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Abstract— In a modern e-commerce recommender system,
it is important to understand the relationships among products.
Recognizing product relationships—such as complements or
substitutes—accurately is an essential task for generating better
recommendation results, as well as improving explainability in
recommendation. Products and their associated relationships
naturally form a product graph, yet existing efforts do not
fully exploit the product graph’s topological structure. They
usually only consider the information from directly connected
products. In fact, the connectivity of products a few hops away
also contains rich semantics and could be utilized for improved
relationship prediction. In this work, we formulate the problem
as a multilabel link prediction task and propose a novel graph
neural network-based framework, item relationship graph neural
network (IRGNN), for discovering multiple complex relationships
simultaneously. We incorporate multihop relationships of prod-
ucts by recursively updating node embeddings using the messages
from their neighbors. An edge relational network is designed
to effectively capture relational information between products.
Extensive experiments are conducted on real-world product data,
validating the effectiveness of IRGNN, especially on large and
sparse product graphs.

Index Terms— Graph neural networks (GNNs), item relation-
ship prediction, multihop relationships.

I. INTRODUCTION

RECOMMENDER systems are critical for powering
fast-growing web and mobile segments of the economy,

to connect users to the right items (videos, jobs, news articles,
and so on). These systems attempt to infer useful relationships
among users and items, including user–item, user–user, and
item–item relationships [1]. While there is extensive prior
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research on analyzing user–item interactions on the user–item
bipartite graphs [1]–[4] or studying social recommendation
via user–user social networks [5]–[7], item relationships in
item graphs are only recently attracting attention. Discrim-
inating item relationships between products is an essential
task in e-commerce platforms by generating better and more
context-relevant recommendation, as well as improving the
explainability of the system [8].

On e-commerce platforms, such as Amazon, Shopify,
JD.com, and Taobao, items (or products) may participate
in many heterogeneous relationships like being substitutable
or complementary [9]. Substitutable items are interchange-
able. Typical examples include items that are viewed by
the same user (also viewed) and items that a user who
viewed one eventually bought the other (buy after viewing).
Complementary items are usually purchased together by users.
Examples include items that are bought together in the same
transaction and items that are purchased in different transac-
tions (also bought).

Understanding these item relationships can improve the
accuracy and explainability of recommendation by surfacing
items that are relevant to a given context. For example, when
a user is browsing for headphones in an online store, recom-
mending headphones that are cheaper or of better quality than
the one she is currently viewing can better satisfy the user’s
needs. After she has bought a headphone, it is more reasonable
to recommend her with headphone cases or chargers, rather
than continuing to recommend headphones.

Foundational work in item relationship prediction has shown
the potential of improving recommendation by uncovering
these relationships [9]–[11]. Most existing work simply relies
on item content information (reviews and descriptions) of
the items to analyze the possible connections between them.
However, in addition to item content features, the multihop
relational information among items is also a critical part in
predicting item relationships, yet is ignored by previous work.
In fact, we find that there is rich potential for extracting
item relationship information from multihop connections (the
neighborhood of a node with path length larger than 1). The
complex transitions among distant items can provide useful
clues not found in the direct item connections and thus can be
utilized for relationship recommendation.

Fig. 1 shows an example of predicting the relationship
between i1 and i2, with edges representing complementary
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Fig. 1. Item relationship prediction. The red arrow means that the two items
are substitutable. The gray arrow means that the two items are complementary.
(a) Traditional item relationship prediction. (b) Item relationship prediction
with multihop connections.

and substitutable relationships. Traditional methods make
predictions purely according to the item content features.
Such prediction can be unreliable for the cold-start items
where there is no sufficient review information to infer the
relationship. In contrast, rather than solely using the item
content information of the two items, multihop connections
exploit all the related items (i3, i4, and i5) and the transitive
relationship paths among them. In addition, multihop con-
nections incorporate more item interactions so that the data
sparsity problem can be alleviated to some extent.

While intuitively useful to integrate multihop connections
into the item relationship prediction, it is nontrivial to preserve
the complex relational dependencies in product graphs. In one
direction, graph neural networks (GNNs) show promising
results in aggregating information over the multihop neigh-
borhood of nodes [12]–[14] by first constructing message of
a node from its features and then propagating the message
between neighbors. However, they are far from optimal for
item relationship prediction. In particular, they typically focus
on node features and fail to capture complex edge features.
In fact, modeling edge features is one of the key tasks for item
relationship prediction [8]. Moreover, current models assume
that there is at most one relationship between two items, which
may not be the case in real-world e-commerce applications.
Two items can have multiple relationships depending on
different contexts and personal perspectives. For example, two
phone cases can be connected by both the also bought and buy
after viewing relationships, as they may be complementary in
color or texture while being substitutable in terms of function.

Therefore, in this work, we propose a novel GNN-based
framework item relationship graph neural network (IRGNN),
to capture the multihop relationships in the item graph.
IRGNN is characterized by three unique features.

1) It incorporates multihop dependencies of relationships
by recursively aggregating the information, what we
wrap up into messages, from an item’s neighbors.

2) We design an edge relational network to impart edge
features (categorical edge types, source, and destination
nodes) to the multihop message propagation process.
The edge relational network learns edge-specific trans-
formation matrices with shared network parameters and
nonlinear mappings, which is more flexible and can
exploit the full potentials of edge relational features.

