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ABSTRACT
Popularity bias is a long-standing challenge in recommender sys-
tems: popular items are overly recommended at the expense of
less popular items that users may be interested in being under-
recommended. Such a bias exerts detrimental impact on both users
and item providers, and many efforts have been dedicated to study-
ing and solving such a bias. However, most existing works situate
the popularity bias in a static setting, where the bias is analyzed
only for a single round of recommendation with logged data. These
works fail to take account of the dynamic nature of real-world
recommendation process, leaving several important research ques-
tions unanswered: how does the popularity bias evolve in a dynamic
scenario? what are the impacts of unique factors in a dynamic rec-
ommendation process on the bias? and how to debias in this long-
term dynamic process? In this work, we investigate the popularity
bias in dynamic recommendation and aim to tackle these research
gaps. Concretely, we conduct an empirical study by simulation ex-
periments to analyze popularity bias in the dynamic scenario and
propose a dynamic debiasing strategy and a novel False Positive
Correction method utilizing false positive signals to debias, which
show effective performance in extensive experiments.
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1 INTRODUCTION
Popularity bias is a long-standing challenge in recommender sys-
tems [4, 19, 22, 23, 28, 32]. In essence, popularity bias means that
popular items are overly exposed in recommendations at the ex-
pense of less popular items that users may find interesting. This
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Figure 1: Dynamic recommendation: a closed loop where
users generate feedback; this feedback trainmodels; models
recommend items to users; and then the loop continues.

bias can hurt both users and items. Users are worse off since the
system can only learn a biased view of their true preferences. Pop-
ular (though not necessarily “better”) items can become even more
popular, while less popular items lose their deserved feedback (via
clicks or views) and economic gains due to this bias.

Most existing efforts to study popularity bias adopt a static set-
ting [4, 19, 22, 23, 28, 32]. That is, a recommendation model is
trained over an offline dataset, and popularity bias is analyzed by
conducting a single round of recommendation. While these studies
have highlighted the prevalence of popularity bias, there is a signifi-
cant research gap in our understanding of the dynamics of this bias,
the factors impacting popularity bias and its evolution, and the effi-
cacy of methods to mitigate this bias under real-world assumptions
of system evolution. Hence, this paper proposes a framework for
the study of popularity bias in dynamic recommendation.

Dynamic recommendation [7, 13, 17, 24] can be viewed as a closed
loop illustrated in Figure 1. Users interact with the system through
a set of actions (e.g., clicks, views, ratings); this user-feedback data
is then used to train a recommendation model; the trained model is
used to recommend new items to users; and then the loop continues.
While there are many opportunities for bias to affect this dynamic
recommendation process, we identify four key factors that may
impact popularity bias and its evolution: (i) inherent audience size
imbalance: users may like some items more than others (even with
a purely bias-free random recommender), meaning that a few items
may have very large audience sizes while the majority have small
ones; (ii) model bias: the recommendation model itself may amplify
any imbalances in the data it ingests for training; (iii) position bias:
once the model makes recommendations, the top-ranked items are
more likely to be examined by users; and (iv) closed feedback loop:
since the cycle repeats, the feedback data collected from recom-
mendations made by the current model will impact the training of
future versions of the model, potentially accumulating the bias.

With these factors inmind, we investigate popularity bias through
the following questions: First, how does popularity bias evolve in
dynamic recommendation? Second, what impact do these four fac-
tors have on the bias? Are some more critical than others for the
bias? And if so, the last question is how can we mitigate the pop-
ularity bias by counteracting the critical factors? To the best of
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our knowledge, this is the first work to comprehensively explore
popularity bias in dynamic recommendation.

In this paper, we follow the recently introduced popularity-
opportunity bias [32], a formalization of popularity bias based on
the concept of equal opportunity. Compared to conventional no-
tions of popularity bias based on statistical parity [4, 22, 28] – which
compares the number of times of being recommended across popu-
lar and unpopular items – popularity-opportunity bias measures
whether popular and unpopular items receive clicks (or other engage-
ment metrics) proportional to their true audience sizes. In other words,
do popular and unpopular items receive similar true positive rates?
By comparing engagement rather than just counts of recommenda-
tion, this popularity-opportunity bias is directly aligned with user
satisfaction and economic gains of item providers.

From this perspective, we undertake a three-part study:
i) First, we conduct a comprehensive empirical study by simu-

lation experiments to investigate how the popularity bias evolves
in dynamic recommendation, and how the four factors impact the
bias. We find that inherent audience size imbalance and model bias
are the main drivers of popularity bias, while position bias and the
closed feedback loop further exacerbate the bias. Besides, we also
compare two different negative sampling strategies to show how the
careful design of negative sampling can benefit recommendation
in the context of popularity bias.

ii) Second, we explore methods to mitigate popularity bias in dy-
namic recommendation. We show how to adapt existing debiasing
methods proposed in a static setting to the dynamic scenario. We
further propose a model-agnostic False Positive Correction (FPC)
method for debiasing, which can be integrated with other debiasing
methods for further performance improvements.

iii) Finally, we report on extensive experiments to show the effec-
tiveness of the proposed dynamic debiasing method compared with
the static strategy, and we also illustrate the salient performance
improvement brought by the proposed FPC. With similar debiasing
effect achieved, on average, 15% more clicks are generated after
applying the proposed FPC. Moreover, in contrast to prior studies
that find a trade-off between popularity bias and recommendation
utility [23, 32], we show that higher recommendation utility can
be achieved in concert with reductions in popularity bias.

2 RELATEDWORK
Popularity bias is a long-standing problem and has been widely
studied. Some methods adopt an in-processing strategy to miti-
gate bias by modifying the model itself [2, 22, 28], while others
adopt a post-processing strategy to mitigate bias by modifying
the predictions of the model [3, 23, 32]. One of the most typical
approaches is to debias by assigning weights inversely propor-
tional to item popularity in the loss of a model [16, 22]. By this,
popular and unpopular items can be balanced during training and
more even recommendations can be generated. Similar to this idea,
Steck [23] proposes to directly re-scale the predicted scores based
on popularity to promote unpopular items and prevent popular
items from over-recommendation. The scaling weights are also in-
versely proportional to item popularity. Besides, a recent work [28]
investigates the bias from the perspective of causal inference and
propose a counterfactual reasoning method to debias. Note that all

Algorithm 1: Dynamic Recommendation Process
1 Bootstrap: Randomly show 𝐾 items to each user and

collect initial clicks D and train the first model𝜓 by D;
2 for 𝑡 = 1 : 𝑇 do
3 Recommend 𝐾 items to the current user 𝑢𝑡 by𝜓 ;
4 Collect new clicks and add them to D;
5 if 𝑡%𝐿 == 0 then
6 Retrain𝜓 by D;

of these works evaluate popularity bias by comparing how often
items are recommended without regard for the ground truth of
user-item matching. To address this gap, [32] proposes the concept
of popularity-opportunity bias which compares the true positive
rate of items to evaluate the bias, and a popularity compensation
method is proposed, which explicitly considers user-item matching.

