sigmoid function; and Θ represents the model parameters, i.e.,

the latent representations for users and items P and Q.

4 DATA-DRIVEN STUDY
In this section, we conduct a data-driven study of popularity-opportunity

bias over four datasets, and show how MF and BPR are vulnerable

to this bias on both user (uPO bias) and item (iPO bias) sides. While

many previous studies have identified conventional popularity bias,

this is the first to identify popularity-opportunity bias.

We adopt four widely used datasets from different domains:

ML1M [14], Ciao [34], Epinions [34], Amazon-App [26]. For all

datasets, we consider the rating or reviewing behaviors as positive

feedback from users to items, and regard the number of feedback

actions an item receives as its popularity.We first filter out users and

items with interactions fewer than 10, and then randomly split them

into 60%, 20%, and 20% for training, validation, and testing. The

details of these datasets are presented in Table 1, where pop_avg

shows the average popularity of the items and pop_std shows the

standard deviation of item popularity.

We train MF and BPR models by the training sets of these

datasets; tune hyper-parameters by grid search on validation sets;

and report the results on test sets. Further details of the experimen-

tal setup can be found in Section 7.1.

4.1 Measuring uPO and iPO Bias
First, we introduce two metrics to measure uPO and iPO bias. Sim-

ilar to recommendation utility metrics, such as NDCG, the two

introduced bias metrics are calculated based on the test item set

Õ+
𝑢 for each user 𝑢.

Measuring uPO bias. For uPO bias, we want to know for each

user 𝑢, among all items 𝑢 will like during testing (items in Õ+
𝑢 ),

whether less popular items are ranked lower than more popular

ones, i.e., whether the rankings are correlated with popularity given

items are liked by the user. Thus, for each user 𝑢, we calculate the

Spearman’s rank correlation coefficient between the popularity of

items in Õ+
𝑢 and their ranking positions, then average all users to

have the popularity-rank correlation for users (denoted as PRU ):

𝑃𝑅𝑈 = − 1

𝑁

∑
𝑢∈U

𝑆𝑅𝐶 (𝑝𝑜𝑝 (Õ+
𝑢 ), 𝑟𝑎𝑛𝑘𝑢 (Õ+

𝑢 )), (3)

where 𝑆𝑅𝐶 (·, ·) calculates Spearman’s rank correlation; 𝑝𝑜𝑝 (·) re-
turns item popularity (it counts the number of feedback actions

for each item) for given items; and 𝑟𝑎𝑛𝑘𝑢 (Õ+
𝑢 ) returns the rank-

ings (from 0 to𝑀 − 1, 0 represents the top-most ranking) of given

items for user 𝑢 by a specific model. Spearman’s rank correlation

coefficient assesses the monotonic relationship between two vari-

ables and has values in the range [−1, 1]. Hence, a large positive
value (note that we add a negative sign before 𝑆𝑅𝐶 (·, ·) to flip the



Table 2:Measuring uPO bias (PRU ) and iPO bias (PRI ) forMF
and BPR on four datasets. * indicates that the Spearman’s
rank correlation coefficients are statistically significant for
𝑝 < 0.01 judged by t-test.

ML1M Ciao Epinions App

MF BPR MF BPR MF BPR MF BPR

𝑃𝑅𝑈 0.835 0.779 0.542 0.591 0.684 0.708 0.567 0.636

𝑃𝑅𝐼 0.980∗ 0.969∗ 0.363∗ 0.433∗ 0.535∗ 0.573∗ 0.609∗ 0.692∗

sign) of PRU means that low popularity leads to low rankings for

items a user likes during testing, which violates the requirement of

equal opportunity for items of different popularity as discussed in

Section 1, i.e., high uPO bias.

Measuring iPO bias. For iPO bias, we want to know whether

the expected rankings of low-popularity items for matched users

are lower than the expected rankings of high-popularity items, i.e.,

whether the expected ranking position of an item for a matched user

is correlated with its popularity. Hence, we calculate the Spearman’s

rank correlation coefficient between the popularity of all items and

their average ranking positions over matched users (for each item

𝑖 , fetch all the users who have 𝑖 in test set Õ+
𝑢 , and then average the

ranking positions in the ranking lists of these users) to have the

popularity-rank correlation for items (denoted as PRI ):

𝑃𝑅𝐼 = −𝑆𝑅𝐶 (𝑝𝑜𝑝 (I), 𝑎𝑣𝑔_𝑟𝑎𝑛𝑘 (I)),

where 𝑎𝑣𝑔_𝑟𝑎𝑛𝑘 (𝑖) = 1

| Ũ𝑖 |
∑
𝑢∈Ũ𝑖

𝑟𝑎𝑛𝑘𝑢 (𝑖) returns the average

ranking for item 𝑖 over the set of matched user Ũ𝑖 (i.e., for each

𝑢 ∈ Ũ𝑖 , 𝑖 is in Õ+
𝑢 )). A large positive value of PRI means that lower

popularity leads to worse rankings, violating the requirement of

equal opportunity, i.e., high iPO bias. In our experiments, we also

evaluate the iPO bias by calculating the probability of being ranked

in top-k for a matched user (as examples in the Figure 1b), which

shows similar pattern as the introduced metric 𝑃𝑅𝐼 . Thus, in this

paper, we will only report results based on PRI.