3) We formulate the item relationship prediction problem
as a multilabel link prediction task and design an outer

product layer to perform the multirelationship prediction
simultaneously.

The main contributions of this article are as follows.
1) We formulate item relationship prediction as a multilabel

link prediction task that allows multiple relationships
between items.

2) We propose a GNN-based framework, IRGNN, for
explaining and predicting item relationships. IRGNN
can better exploit the multihop relationships and the
topological structure in the item graph.

3) We are the first to incorporate edge features for predict-
ing the item relationship. We design a novel edge rela-
tional network to model the local, structured relational
messages. The edge relational network takes as input the
edge relational features and source and destination node
features and outputs an edge-specific transformation
matrix.

4) Extensive experiments show the effectiveness of
IRGNN, especially when the graph is sparse.

II. LITERATURE REVIEW

This work draws on the following research areas: 1) item
multirelationship-based recommendation and 2) graph-based
neural networks.

A. Item Relationship Prediction

Item relationships play a significant role in user pur-
chase decisions. Recently, discovering item relationships has
received increased attention [8]–[11], [15]–[17]. Most of the
existing work infers the item relationship simply from the
item content information (e.g., reviews and descriptions) [8].
Sceptre [8] learns the content features of items using latent
Dirichlet allocation (LDA) and fits a logistic function over the
document-topic features. Chen et al. [18] provided personal-
ized substitute recommendation with item-aware collaborative
filtering from personalization and interpretability perspectives.
Item attributes are extracted from user reviews with sentiment
analysis. Linked variational autoencoder (LVAE) [15] extends
Sceptre by exploiting variational autoencoders (VAEs) to avoid
overfitting and producing noisy word clusters.

Another line of work seeks to use item images to infer
the items’ visual-level relationships. McAuley et al. [9] and
He and McAuley [57] leveraged item images for style match-
ing to uncover relationships at the visual level. He et al. [16]
explored the visual information of items and proposed a
mixture-of-experts framework to deal with the complex and
heterogeneous item relationships. Considering the differences
among item categories, Zhang et al. [11] aggregated both item
images and descriptions in order to capture different features
for heterogeneous item relationships.

Nevertheless, all the aforementioned methods consider the
heterogeneous relationships with direct neighbors (single-hop
neighbors), which limits the signal from multihop connec-
tions that may yield deeper insights into item relationships.
SPEM [19] constructs an item copurchasing graph and predicts
the substitutable relationships with a deep autoencoder to pre-
serve first- and second-order proximities, yet fails to generate
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predictions for complements and substitutes simultaneously.
Wang et al. [10] proposed a path-constrained framework by
involving two-step path constraints to infer item relationships.
However, such a method may overlook useful dependencies
preserved in longer paths that can help infer item relationships
and is difficult to generalize to scenarios with complex and
emerging relations, which limits the final recommendation
performance.

Moreover, these methods assume only one single type
of relationship exists between items. In practice, we find
that there could be multiple relationships between items.
For example, two phone cases can be connected by both
the also bought and buy after viewing relationships. Thus,
the assumption of only one relationship between two items
would lose some of this pivotal item relationship information
and further affect the final recommendation based on the
predicted item relationships.

B. Graph-Based Neural Networks

Many recent research efforts have demonstrated the power
of GNNs to model graph-structured data [13], [20]–[25].
For example, graph convolutional neural networks (GCNs)
have achieved the state of the art in node representation for
signed graphs [22], sentence classification [26], [27], and
image recognition [28]. Recently, Morris et al. [29] built
a k-dimensional GNN that can consider higher order graph
structures at multiple scales. Bresson and Laurent [30] pro-
posed a residual GNN (ConvNets), which shows that residual-
ity can bring a significant improvement in subgraph matching
and graph clustering, as they illustrated residuality could better
learn multilayer architectures in complex graph-structured
data.

With the growing of GNN methods, GNNs are widely app-
lied for recommendation, such as social recommendation [31],
[5], [32], [33] and knowledge graph-based recommendation
[34], [35], and are even adapted to traditional recommendation
methods such as collaborative filtering [36]–[38]. Recently,
Fan et al. [5] provided a principled GNN approach with
social connections and user purchase history to capture the
interactions between user and items for item recommendation.
Song et al. [31] used a dynamic graph attention network and
incorporated recurrent neural networks for user behaviors in
session-based social recommendation. Grad-Gyenge et al. [34]
built a graph embedding method that took advantage of the
knowledge graph to map users and items for recommendation.
Considering the user–item interaction, Wang et al. [36] con-
structed a user–item interaction bipartite graph and proposed
a graph-based collaborative filtering method to capture higher
order connectivity in the user–item interactions. However, few
of these approaches consider graph-based neural networks for
item multirelationship-based recommendation.

This work is also related to link prediction (where item
relationships can be viewed as missing links). Traditional
link prediction methods mainly depend on heuristics to mea-
sure the proximity between nodes and infer whether the
two nodes are linked, such as common neighbors and resis-
tance distance [39], [40]. Weisfeiler–Lehman neural machine

(WLNM) [41] encodes a subgraph by a fast hashing-based
Weisfeiler–Lehman algorithm to automatically learn suitable
heuristics for improved link prediction. Chen et al. [42]
proposed to learn separate projections with metric learning
to predict multiple relations.