All of these existing studies of popularity bias are based on the
static recommendation task [4, 19, 22, 23, 28, 32], which is a sim-
plified sub-component of the real-world dynamic recommendation
process [7, 13, 17, 24]. It is an open question how popularity bias
evolves, what are the impacts of different factors in dynamic recom-
mendation on the bias, and how to mitigate the bias in the dynamic
scenario. Hence, in this work, we aim to investigate the popularity
bias in dynamic recommendation to tackle this research gap.

Although to our best knowledge, there is no existing work study-
ing popularity bias in dynamic recommendation, there indeed are
some works investigating fairness [17], diversity [5, 13], or algo-
rithm confounding [7, 11, 21, 24] in a dynamic manner (sharing
a similar philosophy as this work). For example, Morik at al. [17]
study item group fairness in a dynamic recommendation process
and propose a fairness enhancement algorithm FairCo to improve
fairness over time. This FairCo method can also work to reduce
the popularity bias we are studying in this work if we consider
each item as a group, and so we include FairCo as a baseline in our
debiasing experiments in Section 6.

3 PROBLEM FORMALIZATION
In this section, we formalize dynamic recommendation and popu-
larity bias, and also introduce four major factors in dynamic rec-
ommendation inducing this bias.

3.1 Formalizing Dynamic Recommendation
Suppose we have an online platform that provides recommenda-
tions, such as recommending movies, jobs, or songs. The dynamic
recommendation process is: i) every time a user visits the platform,
we present a ranked list of items based on a personalized recommen-
dation model that is learned based on the user’s historical feedback;
and (ii) periodically, we update the personalized recommendation
model with the newly collected user feedback. To bootstrap a new
(cold-start) user, we learn the user’s preference through some non-
personalized approaches, such as randomly showing some items to
the user and collecting feedback.

Concretely, we assume there are a set of usersU = {1, 2, . . . , 𝑁 }
and a set of items I = {1, 2, . . . , 𝑀} in the system. Every user has
a subset of items the user likes (unknown to the system), and we



define the total number of matched users who like the item 𝑖 as
the audience size of 𝑖 , denoted as 𝐴𝑖 . At the beginning (a bootstrap
step), for each user, the system randomly exposes 𝐾 items to boot-
strap the user and thus collects initial user-item clicks D. Based
on the initial data D, the first recommendation model𝜓 , such as
a matrix factorization (MF) [15], is trained. Then, as users coming
to the system one by one, the system uses the up-to-date model
to provide 𝐾 ranked items as recommendations and collect new
user-item clicks. After every 𝐿 user visits, the system retrains the
recommendation model with all clicks collected up to now. This
dynamic recommendation process is summarized in Algorithm 1.

3.2 Formalizing Popularity Bias
Then, a key question is: how to formalize popularity bias? Many
previous works view popularity bias [4, 22, 28] from the perspective
of statistical parity [8, 30]. That is, they consider the difference of
how many times items are recommended as bias, without consider-
ing the ground-truth of user-item matching. In contrast, we adopt
the recently introduced popularity-opportunity bias [32], a formal-
ization of popularity bias based on the concept of equal opportunity.
Popularity-opportunity bias evaluates whether popular and unpopu-
lar items receive clicks (or other engagement metrics) proportional to
their true audience sizes. In other words, do popular and unpopular
items receive similar true positive rates? Compared to statistical
parity, this formalization of popularity bias is directly aligned with
user satisfaction and economic gains of item providers 1.

At iteration 𝑡 in the dynamic recommendation process, to quan-
tify the popularity bias, we need to first calculate the true positive
rate for each item. Suppose item 𝑖 has received 𝐶𝑡

𝑖
clicks in total

from the beginning to iteration 𝑡 , the true positive rate for 𝑖 is
𝑇𝑃𝑅𝑖 = 𝐶𝑡

𝑖
/𝐴𝑖 . Then, we can use the Gini Coefficient [6, 26] to

measure the inequality in true positive rates corresponding to item
popularity at iteration 𝑡 :

𝐺𝑖𝑛𝑖𝑡 =

∑
𝑖∈I (2𝑖 −𝑀 − 1)𝑇𝑃𝑅𝑖
𝑀

∑
𝑖∈I 𝑇𝑃𝑅𝑖

, (1)

where items are indexed from 1 to𝑀 in audience size non-descending
order (𝐴𝑖 ≤ 𝐴(𝑖+1) ). We use−1 ≤ 𝐺𝑖𝑛𝑖𝑡 ≤ 1 to quantify the popular-
ity bias 2: a small |𝐺𝑖𝑛𝑖𝑡 | indicates a low bias; 𝐺𝑖𝑛𝑖𝑡 > 0 represents
that true positive rate is positively correlated to item audience size;
and 𝐺𝑖𝑛𝑖𝑡 < 0 represents that the true positive rate is negatively
correlated to audience size (reversed popularity bias).

3.3 Factors Impacting Popularity Bias
One of the goals in this paper is to deepen our understanding of
factors that may produce and worsen this bias. As introduced in
Figure 1, we focus on four major factors:
1. Inherent audience size imbalance. Items inherently have dif-
ferent audience sizes, and this imbalance can potentially lead to
popularity bias. It has been observed that the audience size for items
usually follows a long-tail distribution [19], meaning that a few
1Comparing the popularity-opportunity bias and conventional notion of popularity
bias, the main difference is how to measure the bias. The debiasing methods for
conventional popularity bias can still be applied to reduce popularity-opportunity bias.
2In this paper, we conduct simulation experiments with semi-synthetic data to study
the popularity bias in dynamic recommendation, in which audience size of items are
known. In practice, we need to estimate the audience size based on observed clicks,
such as inverse propensity scoring based methods from [17, 29].

Table 1: Dataset statistics.

#user #item density 𝐺𝑖𝑛𝑖(audience size)
ML1M 1,000 3,406 0.0657 0.6394
Ciao 1,000 2,410 0.0696 0.4444

items have a very large audience size while the majority have small
ones. This inherent imbalance will result in imbalanced engage-
ment data (like clicks), even if every item is equally recommended
by a bias-free random recommender.
2. Model bias. A recommendation model tends to rank an item
with more clicks in the training data higher than an item with fewer
clicks, even if the ground truth is that the user equally likes both of
them [32]. This is a common deficiency of collaborative filtering
based algorithms and directly leads to popularity bias if the training
data is imbalanced.
3. Position bias. This is a well-known issue in ranking scenarios:
the probability to examine items at top ranking positions is higher
than at lower positions [12, 17]. If inherent audience size imbalance
and model bias exist, position bias can further exacerbate the pop-
ularity bias because a matched popular item being recommended
and ranked at a top position is more likely to receive a click than a
matched but unpopular item also being recommended but ranked
at a lower position.
4. Closed feedback loop. Finally, we consider the phenomenon
that future models are trained by the click data collected from the
recommendations by previous models [11, 21, 24]. In this way, the
popularity bias generated in the past can accumulate, leading to
more bias in subsequent models as the feedback loop continues.
All of these four factors can potentially play important roles in
generating and exacerbating the bias in dynamic recommendation.
But which factor is the most critical for the bias? Are some the
main drivers of the bias, and some less essential? Our hypothesis is
that the inherent audience size imbalance and model bias are the
main sources of the popularity bias, while position bias and closed
feedback loop exacerbate the bias only when the other two factors
exist. We empirically examine this in the next section.