Compare 𝑃𝑅𝑈 and 𝑃𝑅𝐼 . Both 𝑃𝑅𝑈 and 𝑃𝑅𝐼 measure popularity-

opportunity bias. The main difference is how they calculate the

popularity-ranking correlation and aggregate across users. Due to

this calculation difference, 𝑃𝑅𝑈 and 𝑃𝑅𝐼 measure different aspects

of popularity-opportunity bias. 𝑃𝑅𝑈 represents the expectation of

popularity-ranking correlation of matched items a random user

will get from a model, which is to say, it quantifies the bias from

the view of users. On the other hand, 𝑃𝑅𝐼 measures the correlation

between item popularity and the expectation of ranking position

from matched users for items, which is to say, it quantifies the bias

from the view of items. Although in practice, these two metrics

usually show similar patterns, they are essentially not the same.

It is possible that a model generates high uPO bias measured by

𝑃𝑅𝑈 while low iPO bias measured by 𝑃𝑅𝐼 , or vice versa. Hence,

it is necessary to study the proposed popularity-opportunity bias

from both 𝑃𝑅𝑈 and 𝑃𝑅𝐼 perspectives.

4.2 Observations
In the following, we report our observations of uPO and iPO bias

for MF and BPR over the four datasets.

Figure 2: Scatter plots of ranking results by MF on ML1M.

Observations of uPO bias. First, we show PRU for both MF and

BPR across all four datasets in Table 2. We can see that for both

MF and BPR on all datasets, PRU values are large positive numbers,

indicating both MF and BPR produce uPO bias. More precisely, for

a user, even if we know that two items are equally liked by the user,

the more popular one will have better ranking position than the less

popular one. Note that we do not show the significance test results

for PRU because the size of Õ+
𝑢 in Equation 3 is small for most of the

users which makes the significance test uninformative (because the

p-value is always large when only few instances are included). An

example of such uPO bias in ML1M dataset is shown in Figure 1a,

which is consistent with our observations from Table 2.

Observations of iPO bias. Next, we focus on the metric PRI to
evaluate the iPO bias in Table 2. For all four datasets and both

models, PRI are large positive values, which means in the recom-

mendations by MF and BPR, items with high popularity have better

expected rankings for their matched users, while the opposite holds

for low-popularity items. Thus, we can confirm that MF and BPR

produce the iPO bias.

To better show the effects of iPO bias, we present two scatter

plots in Figure 2 for ranking results of MF on ML1M data (BPR

and other datasets have similar patterns). Each dot represents one

item. In the left figure, we plot the average rankings of items over

matched users (y-axis) vs. popularity (x-axis), from which we can

observe a monotonic decreasing trend for the average rankings

as the popularity increases. In the right figure, for each item, we

plot the probability of being ranked in the top-100 for matched

users (y-axis) vs. popularity (x-axis), where we see a monotonic

increasing trend for the recommendation probabilities when the

popularity increases. These observations are consistent with the

conclusions drawn from the bias metric shown in Table 2 that more

popular items have better rankings for matched users than less

popular items do. Real examples of such iPO bias in ML1M dataset

are presented in Figure 1b.

5 THEORETICAL STUDY
After empirically confirming the existence of bias in MF and BPR,

we turn in this section to theoretically analyze the relationship

between item popularity and ranking results generated by MF and

BPR under two simplifying assumptions, to confirm the existence

of uPO and iPO bias in MF and BPR.

5.1 Existence of Bias in MF
We first formulate the input and output of the MF model. Given

a training user-item interaction matrix R ∈ {0, 1}𝑁×𝑀
with 𝑁

users,𝑀 items, 1 represents a known user-item interaction, and 0



represents an unknown user-item relationship. If we train an MF

model on R, we can get a user latent representation matrix P ∈
R𝐻×𝑁

and an item latent representation matrix Q ∈ R𝐻×𝑀
. Now

we haveAssumption 1: we assume the model is trained in an ideal

condition where the loss function in Equation 1 is minimized close

to 0. Then the dot product of the latent matrices will reconstruct

R with very minor error: P⊤Q = R̂ and ∥R̂ − R∥2
F
< 𝜖 . This is to

say that R̂𝑢,𝑖 ≈ 1 if R𝑢,𝑖 = 1, and R̂𝑢,𝑖 ≈ 0 if R𝑢,𝑖 = 0. We represent

the reconstructed interaction matrix as R̂ ∈ {∼ 0,∼ 1}𝑁×𝑀
, where

∼ 0 and ∼ 1 are numbers very close to 0 and 1. Without loss of

generality, we assume values in R̂ are non-negative because we can

always add a positive constant to R̂ to make all elements positive

without changing the ranking results.