Recently, GNN-based methods have shown great improve-
ment compared with these methods. Zhang and Chen [43]
developed a GNN to learn heuristics from local sub-
graphs for link prediction. Relational graph convolutional
networks (RGCNs) [14] extended previous work by consid-
ering multiple edge types, which have a large improvement
in knowledge-based data sets. Hamilton et al. [44] gave a
review of key advancements in learning on graphs with a
unified framework, including different GNN methods to embed
individual nodes or (sub)graphs for link prediction or other
graph tasks. HetGNN [45] is a GNN model proposed for
heterogeneous graphs with recurrent neural networks and the
attention mechanism. Regarding the successful performance of
GNN-based models in link prediction, we build a GNN-based
framework with an edge relational network to learn the com-
plex item multirelationships.

III. PROPOSED METHOD: IRGNN

In this work, we aim at discovering heterogeneous item
relationships simultaneously, such as complements or substi-
tutes. We formulate the problem as a multilabel link prediction
task. Let G = {V, E} be the directed multirelational item
graph, with item feature vector xv ∈ R

d for each item
v ∈ V and edge relational vectors evw ∈ R

c for the edge
(v,w) ∈ E connecting from item v to item w. Specifically, for
item multirelationship-based recommendation, edge relational
vectors are binary vectors, indicating the multiple relationships
between item pairs. The i th element of evw , e(i)

vw = 1, i =
1, . . . , c indicates that the edge from v to w has relationship i ,
and e(i)

vw = 0 otherwise. In many real-world e-commerce
applications, items are often connected by multiple types of
relationships simultaneously, meaning that evw can have more
than one element with value 1.

To discover item relationships, rather than having access to
the full set of edges E , we are given only a subset of edges Ē .
Our task is to predict êvw from v to w to recover the unknown
edge relational vectors evw given any ordered pair of item
feature vectors [xv , xw].

We now present the architecture of IRGNN. The design of
IRGNN is built around three research questions.

1) RQ I: How can we encode the local substructure features
from direct neighbors into messages and aggregate the
messages to update the model so that we can better
preserve the topological information and the relational
dependencies in the single-hop neighborhood?

2) RQ II: How can we better exploit the local message
and propagate it to multihop neighbors to incorporate
multihop relationships?

3) RQ III: How can we predict item relationships with
the learned representation of multihop relationships in
directed multirelational item graphs?
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A. RQ I: Single-Hop Message Propagation

Let us denote the current node embedding of item v ∈ V by
hv ∈ R

d . For the first question, we aim to design a single-hop
message propagation that can encode local graph structure and
relational features such as the edge type between the nodes
and hidden node features into the messages, so that we can
use these messages to effectively update the adjacent nodes’
embeddings [46]. Only if the messages from the single-hop
neighborhood are well-captured, can we further extend it to
multihop neighbors. We formulate the single-hop message
propagation by a message construction step, a message aggre-
gation step, and a message update step. We propose an edge
relational network to construct relational messages.

1) Message Construction: Messages from neighbors should
carry information of the node embeddings of the connected
neighbors and the edge relational vectors. Therefore, we define
the message from item w to v as

mv←w = fc(hv , ewv, hw) (1)

where fc(·) is the message construction function and hv , hw ∈
R

d are the node embedding of the source and destination
items. This formulation is natural since an edge in a graph
is uniquely defined by the source node, destination node, and
types of edges connecting them. The message construction
function fc is typically chosen to be simply a linear transfor-
mation mv←w = Whw as in [47].

Linear transformation has been shown to be effective at
accumulating and encoding features from local, structured
neighborhoods [14]. Based on this promising result, we design
a message-specific fc for the item relationship discovering task
as

mv←w = g(hw, ewv, hv ) · hw (2)

where mv←w has a dimension of d , and the nonlinear function
g(·) is our edge relational network that takes as input both the
edge relational vector ewv and the previous node embeddings
of the source and destination nodes. It outputs a transformation
matrix of dimension d × d to capture the edge relational
features from hw to hv with relationship ewv .

Edge Relational Network: In previous GNN-based mod-
els for heterogeneous graphs such as RGCN or HetGNN,
a separate set of parameters is learned for each type of
relationship. Applying the same transformation to the same
type of relationship, regardless of which items are connected,
limits the expressive power and has high computational cost
when the number of types of relationships is large. Moreover,
such a discrete method fails to generalize to edge features in
continuous space and thus is less flexible.

To resolve the problems, we propose the edge relational
network to generate an edge-specific transformation matrix.
The edge relational network has the advantage of efficiently
encoding complex relational information into the transfor-
mation matrices. Instead of using edge type as the single
input, we propose to fully leverage the information from two
connected items and take as input the edge relational vector
ewv and the item features hw and hv

g(hw, evw, hv ) = σ
(
Wg · [ewv ||hw � hv ]

)
(3)

where || denotes the vector concatenation, � is the element-
wise product, Wg ∈ R

d2×(c+d) is the trainable parameter, and
σ(·) is the ReLU function. We reshape the output to a matrix
with dimension d × d .

The proposed edge relational network g preserves the edge
and node features. The edge relational vector ewv indicates
the multirelationship between a pair of items. Motivated by
the success of applying second-order feature interactions in
neural networks [48], [49], rather than using a linear con-
catenation of hw and hv , we adopt a multiplicative technique
(hw�hv ) in the edge relational network to further capture the
second-order interactions of the node embeddings. Intuitively,
the semantic similarity between a pair of items provides useful
evidence on the item relationships. For example, two function-
ally similar items are likely to be substitutable. The product
operation facilitates the measurement of the dependencies
between the connected items. We find in experimental results
in Section IV-H2 that the elementwise product can actually
achieve better performance than a simple concatenation of the
node embeddings.