4 EMPIRICAL STUDY
In this section, we conduct an empirical study to study how the pop-
ularity bias evolves in dynamic recommendation; the impacts of the
four discussed bias factors on the bias; moreover, we also compare
two different negative sampling strategies to show how the careful
design of negative sampling can benefit the recommendation.

4.1 Setup
Due to the challenges of running repeatable experiments over live
platforms, we follow the widely-adopted approach [5, 7, 11, 13, 17]
of conducting experiments to simulate the dynamic recommenda-
tion process in Section 3.1. There are two key challenges for this
experiment: i) how to obtain complete ground truth of user-item
relevance? and ii) how to simulate the user click behavior given
recommendations?

To tackle the first challenge, we follow [13, 17] to generate semi-
synthetic data based on real-world user-item interaction datasets.
Concretely, we adopt MovieLens 1M (ML1M) [9] and Ciao [25] as
base datasets and randomly keep 1,000 users in each dataset for the



Figure 2: Results of three methods on ML1M.

Figure 3: Results of three methods on Ciao.
experimental efficiency. Then, we run the matrix factorization (MF)
model [15] to complete the original datasets to provide the ground
truth of user-item relevance. The detailed statistics of the semi-
synthetic datasets are shown in Table 1, where we also calculate the
Gini Coefficient of the item audience size in each dataset to quantify
the inherent audience size imbalance. Furthermore, by modifying
the data generation process, for each base dataset, we also generate
4 variants with different inherent audience size imbalance levels to
investigate the impact of inherent audience size imbalance.

Then, we conduct experiment to simulate the process in Algo-
rithm 1. Concretely, in this empirical study, we recommend 𝐾 = 20
items to users at each iteration; run the simulation for𝑇 = 40, 000 it-
erations; and retrain the recommendation model after every 𝐿 = 50
iterations. For the second challenge of modeling user click behavior,
we follow [17] and model the click behavior based on the position
bias of 𝛿𝑘 = 1/𝑙𝑜𝑔2 (1+𝑘) to determine whether user𝑢 will examine
item 𝑖 at position 𝑘 . We observe a click only if the user examines and
likes the recommended item. More details about the experimental
setup can be found in Appendix A.

In this empirical study, we implement multiple different recom-
mendation methods to study the impact of different factors (details
are introduced in following sections). After every 𝐿 = 50 iterations,
we retrain the recommendation models for 15 epochs. A special
operation of these models is that the negative samples are drawn
from items being recommended but unclicked for each user. By this,
we can achieve higher recommendation utility and lower popular-
ity bias compared with the vanilla negative sampling strategy that
draws negative samples from all unclicked items. We justify this
choice in Section 4.4. All experiments are repeated for 10 times.

4.2 Evolution of Popularity Bias
The first question to investigate is: how does popularity bias evolve
in dynamic recommendation? Here, we use the basic MF as the
recommendation model, and the dynamic recommendation process
involves all four bias factors introduced in Section 3.3. Results for
ML1M and Ciao are shown in Figure 2 and Figure 3 respectively,
where for comparison, we also include a Popular method to rank
items only based on the number of observed clicks so far, and a
Random method to randomly rank items. At iteration 𝑡 , we report
the number of cumulative clicks up to now as the metric evaluating

Figure 4: After all 40,000 iteration, the true positive rates of
items for ML1M (left) and Ciao (right).

recommendation utility, and we report 𝐺𝑖𝑛𝑖 defined in Equation 1
for measuring the popularity bias.

First, we observe in the left figures in Figure 2 and 3 that MF
produces significantly higher recommendation utilities than the
Popular and Randommethods. Moreover, the number of cumulative
clicks first increases then converges for the Popular method, and
after some iterations the Random method can even outperform
the Popular method on both datasets, which illustrates the harm
of popularity bias. Second, we observe in the right figures that:
i) the Random method produces near zero 𝐺𝑖𝑛𝑖 because random
ranking has no bias for either popular or unpopular items; ii) the
Popular method results in high𝐺𝑖𝑛𝑖 values throughout the whole
experiment because the provided recommendations directly follow
popularity; and iii) MF first results in a rapid increase in 𝐺𝑖𝑛𝑖 and
then maintains this high 𝐺𝑖𝑛𝑖 value to the end of the experiment.

Moreover, we also visualize the bias by plotting the true positive
rates (the number of received clicks divided by the audience size) of
items after 40,000 iterations in Figure 4, where each dot represents
one item, and items are sorted in non-descending order by their
audience sizes along x-axis. We can see that for both datasets, the
true positive rate follows a long-tail distribution: only a few items
with largest audience size have high true positive rates while ma-
jority items receive near 0 true positive rates. That is, most items
have extremely low chances of being recommended to users who
would like to click them.

While it is not surprising that we observe popularity bias in
dynamic recommendation, it is surprising that a traditional MF
(which is also the foundation of many more advanced models [10,
18, 27]) boosts the bias so fast, and the produced bias nearly equals
that in a heavily-biased Popular method. Beyond static studies [32]
of popularity bias that have observed its prevalence, we observe
that this bias grows rapidly and maintains at a high level, indicating
the need for special interventions to mitigate this issue.

4.3 Impacts of Four Bias Factors
After showing the evolving pattern of the popularity bias in dy-
namic recommendation, we next investigate the impacts of the four
factors introduced in Section 3.3.

4.3.1 Impact of Position Bias. First, we study the position bias by
comparing two dynamic recommendation experiments: one using
the same vanilla MF (denoted as w/ PB) as the one adopted in
Section 4.2, which does not explicitly counteract position bias; and
another using an unbiased MF with position bias removed (denoted
as w/o PB). For the unbiased MF, we adopt the inverse propensity
scoring based loss from [20], where we use 𝑝𝑘 = 1/𝑙𝑜𝑔2 (1 + 𝑘) as
the propensity estimation for a click observed at position 𝑘 . All
other experiment settings are the same as in Section 4.2.



Figure 5: Compare experiments with (w/ PB) and without
position bias (w/o PB) on ML1M.

Table 2: Utility (#click) and popularity bias (𝐺𝑖𝑛𝑖) of different
recommendation methods after 40,000 iterations.

ML1M Ciao
w/ PB

(BetterNS) w/o PB VanillaNS w/ PB
(BetterNS) w/o PB VanillaNS

#click 63967 67815 20723 42134 41984 13461
𝐺𝑖𝑛𝑖 0.8425 0.8177 0.9419 0.7416 0.7043 0.9226

Results for ML1M are shown in Figure 5, from which we can see
that with the position bias removed (the w/o PB): more clicks are
observed; lower popularity bias is measured; and 𝐺𝑖𝑛𝑖 reaches its
peak value slower. This implies that position bias does exacerbate
popularity bias. We also list click counts and 𝐺𝑖𝑛𝑖 after 40,000 iter-
ations for both methods and datasets in Table 2. It shows that with
position bias removed, more clicks and lower𝐺𝑖𝑛𝑖 are observed for
both datasets, demonstrating the positive impact of position bias on
intensifying popularity bias. Due to this, in the following experi-
ments, we will use the unbiased MF [20] with inverse propensity
scoring based loss as the default recommendation model.