Because the number of ∼ 1 values in columns of R̂ can indi-

cate the item popularity, we introduce the item popularity infor-

mation to the formulations of P and Q by R̂. Given a user 𝑢, the

predicted preference scores for her toward all items can be calcu-

lated by P⊤𝑢 Q = R̂𝑢,:, where R̂𝑢,: ∈ {∼ 0,∼ 1}1×𝑀 is the 𝑢-th row

in R̂. Moving Q to the right-hand side by pseudo-inverse, we can

have P⊤𝑢 = R̂𝑢,:Q⊤ (QQ⊤)−1. Similarly, we have Q𝑖 = (PP⊤)−1PR̂:,𝑖 ,

where R̂:,𝑖 ∈ {∼ 0,∼ 1}𝑁×1
is the 𝑖-th column in R̂.

Based on the new formulations of P𝑢 and Q𝑖 , we define several

new matrices for the analysis. First, we define the normalized user
latent representation: A = (PP⊤)−1P, which normalizes P by the

variances of its principal components over the principal component

directions. The explanation for A is that PP⊤ can be factorized as

PP⊤ = UΛU⊤
by Eigen-Decomposition, where U is an orthogonal

matrix (U⊤ = U−1
) with eigenvectors of PP⊤ as columns, and Λ is

a diagonal matrix with eigenvalues of PP⊤ as diagonal elements.

Then based on the definition of Principal Component Analysis [37],

U⊤P are the principal components of P, Λ are the variances of these

principal components. As a result, A = (PP⊤)−1P = UΛ−1U⊤P,
i.e., P is first transformed to the principal component space by

U⊤
, then normalized by the variances of principal components by

Λ−1
, and last, transformed back to the original space by U. In the

same way, we can have the normalized item latent representation:
B = (QQ⊤)−1Q, and the normalized preference matrix: Z = A⊤B ∈
R𝑁×𝑀

(values in Z are non-negative because all calculations do

not change sign).

Nowwe can derive the predicted score for a user-item pair. Given

user 𝑢 will like item 𝑖 during testing (𝑖 is in Õ+
𝑢 ):

R̂+
𝑢,𝑖 = P⊤𝑢 Q𝑖 = R̂𝑢,:B⊤AR̂:,𝑖 = R̂𝑢,:Z⊤R̂:,𝑖 =

∑
R̂⊤
𝑢,:R̂:,𝑖 ⊙ Z⊤, (4)

where R̂+
𝑢,𝑖

represents the predicted preference score from 𝑢 to

𝑖 given the ground truth for this user-item pair is positive; ⊙ is

the Hadamard product; and

∑
D (D is a matrix) is to sum up all

elements of D. The intuitive way to interpret Equation 4 needs two

steps: i) First, R̂⊤
𝑢,:R̂:,𝑖 ∈ {∼ 0,∼ 1}𝑀×𝑁

is the process to select key
user-item pairs from a user candidate set U𝑖 and an item candidate

set I𝑢 that help to indicate preference from 𝑢 to 𝑖 , where U𝑖 are

the users who like 𝑖 in the training set, and I𝑢 are the items 𝑢 likes

in the training set. BecauseU𝑖 reveals characteristics of 𝑖 and I𝑢
reveals preferences of 𝑢, we can infer R̂𝑢,𝑖 based on the preferences

ofU𝑖 toward I𝑢 , and elements with value ∼ 1 in R̂⊤
𝑢,:R̂:,𝑖 indicates

these key user-item pairs. ii) Then,

∑
R̂⊤
𝑢,:R̂:,𝑖 ⊙ Z⊤

retrieves the

preference scores of the selected key user-item pairs in Z and sums

them up as R̂+
𝑢,𝑖

.

To simplify Equation 4, we have Assumption 2: we assume

the preference scores in Z for key user-item pairs follow the same

distribution. The intuitive interpretation of this assumption is that

similar users (and similar items) share similar feedback patterns.

Or from another aspect, any positive user-item interaction can be

inferred by other user-item relationships. Based on this assumption,

we denote the expectation of the preference score in Z for a key

user-item pair as E[Z+] (E[Z+] is non-negative). We can further

derive Equation 4 as:

R̂+
𝑢,𝑖 =

∑
R̂⊤
𝑢,:R̂:,𝑖 ⊙ Z = (

∑
R̂𝑢,:) (

∑
R̂:,𝑖 )E[Z+] .