We concatenate the edge relational vector and the prod-
uct of the node embeddings to allow the edge relational
network to fully exploit the local structure and relational
information. Though multiple message propagation explained
in Section III-B, messages captured by the edge relational
network can be propagated along the paths and improve the
item relationship prediction.

2) Message Aggregation: Then, we aggregate messages
from the item’s local neighborhood with a mean aggregator
by averaging messages from neighbors

mv = 1

|Nv |
∑

w∈Nv

mv←w (4)

where Nv denotes the set of direct neighbors of item v
and |Nv | is the number of neighbors of item v. This mean
aggregator is nearly equivalent to the convolutional propaga-
tion rule used in the transductive GCN [47]. One could use
more complex aggregators, such as LSTMs [50] or attention
mechanisms [51].

3) Message Update: After obtaining the messages mv from
the neighborhood, we use the previous node embedding of
itself and newly received neighborhood messages to update
the model.

In general, the updated h′v ∈ R
d is expressed as

h′v = fu(hv , mv ) (5)

where fu(·) is a nonlinear function.
In experiments, we adopt a simple update scheme

h′v = fr (hv , mv )+ hv (6)

= σ(W1 · [σ(W2hv )||mv ])+ hv (7)

by first mapping the previous node embedding into the mes-
sage space and then concatenate it with the current message
and feed to a second fully connected layer. The weight
matrices W1 ∈ R

d×2d and W2 ∈ R
d×d are model parameters.

A gated recurrent unit (GRU) [52] is introduced as the message
update function for small-scale graphs, such as molecular
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Fig. 2. Illustration of the message propagation process.

graphs with fu = GRU(hv , mv ) [46], [53]. Though the gated
mechanism can use information from the neighboring nodes
and the previous time step to update the node embedding,
it is computationally expensive, especially when the graph is
large. In our experiments (see Section IV-H2), we show that
two fully connected layers with a shortcut connection as in (7)
can achieve similar or even better performance as a GRU for
item relationship prediction. Details of the shortcut connection
will be discussed in the following.

B. RQ II: Multihop Relationships

With the node embedding representing messages from each
item’s single-hop neighbors, we are ready to propagate the
messages across the graph and model multihop relationships.
Multihop connections preserve relational dependencies among
distant items and provide crucial evidence for inferring item
relationships.

We stack L message propagation steps together and recur-
sively aggregate messages from neighboring nodes, as shown
in Fig. 2, so that the messages containing relational and
structured information from a node’s L-hop neighbors can
be explicitly encoded to the node embeddings. We initialize
h(0)

v = xv . Therefore, for l = 1, . . . , L, our message propaga-
tion step is recursively expressed as follows:

m(l+1)
v = 1

|Nv |
∑

w∈Nv

σ
(
W (l)

g · [evw||h(l)
w � h(l)

v ]
) · h(l)

w (8)

h(l+1)
v = σ

(
W (l)

1 ·
[
σ
(

W (l)
2 h(l)

v

)∣∣∣
∣∣∣m(l+1)

v

])
+ h(l)

v (9)

where h(l)
v ∈ R

d and m(l)
v ∈ R

d denote the node embedding
and the message of item v at the lth message propagation
step (layer). We use different parameters {W (l)

g , W (l)
1 , W (l)

2 } in
different layers to extract hierarchical latent features. As such,
multiple message propagation steps seamlessly inject multihop
information into the node embeddings.

a) Shortcut connections: To facilitate IRGNN to learn
deeper models to involve neighbors from farther away, we use
shortcut connections [54] between hidden layers. Shortcut
connections enable the model to carry over information from
the previous iterations, with the added benefit of not involving
any extra parameters or computational complexity.

Without a shortcut connection, the first term fr (hv , mv )
in (6) should directly learn the representation of h′v , but with

an identity mapping hv , fr (hv , mv ) only needs to learn residual
mapping

h′v − hv . (10)

With the increase of the number of iterations, if no new
residual mapping is needed, the network can bypass identity
mappings, which could greatly simplify the training for learn-
ing multihop relationships.

C. RQ III: Item Multirelationship Prediction and
Optimization

After obtaining the embeddings, we propose an outer prod-
uct layer to reconstruct the given graph structure and perform
the item multirelationship recommendation.

1) Outer Product: Given an ordered pair of learned node
embedding [h(L)

v , h(L)
w ] at the last step L, our prediction ê(i)

vw

for relationship i from v to w, i = 1, . . . , c is

ê(i)
vw = μ

(
W (i)

o · vec(h(L)
v ⊗ h(L)

w )
)

(11)

where μ(x) = (1/1+ e−x) is the sigmoid function. Every
relationship i is associated with a weight vector W (i)

o ∈ R
d2

.
We vectorize the outer product h(L)

v ⊗ h(L)
w to dimension

d2, allowing the model to fully exploit underlying feature
interactions. Moreover, the outer product operation is non-
commutative so that [h(L)

v , h(L)
w ] and [h(L)

w , h(L)
v ] yield different

results. As such, we can make predictions with directions.
2) Optimization: We optimize the sum of the cross-entropy

loss for each type of relationship separately, to push the model
to score observable relationships higher than the negative ones

L =
∑

(v,w)∈T

c∑
i=1

e(i)
vw log

(
ê(i)
vw

)+ (
1− e(i)

vw

)
log

(
1− ê(i)

vw

)
(12)

where T is the training edge set. However, it is computa-
tionally consuming to train GNNs on large-scale graphs [55].
We adopt the following two methods to advance the training
efficiency while preserving the accuracy.