4.3.2 Impact of Closed Feedback Loop. Then, we conduct a new
experiment that removes the closed feedback loop by: i) not us-
ing the clicks collected from personalized recommendation (by
MF) as training data; ii) after every 𝐿 personalized recommen-
dation iterations, adding a random recommendation step to gen-
erate random rankings to 𝐿 randomly selected users and collect
random-recommendation clicks; and iii) only using the random-
recommendation clicks to train the personalized MF model. In
this way, the MF is trained by data purely from random recom-
mendations and will not be influenced by previous personalized
recommendation models, i.e., breaking the closed feedback loop.
We evaluate the popularity bias only for personalized recommen-
dations by MF. We denote this experiment setup as w/o CFL, and
denote the experiment with closed feedback loop (the same as w/o
PB in Section 4.3.1) as w/ CFL.

Because the MF in w/o CFL is trained by click data from random
recommendations, whose data size is much smaller than that in w/
CFL. Hence, it is unfair and not informative to compare the utility
between w/ CFL and w/o CFL, and we only show the popularity bias
comparison in Figure 6. From the figures we can see that compared
to w/ CFL, in w/o CFL, the popularity bias also keeps increasing but
at a much slower speed. This indicates that the closed feedback loop
does exacerbate the popularity bias. Without the closed feedback
loop, the popularity bias is only from the current recommendation
model, and there is no accumulated bias from previous models.
Notice that 𝐺𝑖𝑛𝑖 in w/o CFL still keeps increasing. This is because
the training data gets increasingly denser, making the model bias
increases as we will justify in the following section.

Figure 6: Compare popularity bias in experiments with (w/
CFL) and without closed feedback loop (w/o CFL).

Figure 7: Influence of inherent audience size imbalance (left)
and training data density (right) on model bias.

4.3.3 Impact of Model Bias. Next, we study the impact of model
bias on popularity bias. In Figure 6, the w/o CFL experiment does
not contain position bias nor the closed feedback loop, but we can
still observe the bias. This is because the model bias and inherent
audience size imbalance are the main sources of popularity bias. As
long as these two factors exist, popularity bias will be generated.
To better understand the impact of model bias, in this section, we
conduct a series of static recommendation experiments without
position bias or the closed feedback loop.

First, we aim to study how the inherent audience size imbalance
influences model bias. Beside the semi-synthetic dataset ML1M we
already used, we also generate 4 variants with different levels of
inherent audience size imbalance by modifying the data generation
process. Hence, now we have 5 datasets with increasing levels of
inherent audience size imbalance, denoted as I1, I2, I3, I4, I5, and
the corresponding 𝐺𝑖𝑛𝑖 of audience size are 0.37, 0.45, 0.51, 0.57,
0.64 (higher value means severer imbalance). Then, for each of the
5 datasets, we uniformly and randomly select positive user-item
pairs to be a training dataset of density 0.2% and leave remaining
user-item pairs as the testing dataset. We train conventional MF by
training datasets, and evaluate the bias on testing datasets. Result
is shown in the left of Figure 7, where we see that with severer
imbalance, the model bias increases.

Next, we aim to study how training data density influences the
model bias. In this case, we use the same ML1M dataset with 𝐺𝑖𝑛𝑖
of audience size 0.64, but generate 8 training datasets with different
densities by uniformly and randomly selecting positive user-item
pairs with different probabilities in ML1M. The 8 training datasets
has increasing densities, denoted as D1,D2,D3,D4,D5,D6,D7,D8,
and the corresponding densities are 0.01%, 0.05%, 0.1%, 0.2%, 0.4%,
0.8%, 1.6%, 3.2%. We train MF by training datasets, and evaluate the
bias on remaining data. Results are presented in the right of Figure 7,
where we can see that with training datasets getting denser, the
model bias first increases but then deceases. This may be because
with denser data, both model bias and ability to learn user-item
relevance increase. And after a threshold, the ability to learn user-
item relevance surpasses the effect of model bias, leading to lower
popularity bias observed. However in practice, dense training data
is rare and the model bias usually plays a major role.



Figure 8: Utility (left) and popularity bias (right) for datasets
with different inherent audience size imbalance.

4.3.4 Impact of Inherent Audience Size Imbalance. The inherent au-
dience size imbalance exerts its influence on popularity bias mainly
through model bias, which we already exhibit by static experiments
in Figure 7. But how does inherent audience size imbalance impact
dynamic recommendation? To answer this, we run dynamic rec-
ommendation experiments for the 5 datasets with different levels
of inherent audience size imbalance, where all other experiment
settings are the same as the w/o PB experiment in Section 4.3.1.
Results are presented in Figure 8. The left figure demonstrates that
with severer inherent audience size imbalance, a system can re-
ceive more user clicks. This is because popular items can be more
easily recognized and correctly recommended to matched users to
receive large amounts of clicks in imbalanced datasets. On the other
hand, the right part in Figure 8 shows that with a severer inherent
audience size imbalance, higher popularity bias is generated.

4.3.5 Summary. In sum, we find that the inherent audience size
imbalance and model bias are the main sources of popularity bias,
which can produce the bias without existence of other factors; while
position bias and closed feedback loop can intensify the bias when
inherent audience size imbalance and model bias exist. Moreover,
we also find that higher training data density and greater imbalance
can increase the effect of model bias. Then, the following challenge
is how to effectively reduce the bias given these observations? We
investigate this in Section 5.

4.4 Compare Two Negative Sampling Strategies
Last, we compare two different negative sampling strategies to
show how a careful design of negative sampling benefits the rec-
ommendation. The vanilla negative sampling strategy (denoted
as VanillaNS) adopted in most works [10, 18, 27] considers all
unclicked items as candidate negative samples, and uniformly and
randomly selects negative training data from them. However, for a
user, her preference towards most of the unclicked items are indeed
unknown because these items are not exposed to her before. So, a
better way is to only consider the recommended but unclicked items
as potential negative samples (denoted as BetterNS) as we do in
this empirical study. Because recommended but unclicked items are
more likely the items users dislike, two advantages of BetterNS are:
on one hand, with more precise negative samples, higher utility is
expected to be achieved; on the other hand, with negative samples
drawn from recommended items, popular items being mistakenly
over-recommended to unmatched users previously can be corrected
by involving those recommended but unclicked popular items as
negative samples during model training, leading to bias reduced.