Theorem 5.1. Given Assumption 1 and 2, MF produces uPO bias.

Proof. Suppose user 𝑢 will like items 𝑖 and 𝑗 during testing,

and 𝑖 is more popular than 𝑗 , i.e., (∑R:,𝑖 ) > (∑R:𝑗 ), which is also

equivalent to (∑ R̂:,𝑖 ) > (∑ R̂:𝑗 ), the difference between predicted

preference scores of the two is:

R̂+
𝑢,𝑖 − R̂+

𝑢,𝑗 = (
∑

R̂𝑢,:) ((
∑

R̂:,𝑖 ) − (
∑

R̂:𝑗 ))E[Z+] > 0,

which is to say for user 𝑢, even though both items are liked by 𝑢,

the lower popularity of 𝑗 makes it have a worse ranking than 𝑖 in

the recommendation list for 𝑢, i.e., MF produces uPO bias. □

Theorem 5.2. Given Assumption 1 and 2, MF produces iPO bias.

Proof. First, we formulate the expectation of the preference

score of item 𝑖 from matched users as:

E[R̂+
:,𝑖 ] = E[(

∑
R̂𝑢,:)] (

∑
R̂:,𝑖 )E[Z+],

where E[(∑ R̂𝑢,:)] is the expectation of the sum of predicted scores

for a user, which is independent with items. Hence, given two items

𝑖 , 𝑗 , where 𝑖 is more popular than 𝑗 , we calculate the difference

between expected scores of 𝑖 and 𝑗 :

E[R̂+
:,𝑖 ] − E[R̂+

:, 𝑗 ] = E[(
∑

R̂𝑢,:)] ((
∑

R̂:,𝑖 ) − (
∑

R̂:𝑗 ))E[Z+] > 0,

which is to say that the lower popularity of 𝑗 brings worse expected

ranking for users who like 𝑗 than 𝑖 , i.e., MF produces iPO bias. □

5.2 Existence of Bias in BPR
In a similar fashion, we analyze the bias in BPR. Due to the pair-wise

BPR loss, we cannot directly apply the same process in Section 5.1

to BPR. Thus, we need to first transform a BPR model to an MF one.

Because the pair-wise objective function in BPR is calculated

by fixing a user and then computing the difference of predicted

scores between one pair of positive and negative items, the output

matrix R̂ is not an approximated version of R as in MF. Instead,

a well trained BPR model will have R̂ where 𝜎 (R̂𝑢,𝑖 − R̂𝑢,𝑗 ) ≈ 1

given R𝑢,𝑖 = 1 and R𝑢,𝑗 = 0. Without loss of generality, we can

remove the Sigmoid function, and assume that R̂𝑢,𝑖 − R̂𝑢,𝑗 ≈ 𝑎 (𝑎

is a large positive number) for R𝑢,𝑖 = 1 and R𝑢,𝑗 = 0. Besides, we

define a vector x ∈ R𝑁×1
to record the expectations of predicted

scores for items not in the training set (i.e., I \ O+
𝑢 ) for each user

as x𝑢 = E[R̂𝑢,I\O+
𝑢
]. Now, for user 𝑢, R̂𝑢,: is a vector consisting of

values close to x𝑢 and x𝑢 +𝑎, denoted as ∼ x𝑢 values and ∼ (x𝑢 +𝑎)



values, where ∼ x𝑢 are for items in I \ O+
𝑢 and ∼ (x𝑢 + 𝑎) are for

items in O+
𝑢 .

Next, we define a centralized preference matrix R̃ ∈ {∼ 0,∼
1}𝑁×𝑀

by subtracting x𝑢 and dividing 𝑎 for each user: R̃ = 1

𝑎 (R̂−J◦
x), where J = {1}𝑁×𝑀

; and ◦ times elements of x to corresponding

rows of J. R̃ contains ∼ 0 and ∼ 1 values, which is exactly the

same as the R̂ in for MF. Meanwhile, R̃ maintains the item ranking

orders for all users compared with R̂ generated by BPR because

the ranking is executed for each row of R̂, thus, subtracting and

dividing constants will not change the order of the elements in one

row. Then, we have a new user latent representation matrix:

P̃ =
1

𝑎
(P − J ◦ xQ⊤ (QQ⊤)−1),

so that P̃⊤Q = R̃. Now, we transform the original BPR model with

latent matrices P and Q to a new model with P̃ and Q, where the

two models have the same recommendation results. Last, we can

easily apply the same analysis process for MF to the new model to

prove the existence of uPO and iPO bias in BPR.