1) Negative Sampling: Since it is impractical to use all
nonedges as negative samples, we train the model with
negative sampling. In the multigraph setting, item pairs
can have multiple different relationships. Treating sam-
ples with one type of relationship as negative samples of
the ones with the other type as in [8] is not applicable.
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Therefore, we randomly sample a set of nonedges Ē
as many as there is at least one type of relationships
(|E | = |Ē |).

2) Neighborhood Sampling: Most existing GNN-based
methods require that all nodes in the graph are
present during the training of the embeddings, which
is time-consuming and not applicable when the graph is
large [56]. Take the Amazon product graph for example,
and there are thousands of nodes and millions of edges,
making it infeasible to directly operate on the full graph.
To scale up the model, we adopt a uniform neighborhood
sampling strategy [23], [56] by sampling the neighbor-
hood around a node and dynamically constructing a
computation graph containing all the nodes needed for
L iterations from this sampled neighborhood. Therefore,
our model can be trained in a minibatch mode.

D. Discussion

We conclude our presentation of the IRGNN model with a
discussion of its relation to other models and time complexity
analysis.

1) Relations to Other Models: IRGNN is a general frame-
work for item relationship prediction and can be used to learn
any type of item relationship. We can show that most existing
models can be viewed as special cases of IRGNN.

a) Relation to LVAE: LVAEs is the state-of-the-art model
for predicting relationships between products [15]. Since
LVAE considers direct neighbors only, we can set the number
of message propagation iterations in IRGNN to L = 1,
yielding the deterministic version of LVAE. The message
construction is

m(1)
v←w =

[
Wah(0)

v + sa

∣∣∣∣Wbh(0)
w + sb

]

by feeding the source and destination node features to a fully
connected neural networks separately, where {Wa, Wb, sa, sb}
are model parameters. We use a mapping m(1)

v (w) = m(1)
v←w

as the aggregator. The message update function is a simple
elementwise ReLU function σ(·)

h(1)
v (w) = σ

(
m(1)

v (w)
)
.

LVAE uses a fully connected layer to predict the relationships

ê(i)
vw = Wc · h(1)

v (w)+ sc

where {Wc, sc} are parameters to be learned.
b) Relation to RGCN: RGCNs is the state-of-the-art

GNN-based model developed specifically to deal with the
multirelational data [14]. We can view the RGCN message
construction function as

m(l+1)
v←w =

c∑
i=1

1

cv,i
e(i)
wv W (l)

i h(l)
w

where cv,r is a predefined normalization constant. The trans-
formation matrix W (l)

i remains the same for relationship i
at layer l, which is less expressive than our designed edge
relational network. Then, the message is aggregated by a Sum
aggregator m(l+1)

v =∑
w∈Nv

m(l+1)
v←w . The node embeddings are

updated by the message update function h(l+1)
v = σ(m(l+1)

v +
W (l)

0 h(l)
v ).

In sum, IRGNN is a flexible framework for item relation-
ship prediction. IRGNN generalizes the existing methods by
incorporating multihop relationships with an edge-dependent
edge relational network.

2) Time Complexity Analysis: One limitation of GNN-based
models is scalability. As we use the neighborhood sampling
to break down the graph into minibatches of subgraphs,
the complexity of a single step of the message propagation for
a dense graph is reduced from O(n2d2) to O(m2d2), where
n is the number of nodes of the full graph, m � n is the
number of nodes in each batch, and d is the dimension of
the node embedding. Therefore, the overall time complexity
is O(m2d2 L) with L message propagation steps.

Empirically, IRGNN trains a graph with thousands of nodes
and millions of edges within 300 s per epoch on a TITAN Xp
Graphics Card, following the setting in Section IV-B. As for
prediction, IRGNN predicts millions of edges at the same scale
within 30 s.

IV. EXPERIMENTS

In this section, we evaluate the proposed IRGNN on several
Amazon-based data sets and a Taobao data set. We aim to
answer the following research questions.

1) RQ1: How does IRGNN perform as compared with the
state-of-the-art item relationship prediction models?

2) RQ2: How well does IRGNN perform on sparse data as
compared with the state-of-the-art model?

3) RQ3: How do different hyperparameter settings (the
number of message propagation iterations and the
dimension of node embeddings) influence the perfor-
mance of IRGNN?

4) RQ4: How does each designed component (the shortcut
connection, the edge relational network design, the mes-
sage update scheme, the outer product, the neighborhood
sampling, and the negative sampling) influence the per-
formance of IRGNN?

5) RQ5: How does IRGNN benefit the recommendation
in e-commerce platforms with improved accuracy and
explainability?

A. Data Set Description

1) Amazon Data: We use the Amazon data set from [9],
[57]. The complete data set contains over 1 million products
and 42 million copurchase relationships across around 20 top-
level product categories. We focus on five main categories
that display different complementary aspects: Video Games,
Musical Instruments, Movies and TV, Electronics, and Cloth-
ing, Shoes, and Jewelry. Each category forms a separate
item graph. The data set contains four different types of
relationships and all of them are asymmetric.