To verify the benefits of BetterNS, we conduct dynamic recom-
mendation experiments with these two negative sampling strategies
and show results on ML1M in Figure 9. From the results, we can

Figure 9: Comparison between two different negative sam-
pling strategies on ML1M.

see that experiment with BetterNS has significantly more clicks
and lower popularity bias compared with the one with VanillaNS.
We also list the click counts and 𝐺𝑖𝑛𝑖 after 40,000 iterations for
both methods and both datasets in Table 2, showing the same re-
sults and supporting our conclusion that negative sampling from
recommended but unclicked items can bring higher utility and
lower popularity bias. Moreover, because BetterNS has the ability
to correct the overestimation towards popular items being over-
recommended previously, after certain number of iterations, the
popularity bias can gradually decrease as shown in Figure 2, 3, 5, 6, 8,
and 9. This is also why after certain iteration, the w/ CFL experiment
has lower 𝐺𝑖𝑛𝑖 than w/o CFL experiment in Figure 6.

5 DEBIASING APPROACHES
While we have demonstrated the evolution of popularity bias in
dynamic recommendation, how can we begin to counteract it? As
we discussed in Section 3.3 and empirically studied in Section 4.3,
model bias and inherent audience size imbalance are the two most
essential factors. Of the two, practitioners can directly impact the
degree of model bias, whereas the other factor is often an inherent
aspect of a system. And indeed, by reducing model bias we have
seen the Random method in Figure 2 and 3 that there will be no
or low popularity bias even if the other three factors exist. Thus,
in this section, we focus on how to mitigate the popularity bias in
dynamic recommendation by reducing model bias.

5.1 By Dynamically Reducing Model Bias
First, we show how to adapt existing debiasing methods proposed in
a static setting to the dynamic scenario. The key idea is to gradually
increase the debiasing strength weight of existing models.

Most existing works reduce popularity bias in a static setting by
reducing model bias [22, 23, 28, 32]. For example, [23] proposes a re-
scaling method (denoted as Scale) to reduce the bias by re-scaling
the outputs of recommendation models as a post-processing step.
Concretely, the re-scaled score for a user-item pair (𝑢, 𝑖) is:

�̂�
(𝑠𝑐𝑎𝑙𝑒𝑑)
𝑢,𝑖

= �̂�
(𝑚𝑜𝑑𝑒𝑙)
𝑢,𝑖

/(𝐶𝑖 )𝛼 , (2)

where �̂� (𝑚𝑜𝑑𝑒𝑙)
𝑢,𝑖

is the output predicted score from a recommenda-
tion model; 𝐶𝑖 is the number of clicks the item has in training data;
𝛼 is the hyper-parameter to control the debiasing strength, higher
𝛼 means more strength for debiasing; and �̂� (𝑠𝑐𝑎𝑙𝑒𝑑)

𝑢,𝑖
is the re-scaled

score used for final ranking.
In static recommendation, this debiasing strength hyper-parameter

𝛼 is a constant. However, as we see in Section 4.3.3, model bias is
proportional to training data density and imbalance. Hence, it is not
feasible to set a constant 𝛼 for the entire lifetime of dynamic recom-
mendation. Instead, we propose to gradually increase 𝛼 from 0 with



an increasing step Δ through the dynamic recommendation process.
That is, starting from 0, we increase 𝛼 by Δ for each iteration. By
this, we can gradually increase the debiasing strength so that the
model can perform effectively when the density and imbalance of
the training data grow. Beyond the specific Scale method [23], most
existing popularity debiasing methods [22, 23, 28, 32] include such
a debiasing strength weight 𝛼 , meaning that we can apply them
dynamically in the same way by involving the increasing step Δ.

5.2 By False Positive Correction
We further propose a model-agnostic False Positive Correction
(FPC) method for debiasing, which can be integrated with other
debiasing methods for further performance improvements.

In our experiments we have found that naively adapting ex-
isting static methods for mitigating popularity bias to dynamic
recommendation can lead to large drops in recommendation util-
ity. One reason is that these methods only utilize the true positive
signals (i.e. the clicks) to debias without considering the false posi-
tive signals (i.e. items being recommended but unclicked). Because
in a high popularity bias case, popular items can be incorrectly
over-recommended to unmatched users (generating false positive
signals), the false positive signal is correlated with the popularity
bias. If we could correct the recommendations based on these false
positive signals, we could lower the popularity bias. This is also
why in Section 4.4, using the recommended but unclicked items (i.e.,
false positive signals) as negative samples for training the model
can lead to higher utility and also lower popularity bias.

We propose the False Positive Correction (denoted as FPC)
method to correct the predicted scores based on false positive sig-
nals in a probabilistic way. More specifically, suppose we are going
to predict the relevance �̂�𝑢,𝑖 between user 𝑢 and item 𝑖 for determin-
ing ranking, and we already have a predicted score �̂� (𝑚𝑜𝑑𝑒𝑙)

𝑢,𝑖
from a

recommendation model. Assume that item 𝑖 has been recommended
to user 𝑢 for 𝐹 times before and has never been clicked, and we
record the ranking positions of these 𝐹 times of recommendation
as {𝑘1, 𝑘2, . . . , 𝑘𝐹 }. So, the false positive signals can be denoted as
{𝑐𝑘1 = 0, 𝑐𝑘2 = 0, . . . , 𝑐𝑘𝐹 = 0}, where 𝑐𝑘 represents whether user 𝑢
clicks the item 𝑖 ranked at position 𝑘 . We further denote the prob-
ability that 𝑢 likes 𝑖 as 𝜃𝑢,𝑖 , i.e., 𝑃 (𝑟𝑢,𝑖 = 1) = 𝜃𝑢,𝑖 ; and denote the
probability of examining an item at ranking position 𝑘 as 𝛿𝑘 , i.e.,
𝑃 (𝑒𝑘 = 1) = 𝛿𝑘 . Then, we can calculate the conditional probability
that 𝑢 likes 𝑖 given the false positive signals as:

𝑃 (𝑟𝑢,𝑖 = 1|𝑐𝑘1 = 0, . . . , 𝑐𝑘𝐹 = 0)

= 1 −
𝑃 (𝑟𝑢,𝑖 = 0, 𝑐𝑘1 = 0, . . . , 𝑐𝑘𝐹 = 0)

𝑃 (𝑐𝑘1 = 0, . . . , 𝑐𝑘𝐹 = 0)

= 1 −
𝑃 (𝑟𝑢,𝑖 = 0)∏𝐹
𝑓 =1 𝑃 (𝑐𝑘𝑓 = 0)

= 1 −
𝑃 (𝑟𝑢,𝑖 = 0)∏𝐹

𝑓 =1 (𝑃 (𝑒𝑘𝑓 = 0) + 𝑃 (𝑒𝑘𝑓 = 1, 𝑟𝑢,𝑖 = 0))