6 DEBIASING APPROACHES
After empirically and theoretically studying popularity-opportunity

bias in matrix factorization models, we next explore several ap-

proaches to alleviate this bias. Many methods [2–4, 20, 32, 33] have

been studied for alleviating conventional popularity bias, which

aim to promote the rankings of low-popularity items in the recom-

mendations. These methods can also help promote the rankings of

low-popularity items for matched users, which may mitigate the

popularity-opportunity bias investigated in this paper. However,

this could also promote the rankings of low-popularity items for

unmatched user, which could significantly degrade the overall rec-

ommendation utility. Hence, we explore debiasing methods that

are designed explicitly for the popularity-opportunity bias.

Typically, there are three categories ofmethods: pre-processing [29],
post-processing [4, 25], and in-processing [3, 7, 38] methods. Pre-

processing approaches modify the training data so that models

trained on the purified data are free of undesired issues (like bias).

However, these kinds of algorithms are usually hard to design and

may be ineffective since they cannot remove the algorithmic bias

inherent in model architectures.

Hence, we focus here on the potential of post-processing and in-

processing approaches to alleviate the bias. Concretely, we propose

a simple but effective post-processing algorithm – Popularity Com-

pensation (PC for short) and a regularization-based in-processing

debiasing model (Reg for short).

6.1 Post-processing: Popularity Compensation
We begin by investigating a post-processing approach that modifies

the predicted user-item preference matrix R̂ by adding compen-

sation to items with small popularity so that they have higher

preference scores and thus higher ranking positions. We propose

such a popularity compensation that follows three key guidelines:

Guideline 1: Compensation should follow item popularity: items

with lower popularity should be compensated more.

Guideline 2: Compensation should follow user preferences: items

with higher probabilities of being liked by a user should be com-

pensated more.

Guideline 3: Compensation should follow the value scale of each

user: for a user who has a larger value scale for R̂𝑢 , item candidates

for her should be compensated more.

Guideline 1 promotes low-popularity items to mitigate the bias.

Guideline 2 ensures that items a user does not like but with low pop-

ularity will not be mistakenly promoted by the algorithm. Guideline

3 makes sure that users with large value scales of predicted pref-

erence scores will have large compensation to items so that the

algorithm is effective to all users.

Based on these guidelines, we propose the Popularity Compensa-

tion (PC) debiasing algorithm. Given a user𝑢, we have the user-item

interaction records in the training data R𝑢,: ∈ {0, 1}1×𝑀 , the inter-

acted item set in the training data O+
𝑢 , and the predicted preference

scores from𝑢 to items generated byMF or BPR R̂𝑢,: ∈ R1×𝑀 . The PC

algorithm has three steps. First, we calculate the norm of predicted

scores for user 𝑢 by:

n𝑢 = ∥(R̂𝑢,: ⊙ (1 − R𝑢,:))/(𝑀 − |O+
𝑢 |) ∥F,

where we only consider the predicted preference scores to items

that are not in the training data (by R̂𝑢,: ⊙ (1 − R𝑢,:)) because
the ranking is executed only on these un-interacted items and we

should exclude the influence of items in the training set. Second, we

calculate the popularity compensation score for one item 𝑖 given 𝑢:

C𝑢,𝑖 =
1

𝑝𝑜𝑝 (𝑖) · (R̂𝑢,𝑖 · 𝛽 + 1 − 𝛽),

where there are two parts: 1/𝑝𝑜𝑝 (𝑖) is to achieve Guideline 1, and

(R̂𝑢,𝑖 · 𝛽 + 1 − 𝛽) is to achieve Guideline 2 by using the predicted

score as the indicator of user preference to 𝑖 . 𝛽 ∈ [0, 1] is a trade-off
weight to control the ratio of predicted preference score in the

compensation: larger 𝛽 means higher ratio for predicted scores.

Last, following Guideline 3, we need to scale the compensation to

match the user preference score scale and add it to R̂𝑢,𝑖 :

R̂∗
𝑢,𝑖 = R̂𝑢,𝑖 + 𝛼 · C𝑢,𝑖 · n𝑢/m𝑢 ,

where R̂∗
𝑢,𝑖

is the new preference score from 𝑢 to 𝑖; m𝑢 = ∥(C𝑢 ⊙
(1 − R𝑢 ))/(𝑀 − |O+

𝑢 |) ∥F is the norm of compensation scores of 𝑢

excluding those for items in O+
𝑢 ; n𝑢/m𝑢 is to normalize the com-

pensation scores based on Guideline 3; and 𝛼 is the trade-off weight

for the whole PC algorithm. With new preference scores for all

candidate items, we can provide a debiased ranking list for 𝑢.