1) Also Bought (AB): Users bought x also bought y.
2) Also Viewed (AV): Users viewed x also viewed y.
3) Bought Together (BT): Users frequently bought x and y

(x and y were purchased as part of a single basket).
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TABLE I

STATISTICS OF THE AMAZON DATA

4) Buy After Viewing (BV): Users who viewed x eventually
bought y.

We remove the isolated nodes and use the reviews as the node
feature, following the preprocessing steps in [15]. The detailed
statistics of the data are shown in Table I.1

a) Mutigraph and simple graph setting: As discussed in
Section II, existing work on item relationship recommendation
assumes only one single type of relationship exists between
items [8]–[11], [15]–[17]. From Table I, we can observe
that items are actually connected by multiple relationships
(multiedges). Following the previous setting would lose some
pivotal item relationships and influence the recommendation
results. Though one could formulate the problem as a simple
graph setting with 24 = 16 different types of edges, the size of
the parameters of the model will increase exponentially, and
the limited training data for each type of edge will result in
poor prediction performances.

Moreover, also bought relationship dominates the graph
in Video Games, Musical Instruments, and Movies & TV,
whereas also viewed relationship is the dominant one in
Clothing, Shoes, and Jewelry. Discriminating relationships on
the imbalanced data with one dominant relationship is easier
in the simple graph setting since the goal is to differentiate
between edge types. In contrast, the setting of the multigraph
is more challenging due to the more relaxed assumption.

2) Taobao Data: Taobao data is a data set consisting
of user behavior data retrieved from Taobao,2 one of the
biggest e-commerce platforms in China, with 987 994 users,
4 162 042 items, and 100 150 807 interactions. It contains user
behaviors from November 25 to December 3, 2017, with
several behavior types, including click, purchase, adding to
cart, and item favoring. We assume that an item relationship
exists if more than 50 users perform the same behaviors toward
a pair of items, and thereby, the Taobao product graph has the
following four types of relationships.

1) Coclick: Users clicked x also clicked y.
2) Copurchase: Users bought x also bought y.
3) Add-both-to-cart: Users added x to the shopping cart

also added y.
4) Favor-both: Users favored both x and y.

Node features are item ID and the corresponding category ID.
Only items that have at least 50 interactions are kept. After

1Note that the number of BV of clothing, Shoes, and Jewelry in Table I
is much smaller. It may be due to the crawling strategy of the data set
that products with BV are rarely sampled. The preprocessing procedure also
removed some products with no review information.

2https://tianchi.aliyun.com/dataset/dataDetail?dataId=649

removing the isolated nodes, the retained item graph contains
224 654 nodes and 2 410 056 multiedges.

B. Experimental Setting

Our code is available at https://github.com/wwliu555/
IRGNN_TNNLS_2021. We randomly assign paired item sam-
ples into the training, validation, and test sets with an
8/1/1 ratio. The number of relationships c = 4. We use grid
search to select the hyperparameter for all the methods on the
validation set: the node embedding size d ∈ {8, 16, 64, 128},
learning rate in {0.001, 0.01, 0.1}, the batch size is set to 512,
and the optimization method is Adam [58]. For our proposed
IRGNN, the message propagation iterations L ∈ {2, 3, 4, 5}
and d ∈ {8, 16, 32}, and we select d = 16 for all the
experiments. All models are trained 300 epochs to ensure
convergence. We conduct five independent runs and use early
stopping. For a fair comparison, the input node features xv

are the same, followed by a fully connected embedding layer
mapping raw node features from the original dimension to the
dimension of the node embeddings d .

C. Baselines

1) Logistic Regression (LR): Our first baseline is a straight-
forward application of LR. We first feed the node feature
into an embedding layer to obtain the node embeddings
and then concatenate the pair of node embeddings
[hv ||hw] as the input of four logistic models, one for
predicting one type of relationship.

2) Sceptre: Sceptre fits a logistic classifier over the
topic space of LDA, which not only learns the rela-
tionship between items but also the direction of the
relationship [8].

3) PME: PME [42] incorporates multirelations by embed-
ding separate different node and edge types into different
latent spaces and uses metric learning to capture the first-
and second-order proximities.

4) PMSC: PMSC is a path-constrained method to dis-
criminate substitutes and complements (PMSC) [10].
Specifically, PMSC incorporates 2-hop path constraints
with t-norm fuzzy logics.

5) RGCN: RGCNs is a GNN-based model developed
specifically to deal with the multirelational data [14].
RGCN handles different types of relationships and direc-
tions separately and uses a weighted sum to aggregate
them.
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TABLE II

EXPERIMENTAL RESULTS ON AMAZON DATA

6) HetGNN: Heterogeneous GNN (HetGNN) [45] is the
state-of-the-art GNN-based model designed for hetero-
geneous graphs with recurrent neural networks and the
attention mechanism.

7) LVAE: LVAEs is the state-of-the-art model for pre-
dicting relationships between products [15]. LVAE is
a generative deep learning model that links two VAEs
using a connector neural network.

As the aforementioned models all assume that only one single
relationship exists between items except RGCN, we replace
the Softmax function before the output by a Sigmoid function
to allow them to predict multiple relationships at the same
time.