= 1 −
1 − 𝜃𝑢,𝑖∏𝐹

𝑓 =1 (1 − 𝛿𝑘𝑓 𝜃𝑢,𝑖 )
,

(3)

where line 3 substitutes 𝑃 (𝑟𝑢,𝑖 = 0) = 𝑃 (𝑟𝑢,𝑖 = 0, 𝑐𝑘1 = 0, . . . , 𝑐𝑘𝐹 =

0) in the numerator because if 𝑟𝑢,𝑖 = 0 no click can be observed,

and substitutes
∏𝐹

𝑓 =1 𝑃 (𝑐𝑘𝑓 = 0) = 𝑃 (𝑐𝑘1 = 0, . . . , 𝑐𝑘𝐹 = 0) in
the denominator because the click observations are independent
between recommendation iterations; line 4 decomposes 𝑃 (𝑐𝑘𝑓 = 0)
into 𝑃 (𝑒𝑘𝑓 = 0) + 𝑃 (𝑒𝑘𝑓 = 1, 𝑟𝑢,𝑖 = 0) in the denominator because
a recommended but unclicked item can happen when the user
does not examine the item or the item is examined but the user
dislikes it. 𝜃𝑢,𝑖 is unknown and needs to be estimated. And we
can use the prediction �̂� (𝑚𝑜𝑑𝑒𝑙)

𝑢,𝑖
from a recommendation model

as 𝜃𝑢,𝑖 . Therefore, every time when we need a relevance score
of (𝑢, 𝑖) for ranking, we use Equation 3 with 𝜃𝑢,𝑖 = �̂�

(𝑚𝑜𝑑𝑒𝑙)
𝑢,𝑖

and
𝛿𝑘𝑓 = 1/𝑙𝑜𝑔2 (1+𝑘𝑓 ) (as how we model the position bias) to correct
predictions from a recommendation model by false positive signals.

Yet, one disadvantage of the proposed FPC is that if we use the
prediction �̂� (𝑚𝑜𝑑𝑒𝑙)

𝑢,𝑖
from a biased recommendation model, such

as an MF, as 𝜃𝑢,𝑖 , FPC is still vulnerable to the model bias. Thus,
we propose to use the predictions from a debiased model, such
as the Scale method introduced in Section 5.1 or other popularity
debiasing models introduced in Section 2, to be 𝜃𝑢,𝑖 in Equation 3.
In this case, we can take full advantage of both true positive signals
and false positive signals to counteract the popularity bias.

6 DEBIASING EXPERIMENTS
In this section, we conduct experiments to show how the popular-
ity bias is mitigated in dynamic recommendation by dynamically
reducing model bias and the proposed FPC method.

6.1 Setup
The basic experiment setup is the same as Section 4.1. To validate
the effectiveness of our proposed FPC, for the recommendation
models, we include many different types of debiasing methods for
comparison.

6.1.1 Recommendation Models. The basic recommendation model
is theMF with an inverse propensity scoring based loss to counter-
act position bias as used in Section 4. For the debiasing models, first,
we consider existing static debiasing methods, including: Scale[23]
as introduced in Equation 2;Weight [22] which assigns weights to
items in the loss; MACR [28] which removes the causal effect of
item and user popularity; and PC [32] which adds compensation
to the predicted scores of unpopular items.

As discussed in Section 5.1, to debias in dynamic recommenda-
tion, we need to apply these debiasing methods dynamically. Hence,
we have the dynamic versions of these debiasing methods by gradu-
ally increasing the debiasing strength hyper-parameter (such as the
𝛼 of Scale as shown in Equation 2) from 0 by a tune-able increasing
step Δ as experiments continue. We denote the dynamic versions
of these four models as DScale, DWeight, DMACR, and DPC.

Besides, FairCo proposed in [17] is a debiasing method designed
for the dynamic scenario, which calculates the true positive rate gap
between each item to the best served item and adds the calculated
gap to the predicted scores to reduce the imbalance.

Last, we have the proposed FPC method to debias based on
false positive signals. And we also combine the proposed FPC with
other debiasing methods to reduce the popularity bias utilizing both
true positive and false positive signals, denoted as FPC-DScale,
FPC-DWeight, FPC-DMACR, FPC-DPC, and FPC-FairCo.



Table 3: #click and 𝐺𝑖𝑛𝑖 results of static and corresponding
dynamic debiasing models.

ML1M Ciao
#click 𝐺𝑖𝑛𝑖 #click 𝐺𝑖𝑛𝑖

MF 67816 0.8177 41984 0.7043
Scale 66630 0.6378 44146 0.4544

Δ(DScale) +2015 -0.0368 +3267 -0.0137
Weight 62044 0.6099 42385 0.4557

Δ(DWeight) +1843 -0.0129 +1103 -0.0210
MACR 52161 0.6079 31037 0.4375

Δ(DMACR) +1286 -0.0047 +1425 -0.0154
PC 58917 0.6131 41591 0.4306

Δ(DPC) +2001 -0.0008 +1668 -0.0096

Figure 10: Compare the static debiasingmethod Scale and its
dynamic version DScale.

Furthermore, Multi-Armed Bandit (MAB) algorithms which are
designed to balance exploration-exploitation in dynamic recommen-
dation can also improve the recommendation chances for unpopular
items (mainly through exploration). Hence, we also conduct exper-
iments to study their effects in Appendix C and show that MAB
algorithms cannot effectively address the studied popularity bias.

6.1.2 Reproducibility. Experiments are implemented by Tensor-
flow [1] and optimized by Adam algorithm [14]. The foundation
for all models is an MF with the inverse propensity scoring based
loss to counteract position bias [20]. All models draw negative sam-
ples from recommended but unclicked items. For every debiasing
method (except FPC), there is a debiasing strength weight or the
increasing step Δ, we tune these hyper-parameters so that all meth-
ods achieve similar bias level, and we compare the click counts
to compare the performance. All experiments are repeated for 10
times. Code is available at https://github.com/Zziwei/Popularity-
Bias-in-Dynamic-Recommendation.

6.2 Empirical Results
In the following experiments, we study the effect of dynamic de-
biasing compared with static ones; the effect of the proposed FPC;
and the effect of integrating FPC with other debiasing methods.

6.2.1 How do dynamic debiasing methods perform compared with
static ones? To show the advantage of dynamic debiasing over static
approaches, we conduct experiments on ML1M and Ciao with four
existing static popularity debiasing models – Scale, Weight, MACR,
and PC, compared with their dynamic versions – DScale, DWeight,
DMACR, and DPC. We tune all models so that similar popularity
bias level is achieved after 40,000 iterations of experiment, and
compare the number of clicks in Table 3. Because similar level of
bias is generated, the more clicks are observed the more effective
the model is. From the table, we can see that the dynamic versions of
debiasing models can produce more clicks than their static versions,
demonstrating the effectiveness of the dynamic strategy.

Figure 11: Compare the proposed FPC with MF on ML1M.

Figure 12: Compare MF, FPC, DScale, and FPC-DScale on
ML1M. (Medium debiasing level)

We also plot how the utility and bias change for the basic MF,
the static Scale, and the dynamic DScale in Figure 10 (other pairs
of methods show similar patterns). The right figure shows that
comparing to MF, both Scale and DScale reduce the bias. However,
they show very different patterns: DScale increases the bias at
the beginning then keeps decreasing the bias; while Scale keeps
increasing the bias and eventually surpasses DScale. This is because
as the experiment continues, density and imbalance in training
data increases, resulting in higher model bias and more debiasing
strength needed. So, dynamically increasing the debiasing strength
following the increasing bias can produce better results.