6.2 In-processing: Regularization
In this section, we introduce a regularization-based in-processing

way to debias. The proposed method is inspired by previous work

enhancing equal opportunity based recommendation fairness for

different item groups [7], which try to decrease the correlation be-

tween item group variable and model output scores to achieve fair-

ness. We adapt this idea to the context of alleviating the popularity-

opportunity bias by decreasing the correlation between item popu-

larity and model output scores.



We adopt the square of the Pearson correlation coefficient between
predicted preference scores for positive user-item pairs and cor-

responding item popularity as a regularization term, and mitigate

the bias by minimizing this regularization term together with the

recommendation error:

min

Θ
L𝑅𝑒𝑐 + 𝛾𝑃𝐶𝐶 (R̂+, 𝑝𝑜𝑝 (I))2,

where L𝑅𝑒𝑐 is the loss of recommendation models as shown in

Section 3; 𝑃𝐶𝐶 (R̂+, 𝑝𝑜𝑝 (I)) computes Pearson correlation coeffi-

cient between predicted scores for positive user-item pairs and the

popularity of corresponding items; and 𝛾 is the trade-off weight.

The proposed Reg is designed to decouple the item popularity

with the model preference predictions to alleviate the popularity-

opportunity bias. However, minimizing the correlation between

item popularity and the predicted score is a challenging task because

item popularity is continuous and unevenly distributed. Thus, a

decrease in recommendation utility is expected when we aim to

reduce the bias significantly by Reg, which will be further examined

in Section 7. We leave the improvement for future work.

7 EXPERIMENTS
In this section, we investigate the impact of the proposed debiasing

methods w.r.t. recommendation utility and debiasing performance,

compared with biased base models and baselines of removing con-

ventional popularity bias. Then, we illustrate these impacts over

the same examples from Figure 1 to better understand their effects.

Last, we study the impact of hyper-parameters on the two proposed

debiasing algorithms.

7.1 Experiment Setup
Data and Baselines. We use the same four datasets introduced

in Section 4. We compare the biased models MF and BPR with

their debiased versions:MF-PC and BPR-PC denote the debiased

versions based on the Popularity Compensation algorithm, while

MF-Reg and BPR-Reg denote the debiased versions based on the

regularization-based model. Besides, we also include two baselines

which are designed to remove the conventional popularity bias

for comparison, in other words, models forcing items of different

popularity to receive similar rankings for all users.

The first baseline removes the conventional popularity bias by

weighted matrix factorization [32], which assigns weights to train-

ing samples in the recommendation loss in Equation 1 and Equa-

tion 2 based on the popularity of involved items – items of low pop-

ularity will be assigned with high weights to promote the predicted

scores for them. The weight for item 𝑖 is chosen as𝑤𝑖 ∝ 1/𝑝𝑜𝑝 (𝑖)𝑒 ,
where 𝑒 is an exponent to control the strength of the debiasing

effect. We denote the corresponding versions with MF and BPR as

base models as MF-weight and BPR-weight.
The second baseline removes the conventional popularity bias by

rescaling the training data [33], which multiplies rescaling values

to the binary training samples based on the popularity of involved

items to uniformly promote the scores of low-popularity items.

Then, it trains the vanilla MF or BPRmodels on the rescaled training

data. The rescaling values are determined by the same way as the

weights in the weighted model:𝑤𝑖 ∝ 1/𝑝𝑜𝑝 (𝑖)𝑒 with the exponent

𝑒 to control the debiasing strength. We denote the corresponding

baselines asMF-rescale and BPR-rescale.

Table 3: Evaluation of recommendation utility (NDCG@k),
uPO bias (PRU ), and iPO bias (PRI ) for MF based models on
four datasets. * indicates the correlation coefficients are sta-
tistically significant for 𝑝 < 0.01.