D. Evaluation Metrics

In discovering item relationships, the model should not only
predict the existing relationships for a given pair of items
but also the direction of the link. Given an ordered pair
of items (each order represents one direction), we compute
the area under the ROC curve (AUC), precision, recall, and
accuracy (ACC) on the test set [59]. Note that we mea-
sure AUC, precision, and recall separately for each type of
relationship and report the weighted average value. We take
label imbalance into account so that the results are weighted
by support (the number of true instances for each type of
relationship). For the ACC score, all four types of relationships
must be correctly predicted simultaneously.

E. Overall Performance (RQ1)

Table II shows the overall performance on Amazon data.
Bold numbers are the best results. From the table, we can
observe that LR has the lowest accuracy, indicating that the
expressive power of the logistic model is insufficient to capture
complex relationships among items. Sceptre improves LR by
learning topic models to discover topics from the reviews.

It not only learns the relationship between items but also the
direction as well. However, LR and Sceptre only consider
the information from direct neighbors. The connectivity of
the neighbors a few hops away also contains rich semantics
that could be used for discovering item relationships.

PME and PMSC outperform LR and Sceptre since they con-
sider 2-hop connections in the item graph. PME models 1-hop
and 2-hop proximities with metric learning approach. PMSC
incorporates 2-hop path constraints by maximizing the
co-occurrence patterns of the type of edges. However, both
PME and PMSC require manually setting the dependencies
in the graph and have limited expressive power. RGCN and
HetGNN generally have better performance than PME and
PMSC. It may be because RGCN and HetGNN can automati-
cally model multihop relationships using GNNs. In particular,
HetGNN aggregates different types of information with recur-
rent neural networks and the attention mechanism.

LVAE consists of two VAEs with a connector neural net-
work, designed specifically to discriminate item relationships
(substitutes and complements). LVAE is the strongest baseline
since the pair of VAEs can capture meaningful item features
explaining the relationship between items.

IRGNN consistently yields the best performance on all five
data sets, even on the highly sparse data set such as Clothing,
Shoes, and Jewelry. In particular, IRGNN improves over the
strongest baseline LVAE by 3% in ACC, 9.7% in recall,
and 1.9% in AUC on average, and the average precision is
almost the same. We attribute this improvement due to IRGNN
incorporating multihop relationships and better utilizing the
edge relational features along the path. The edge relational
features contain collaborative information such as substitute
or complement and can be captured by the designed edge
relational network in IRGNN.

In Table III, path-based methods, such as PME and PMSC,
do not generalize well and fail to effectively identify item
relationships. This might suggest that the four relationships
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TABLE III

EXPERIMENTAL RESULTS ON TAOBAO DATA

in Taobao data such as coclick/copurchase/favor-both share
similar semantic meanings and is a more difficult scenario to
predict the item relationships and differentiate between them.
Hence, the simple path constraints as in PME or PMSC may
not be able to characterize the underlying item dependencies.
Yet, IRGNN achieves significant improvements over all base-
lines under various metrics, showing its high effectiveness
and generalization ability to complex product relationships
and scenarios. Specifically, its relative improvement over the
strongest baseline with respect to Precision is 3.77%.

F. Data Sparsity Problem (RQ2)

As discussed in Section III, our proposed model is capable
of naturally utilizing multihop relationships of products, which
can provide more information when data are sparse. In this
section, we further evaluate the effectiveness of IRGNN as the
degree of data sparsity increases on Amazon data. We decrease
the ratio of the training set to increase the data sparsity and
generate four versions of data sets. The data split ratios are
varied from 8/1/1 (i.e., the ratio for training, validation, and
test sets, respectively) to 4/3/3, 6/7/7, and 1/2/2.

The comparison between our proposed model and the
strongest baseline LVAE on these four versions of the data sets
is presented in Fig. 3. We observe that IRGNN consistently
outperforms the strongest baseline in terms of accuracy on
all sparse data sets. Moreover, the sparser the data set is,
the larger improvement can be achieved by IRGNN upon
LVAE. For example, from data set 8/1/1 to the sparsest data
set 1/2/2, improvement of IRGNN upon LVAE increases from
2.8% to 3.2% in Video Games, from 2.5% to 4.5% in Musical
Instruments, from 3.2% to 4.6% in Movies and TV, from 1%
to 2.3% in Electronics, and from 5.5% to 8.4% in Clothing,
Shoes, and Jewelry. This result demonstrates that IRGNN
is superior to other methods in sparse data sets and shows
that utilizing multihop relationships of products is effective
to alleviate the data sparsity problem for item relationship
prediction.

G. Hyperparameter Study (RQ3)

In this section, we study the impact of the hyperparameters
on the performance of IRGNN.

1) Number of Message Propagation Iterations: As dis-
cussed in Section IV-F, multihop relationships of products
can provide additional information in sparse data sets and
hence benefit the prediction of item relationships. Naturally,
the next question would be how many hops are most helpful
for item relationship prediction? Hence, we study the impact

TABLE IV

IRGNN WITH DIFFERENT NUMBERS OF MESSAGE

PROPAGATION ITERATIONS

of the number of message propagation iterations, which cor-
responds to the maximum number of hops of the connections.
In Table IV, we present the performance in terms of ACC
and AUC of IRGNN by varying the number of message
propagation iterations (taking Video Games, Musical Instru-
ments, and Movies and TV as examples due to limited places,
similar observations can be obtained on the other two data
sets). We observe that generally, a large number of iterations
are more effective to predict item relationships. For example,
IRGNN achieves the best performance when the number is
5 at Video Games and Movies and TV, and the best results
when the number is 4 at Musical Instruments. This result
demonstrates that the proposed model benefits from a large
number of message propagation iterations.