6.2.2 What is the effect of FPC alone? Then, we plot the results
of MF and FPC on ML1M in Figure 11. The right figure shows
that the proposed FPC increases the bias at the beginning, but
then keeps decreasing the popularity bias. Compared to MF, the
reduction of bias metric 𝐺𝑖𝑛𝑖 is significant. On the other hand,
the left figure shows that FPC can even increase the number of
clicks during the experiment compared with MF. This is because by
mitigating the popularity bias, popular items are prevented to be
over-recommended to unmatched users and more unpopular items
can be accurately recommended to matched users to receive clicks.
Hence, it is a win-win scenario that both users and item providers
can benefit from. Moreover, after all 40,000 iterations, we found
that: for ML1M dataset, FPC gets 78,763 clicks and 0.6973 𝐺𝑖𝑛𝑖; for
Ciao, FPC gets 54,813 clicks and 0.5665𝐺𝑖𝑛𝑖 . Compared with results
of MF in Table 3, it shows the effect of FPC that more clicks and
lower bias are generated.

6.2.3 What is the effect of integrating FPC with other debiasing
methods? Although, the proposed FPC can reduce the bias and
improve the utility, as discussed in Section 5.2, FPC only utilizes the
false positive signals without considering the true positive signals
as existing debiasing models do. Hence, combining FPC with other
debiasing methods is expected to achieve even better performance.
To justify this, we conduct experiments to compare the dynamic
debiasing models with their variants integrated with FPC. Results of
MF, FPC, DScale, and FPC-DScale are shown in Figure 12. The right
figure demonstrates that DScale and FPC-DScale are able to reduce
the bias lower than FPC (there is no tune-able hyper-parameter



Table 4: Difference between results before and after integrating FPC to five debiasing methods.

ML1M Ciao
Debiasing Level Low(𝐺𝑖𝑛𝑖≈0.66) Medium(𝐺𝑖𝑛𝑖≈0.60) High(𝐺𝑖𝑛𝑖≈0.53) Low(𝐺𝑖𝑛𝑖≈0.46) Medium(𝐺𝑖𝑛𝑖≈0.42) High(𝐺𝑖𝑛𝑖≈0.38)

#click 𝐺𝑖𝑛𝑖 #click 𝐺𝑖𝑛𝑖 #click 𝐺𝑖𝑛𝑖 #click 𝐺𝑖𝑛𝑖 #click 𝐺𝑖𝑛𝑖 #click 𝐺𝑖𝑛𝑖

Δ(FPC-DScale) +6973 (+10%) -.020 +4500 (+7%) -.023 +1781 (+3%) -.013 +5159 (+11%) -.006 +4623 (+10%) -.005 +2056 (+4%) -.033
Δ(FPC-DWeight) +5167 (+7%) -.013 +3847 (+6%) -.002 +747 (+12%) -.017 +2982 (+7%) -.007 +2824 (+6%) -.001 +2625 (+6%) +.002
Δ(FPC-DMACR) +8876 (+16%) -.023 +9963 (+19%) -.007 +8399 (+16%) -.008 +6241 (+19%) -.004 +6531 (+20%) +.003 +7858 (+26%) -.008
Δ(FPC-DPC) +13311 (+21%) -.016 +12945 (+21%) -.018 +11887 (+21%) -.021 +9331 (+21%) -.002 +8187 (+19%) -.008 +7921 (+18%) -.006
Δ(FPC-FairCo) +13307 (+22%) -.001 +14137 (+25%) +.005 +11729 (+21%) -.026 +9255 (+23%) -.009 +8816 (+22%) -.007 +9745 (+26%) +.005

in FPC to adjust the debiasing strength). And we see that DScale
and FPC-DScale produce similar level of bias, however, the left
figure shows that FPC-DScale generates significantly more clicks,
illustrating the advantage of integrating FPC with DScale.

It shows similar results when we combine FPC with other debi-
asing methods, and we list the comparison results before and after
integrating FPC after all 40,000 iterations in Table 4. In this table,
we show the changes of #click and 𝐺𝑖𝑛𝑖 after integrating FPC com-
pared with original debiasing methods. For example, Δ(FPC-DScale)
shows changes after integrating FPC to DScale. And we include
five dynamic debiasing methods – DScale, DWeight, DMACR, DPC,
FairCo. Moreover, for each method, we tune the model to conduct
three experiments with different debiasing levels. For the same
debiasing level, all methods are tuned to produce similar bias and
the average 𝐺𝑖𝑛𝑖 of each debiasing level is shown in Table 4. From
the table, we find that with the same level of debiasing achieved,
the FPC integrated models can generate significantly more clicks
than original models: after combining FPC, 14.33% and 15.88%more
clicks are received on average for ML1M and Ciao respectively.

Detailed results of all methods are shown in Appendix B. Com-
paring debiasing methods with MF, an interesting observation is:
when we set the debiasing level as low or medium, more clicks
can be generated by debiasing models than MF which produces
high bias; however, when we set a high debiasing strength, some of
debiasing methods produce fewer clicks than MF. This is because
when high debiasing is enforced, unpopular items are promoted
but popular items are overly depressed, leading to fewer clicks from
users to these popular items. Thus, it is still important to balance
between utility and debiasing in practice.

7 CONCLUSION
In this work, we investigate popularity bias in dynamic recommen-
dation. We first conduct an empirical study by simulation experi-
ments to show how the bias evolves in the dynamic process and the
impacts of four bias factors on the bias. Then, we propose to dynam-
ically debias and also propose the FPC method to debias utilizing
false positive signals. Last, by extensive experiments, we empiri-
cally validate the effectiveness of the proposed dynamic debiasing
strategy and the proposed FPC algorithm.
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A EXPERIMENTAL SETUP FOR DYNAMIC
RECOMMENDATION

Due to the challenges of running repeatable experiments over live
platforms, we follow the widely-adopted approach [5, 7, 11, 13, 17]
of conducting experiments to simulate the dynamic recommenda-
tion process. There are two key challenges for this experiment: i)
how to obtain complete ground truth of user-item relevance? and
ii) how to simulate the user click behavior given recommendations?

To tackle the first challenge, we follow [13, 17] to generate semi-
synthetic data based on real-world user-item interaction datasets.
Concretely, we use MovieLens 1M (ML1M) [9] and Ciao [25] as
base datasets and regard all ratings as positive signals. We randomly
keep 1,000 users in each dataset for the experimental efficiency.
Then, we run a matrix factorization (MF) model [15] with 100 latent
dimensions and cross entropy loss to generate a relevance proba-
bilistic matrix for each dataset. Next, we obtain a binary relevance
matrix R by drawing a Bernoulli sample for each user-item pair
given the generated relevance probability matrix. We consider the
generated binary matrices as the ground-truth user-item relevance.
The detailed statistics of the semi-synthetic datasets are shown in
Table 1, where we also calculate the Gini Coefficient of the item
audience size in each dataset to quantify the inherent audience size
imbalance. Furthermore, by modifying the Bernoulli sampling for
different items, we also generate 4 variants with different inherent
audience size imbalance levels for each dataset to investigate the
impact of inherent audience size imbalance.