𝑁𝐷𝐶𝐺@𝑘
𝑃𝑅𝑈 𝑃𝑅𝐼

@20 @50

ML1M

MF 0.2726 0.2930 0.8350 0.9799∗

MF-weight 0.1484 0.1793 0.4845 0.6407∗

MF-rescale 0.1361 0.1658 0.4365 0.6936∗

MF-Reg 0.1492 0.1720 0.1910 0.5916∗

MF-PC 0.1435 0.1980 0.4552 0.5594∗

Ciao

MF 0.0717 0.0934 0.5420 0.3625∗

MF-weight 0.0447 0.0675 0.3174 0.3293∗

MF-rescale 0.0425 0.0608 0.3219 0.2526∗

MF-Reg 0.0497 0.0639 0.2881 0.1905∗

MF-PC 0.0647 0.0845 0.3073 −0.0150

Epinions

MF 0.0693 0.0938 0.6840 0.5351∗

MF-weight 0.0349 0.0526 0.3453 0.2341∗

MF-rescale 0.0343 0.0509 0.3678 0.2182∗

MF-Reg 0.0386 0.0516 0.2175 0.2251∗

MF-PC 0.0605 0.0848 0.3549 −0.0415

App

MF 0.1026 0.1359 0.5667 0.6089∗

MF-weight 0.0388 0.0596 0.3552 0.2334∗

MF-rescale 0.0384 0.0583 0.3350 0.2147∗

MF-Reg 0.0439 0.0599 -0.0571 0.2207∗

MF-PC 0.0965 0.1280 0.3527 −0.0487

Because the two conventional popularity bias based baselines

uniformly promote low-popularity items in recommendations, the

popularity-opportunity bias is expected to be reduced as well. How-

ever, these baselines modify the recommendations without consid-

ering the potential user preferences as the two proposed debiasing

models do. Hence, it is also expected that the two baselines will

decrease the recommendation utility significantly.

Metrics. We evaluate user-side and item-side bias for all the mod-

els using the metrics introduced in Section 4.1, and compare the

recommendation utility based on NDCG@k with 𝑘 = 20 and 50.

Reproducibility. All models are implemented in Tensorflow [1]

and optimized by Adam [22] algorithm. For all models and all

datasets, we fix the latent dimension as 64, set the learning rate

as 0.001, the negative sampling rate as 2, and set the mini-batch

size as 1024. Then we tune hyper-parameters for all models by grid

search over validation sets. More specifically, for post-processing

methods MF-PC and BPR-PC, we directly apply the PC algorithm

on the outputs from MF and BPR, and tune 𝛼 in [0.1, 1.5] with step

0.1, tune 𝛽 in [0.0, 1.0] with step 0.1. For in-processing models, we

tune 𝛾 in {1𝑒2, 1𝑒3, 1𝑒4, 1𝑒5, 1𝑒6, 1𝑒7}. Note that for all the debiasing
models, there is a trade-off between recommendation utility and

debiasing performance. Hence, we explore hyper-parameters that

minimize the bias metrics while preserving an acceptable utility.

7.2 Comparing Debiasing Performance
We begin in Table 3 with a comprehensive study on four datasets for

all MF based models (including original biased model: MF; debiased

baselines designed for conventional popularity bias: MF-weight

and MF-rescale; and the proposed debiased ones designed for the

popularity-opportunity bias: MF-Reg and MF-PC). Here, we walk

through the key findings:



Table 4: Evaluation of recommendation utility, uPO bias
(PRU ), and iPO bias (PRI ) for BPR based models on ML1M
datasets. * indicates the correlation coefficients are statisti-
cally significant for 𝑝 < 0.01.

𝑁𝐷𝐶𝐺@𝑘
𝑃𝑅𝑈 𝑃𝑅𝐼

@20 @50

ML1M

BPR 0.2983 0.3220 0.7793 0.9688∗

BPR-weight 0.1458 0.1757 0.5121 0.6249∗

BPR-rescale 0.1446 0.1784 0.4349 0.6064∗

BPR-Reg 0.1660 0.1769 0.2862 0.5633∗

BPR-PC 0.2308 0.2711 0.5712 0.5080∗

First, we investigate the recommendation utility of the two pro-

posed debiasing models and the two baselines compared with the

original MF. Typically there is a trade-off between recommendation

utility and debiasing effectiveness, and we observe such a trade-off

here as well. Focusing on the 𝑁𝐷𝐶𝐺 columns for different values

of 𝑘 , we see that in all cases there is a drop in recommendation

utility between original MF and its debiased versions (proposed

MF-PC and MF-reg, and baselines for conventional popularity bias

MF-weight and MF-rescale). Then, by comparing the four debiasing

models, we observe that the MF-PC can preserve recommenda-

tion utility more effectively than the others, and MF-Reg performs

similarly to the two baselines. Given these utility results, if we

can observe lower bias by the proposed models, we can conclude

that proposed models are able to achieve more effective debiasing

performance with recommendation utility preserved.

Hence, we next study the impact different approaches have on re-

ducing user-side (uPO) bias. Let’s focus on the 𝑃𝑅𝑈 column (which

measures the popularity-rank correlation for users: high values

correspond with high bias). We observe that all debiasing algo-

rithms can significantly reduce 𝑃𝑅𝑈 compared with the original

MF. And these findings hold across all four datasets. Comparing the

four debiasing models, in general, MF-Reg is able to improve 𝑃𝑅𝑈

more significantly, and MF-PC performs similarly to MF-weight

and MF-rescale. It may be because MF-Reg reduces the correlation

between popularity and model predictions, which can effectively

shuffle the rankings of matched items for each user. While the other

three debiasing models are to re-rank items based on heuristics,

which are expected to keep the original rankings to some degree.

Another reason of less effective performance of MF-PC compared

with MF-Reg is that MF-PC provide much better recommendation

utility than MF-Reg, and a lower 𝑃𝑅𝑈 is expected if we strengthen

the debiasing effect for MF-PC.

Third, we investigate the impact different approaches have on

reducing item-side (iPO) bias. Here, we focus on the 𝑃𝑅𝐼 column

(which measures the popularity-rank correlation for items: high

values correspond with high bias). All four debiasing methods can

improve 𝑃𝑅𝐼 against original MF. Comparing the four debiasing

methods, the PC algorithm ismuchmore effective, which can reduce

the 𝑃𝑅𝐼 to a great extent. Although with a smaller improvement,

the proposed Reg algorithm is more effective than the two baselines

for removing conventional popularity bias.

Similar results can be observed from experiments on BPR and

its debiasing variations (the results on ML1M dataset is shown in

table 4). Based on these results, we can draw the conclusion that the

proposed two debiasing algorithms can indeed mitigate both uPO

and iPO bias, with the post-processing PC algorithm preserving

Figure 3: Case study: ranking results for items that user 5003
in ML1M will like by different models.

Figure 4: Case study: average ranking results of items for
matched users in ML1M by different models

recommendation utility better than the in-processing Reg approach.

Comparing the two proposed methods with the two baselines, we

can conclude that both proposed debiasing methods can alleviate

the popularity-opportunity bias and preserve the recommenda-

tion utility more effectively than baseline methods designed for

removing the conventional popularity bias.

7.3 Case Study
To further understand the effects of the proposed models, we com-

pare the recommendation results of the debiasing algorithms and

the base model MF for the same examples shown in Figure 1 (results

for BPR based models show similar pattern). First, Figure 3 shows

the ranking results for matched items of user 5003 by different

models (recall this is based on the ML1M dataset). By comparing

the debiasing models with their original base model, we can see

that both debiasing algorithms are able to promote the rankings

for unpopular items. The PC algorithm promotes unpopular items

and maintains relatively high rankings for popular ones, meaning

that it is fairly effective at overcoming popularity-opportunity bias.

But the Reg model cannot preserve high rankings for these popular

items, giving insight into the challenges Reg faced in Table 3.

Next, we show the results from the perspective of iPO bias in

Figure 4, where we compare the recommendation results for five

items by different models. We can see that compared with MF, the

debiasing models promote the less popular items to have better

ranking results. For example, MF-PC decreases the recommendation

probability (assuming 100 items are recommended for each user) for

item213 from 94% to 78%, but increases the probabilities for items

with lower popularity, especially for item1219 and item3001, which

do not have any chance to be exposed to users who like them by

MF, but have 60% and 20% probabilities by MF-PC. Similar in spirit

to our previous observation, the Reg also increases rankings for

unpopular items but cannot preserve rankings for popular items.

7.4 Impact of Hyper-parameters
Finally, we study the impact of the hyper-parameters. Due to the

space limitation, we only show the conclusions based on the exper-

iments here but do not show the detailed results.



For the PC algorithm, we have two hyper-parameters: 𝛼 controls

the ratio of popularity compensation, with larger values mean-

ing more weight to the compensation; 𝛽 controls the strength of

predicted preference scores on the popularity compensation, with

larger values meaning more weight for predicted preference scores.

Based on our experimental results, we observe that as 𝛼 increases,

recommendation utility decreases and the debiasing performance

is being improved. This result is because a larger 𝛼 means a higher

ratio of the popularity compensation in the final output, leading

to worse recommendation utility but less bias. For 𝛽 , we observe

that the recommendation utility keeps increasing, and the debias-

ing effect is first improved and then degraded as 𝛽 increases. The

reason behind this is that reasonable 𝛽 can indicate user prefer-

ences and help calculate accurate compensation scores, but higher

𝛽 makes preference scores dominate the compensation lead to a

decrease in the debiasing performance. For the Reg algorithm, as 𝛾

increases, the recommendation utility is reduced, and the debiasing

performance first improves then decreases due to overfitting.

8 CONCLUSION AND FUTUREWORK
In this paper, we conduct a three-part study to investigate popularity-

opportunity bias in matrix factorization based models: i) we empir-

ically show the vulnerability of two matrix factorization models to

the bias by a data-driven study on four datasets; ii) we theoretically

show how these two models inherently produce the popularity-

opportunity bias on both user and item sides; and iii) we explore

the potential of in-processing and post-processing approaches to al-

leviate the bias. Experiments on four datasets validate the debiasing

effectiveness of both proposed methods over debiasing baselines

designed for conventional popularity bias. In the future, we are

interested in exploring more effective debiasing algorithms and

studying popularity-opportunity bias in other collaborative filter-

ing algorithms like KNN, AutoEncoder, and graph neural networks.
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