Then, following Algorithm 1, we first randomly recommend 𝐾
items to each user to collect initial clicks, then simulate the dynamic
recommendation process for 𝑇 iterations. Every 𝐿 iterations, we
retrain the recommendation model with all the clicks collected
up to that time. At each iteration 𝑡 , we randomly pick one user
𝑢𝑡 and show the top 𝐾 items that the user did not click before as
recommendations based on the up-to-date recommendation model.
Since we aim to recommend new items to users, items already
clicked by users before will not be considered as recommendation
candidates. This experiment process is a flexible framework that
allows different settings. In this empirical study, we set 𝐾 = 20,
𝑇 = 40, 000, and 𝐿 = 50.

But how can wemodel user click behavior? Following [17], given
a recommendation list, we iterate it from the top position (𝑘 = 1)
to the lowest position (𝑘 = 20): for the item 𝑖 at position 𝑘 , we
draw a Bernoulli sample 𝑒𝑘 based on the position bias calculated by
𝛿𝑘 = 1/𝑙𝑜𝑔2 (1+𝑘) to determine whether user 𝑢 will examine item 𝑖

at position 𝑘 (i.e., whether 𝑒𝑘 = 1). We observe a click only if 𝑒𝑘 = 1
and R𝑢,𝑖 = 1. Every time we observe new clicks, we add them to the
training datasetD. Initial clicks from the random recommendations
follow the same process.

B DETAILED EXPERIMENT RESULTS
In Table 4, we only show the difference between results before
and after integrating FPC. So, here, we list the numbers of clicks
observed and 𝐺𝑖𝑛𝑖 for all methods after 40,000 iterations in Table 5
for ML1M and Table 6 for Ciao. Note that there is no notion of
debiasing level for MF and proposed FPC, so the three columns of
different debiasing levels are the same for these two methods. And

for other methods, they are tuned to achieve similar level of bias
under the same debiasing level.

Table 5: Results of different recommendation models with
three different debiasing strength levels on ML1M.

Low debiasing Medium debiasing High debiasing
#click 𝐺𝑖𝑛𝑖 #click 𝐺𝑖𝑛𝑖 #click 𝐺𝑖𝑛𝑖

MF 67816 0.8177 67816 0.8177 67816 0.8177
FPC 78763 0.6973 78763 0.6973 78763 0.6973

𝜖-greedy 62531 0.6539 58132 0.5994 55595 0.5474
UCB 61711 0.6287 59882 0.6019 56814 0.5442
DScale 71308 0.6722 68645 0.6010 63546 0.5280

FPC-DScale 78281 0.6526 73145 0.5778 65327 0.5153
DWeighted 69209 0.6869 63887 0.5970 60894 0.5514

FPC-DWeight 74376 0.6742 67734 0.5953 61641 0.5344
DMACR 54985 0.6561 53447 0.6032 52387 0.5550

FPC-DMACR 63861 0.6335 63410 0.5963 60786 0.5473
DPC 63308 0.6582 60918 0.6122 57959 0.5302

FPC-DPC 76619 0.6422 73863 0.5946 69846 0.5097
FairCo 61619 0.6546 57208 0.5919 55189 0.5517

FPC-FairCo 74926 0.6536 71345 0.5968 66918 0.5254

Table 6: Results of different recommendation models with
three different debiasing strength levels on Ciao.

Low debiasing Medium debiasing High debiasing
#click 𝐺𝑖𝑛𝑖 #click 𝐺𝑖𝑛𝑖 #click 𝐺𝑖𝑛𝑖

MF 41984 0.7043 41984 0.7043 41984 0.7043
FPC 54813 0.5665 54813 0.5665 54813 0.5665

𝜖-greedy 41380 0.4654 40239 0.4222 39204 0.3872
UCB 41415 0.4691 39081 0.3781 39990 0.4152
DScale 48218 0.4717 47413 0.4307 46807 0.4096

FPC-DScale 53377 0.4662 52036 0.4261 48863 0.3769
DWeighted 44492 0.4596 43488 0.4347 42113 0.3897

FPC-DWeight 47474 0.4524 46312 0.4336 44738 0.3904
DMACR 33031 0.4567 32462 0.4221 30695 0.4123

FPC-DMACR 39272 0.4527 38993 0.4252 38553 0.4040
DPC 43814 0.4516 43259 0.4210 43055 0.3932

FPC-DPC 53145 0.4539 51446 0.4127 50976 0.3876
FairCo 40932 0.4608 40225 0.4376 37318 0.3820

FPC-FairCo 50187 0.4522 49041 0.4308 47063 0.3869

C EXPERIMENTS OF MAB MODELS
In addition to the debiasing models we have conducted experiments
with in Section 6, another category of algorithms that need to be
considered for dynamic recommendation is theMulti-Armed Bandit
(MAB) model [31]. MABmodels are designed to balance exploration
and exploitation in dynamic recommendation process. Exploitation
means the decision of recommendations follows the up-to-date
knowledge about the system, such as following the predictions
from a learned MF model, which may be biased due to the fact that
the up-to-date knowledge only reveals partial information about
the system. Exploration is to generate recommendations to obtain
unexplored knowledge about the system, such as recommending
less recommended items, which can help reduce the bias. Thus,
MAB algorithms are supposed to reduce the popularity bias (mainly



Figure 13: Results of 𝜖-greedy and UCB on ML1M. (Medium
debiasing level)

through the exploration). Hence, in this work, we also experiment
with two MAB algorithms for comparison and study whether MAB
algorithms can mitigate the investigated popularity bias in dynamic
recommendation.

Concretely, we adopt the 𝜖-greedy [31] and UCB [31] as the
MAB baselines. There is a exploration-exploitation trade-off hyper-
parameter in 𝜖-greedy and UCB. We tune them to achieve three
different levels of debiasing effects, and we show the numbers of

clicks observed and𝐺𝑖𝑛𝑖 after 40,000 iterations in Table 5 for ML1M
and Table 6 for Ciao. From these results, we can see that 𝜖-greedy
and UCB do reduce the popularity bias compared with MF, while
the numbers of clicks are decreased as well. Besides, we also find
that with similar levels of debiasing effect achieved, 𝜖-greedy and
UCB generate fewer clicks than most of other debiasing methods.

To further understand the effect of these two methods, we also
plot the results on ML1M in Figure 13. From the right figure, we
can see that neither of 𝜖-greedy and UCB generates decreasing
curve as other debiasing methods in Figure 12. Because 𝜖-greedy
exposes random items to users with a probability 𝜖 , it can only
lower the overall popularity bias due to the exploration by random
recommendations, but it cannot keep reducing the bias over time.
On the other hand, because UCB tends to recommend items with
high uncertainty, it tries to balance all items (low bias) at the first
few iterations. However, after the uncertain period, UCB tends to
follow the popularity bias again and increase the bias. As a result,
although they help to mitigate the issue, MAB algorithms are not
good choices to address the popularity bias.
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