2) Dimension of the Node Embeddings: Another impactful
hyperparameter is the dimension of the node embeddings.
We evaluate the proposed model with the dimension varying
from 8 to 16 and 32 and present the results in Table V.
We observe that IRGNN achieves the best performance when
the dimension of the node embeddings is 16 for all data sets
(results on the other two data sets are similar and omitted for
simplicity). For example, IRGNN achieves the best accuracy
of 0.8403 when the dimension is 16 on the Video Games data
set, which is superior to 0.7836 when the dimension is 8 and
slightly better than 0.8398 when the dimension is 32. On the
one hand, IRGNN suffers from a small dimension (e.g., 8) due
to its limited fitting capability. On the other hand, it is also
worth noting that a large dimension may cause overfitting and
degrade the performance.

H. Ablation Study (RQ4)

1) Shortcut Connections: As discussed in Section III,
the goal of shortcut connections is to simplify the learning of
multihop relationships. The useful information from the pre-
vious message propagation iteration could be directly utilized
through this shortcut connection. In this section, we further
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Fig. 3. Comparison between IRGNN and the strongest baseline in terms of ACC with different data sparsities. (a) Video games. (b) Musical instruments.
(c) Movies and TV. (d) Electronics. (e) Clothing.

Fig. 4. IRGNN with and without shortcut connections. (a) Video games. (b) Musical instruments. (c) Movies and TV.

TABLE V

IRGNN WITH DIFFERENT NODE EMBEDDING DIMENSIONS

evaluate the effectiveness of the design of the shortcut connec-
tions in IRGNN. We vary the number of message propagation
iterations and report the accuracy for the proposed model
with and without shortcut connections in Fig. 4. We observe
that the shortcut connection is truly helpful to improve the
performance. For example, IRGNN with the shortcut connec-
tions outperforms the variant without the shortcut connections
on Video Games for all numbers of message propagation,
where the largest improvement is obtained when the number
of message propagation is 5. A similar observation is also
obtained on the other data sets except for Musical Instruments
where IRGNN with and without the shortcut connections have
a close performance. A possible reason behind this result is
that the graph of Musical Instruments has many circles of
length 4, and the message propagation is trapped by the circles,
so that increasing the number of iterations will not improve
the performance.

2) Other Variants of IRGNN: We also test several variants
of IRGNN to validate the design of our edge relational
network. Each time, we replace one key component and
compare the result with the full-fledged IRGNN, where the
results are presented in Table VI. Experimental results demon-
strate that all the components working together yield the best
performance.

TABLE VI

VARIANTS OF IRGNN

a) Node embeddings in message propagation: We first
evaluate the performance of IRGNN with a simple edge
relational network that removes node embeddings and only
takes as input the edge relational vector (IRGNN-SIMPLE-E),
as adopted in [46], and namely, the edge relational network is
reduced to

g
(
h(l)

w , evw, h(l)
v

) = σ(W (l)
g′ evw).

In this setting, the transformation matrix g only depends on
the edge relational vectors so that edges with the same edge
relational vectors have the same transformation matrix. The
results in Table VI indicate that the performance of IRGNN-
SIMPLE-E is downgraded compared to IRGNN, which shows
the effectiveness of node embeddings in message propagation.

b) Second-order feature interactions: To validate the
usage of the elementwise product in the edge relational net-
work, we compare IRGNN with the edge relational network
that uses the linear concatenation of the source and destination
node embeddings (IRGNN-LIN-E)

g
(
h(l)

w , evw, h(l)
v

) = σ
(

W (l)
g′′ ·

[
evw||h(l)

w ||h(l)
v

])
.
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Fig. 5. Illustration of item relationship prediction. (a) Musical instruments. (b) Electronics.

As shown in Table VI, by using the elementwise product, ACC
increases by 0.2%, 0.2%, and 0.8% for Video Games, Musical
Instruments, and Movies and TV, respectively. This illustrates
the importance of the second-order feature interactions.

c) GRU to replace shortcut connections: For the message
update function, we propose to use two fully connected layers
with a shortcut connection to facilitate the training with mul-
tihop relationships, which is more efficient than GRU and is
capable of incorporating the message from the previous layer.
We replace our designed fu in (7) by a GRU as introduced
in [30] (IRGNN-GRU) and evaluate the performance of it.
Experimental results demonstrated the effectiveness of the
shortcut connection, as IRGNN outperforms IRGNN-GRU on
all the three data sets. It may be because the IRGNN-GRU
overfits the training data.

d) Outer product: Although the simple concatenation is
a widely adopted method for multirelationship prediction [15],
we observe that the outer product may be more feasible for
the item multirelationship prediction task. We replace the outer
product in IRGNN with a simple concatenation of the source
and destination node embeddings and propose IRGNN-LIN-D,
which is equivalent to LR

ê(i)
vw = μ

(
W (i)

o′ ·
[
h(L)

v ||h(L)
w

])

where μ is the sigmoid function. Table VI demonstrates that
the outer product enhances the performance of the multi-item
relationship prediction, with ACC increasing by 2.9%, 0.7%,
and 2.4%, AUC increasing by 3.5%, 0.7%, and 2.9% on Video
Games, Musical Instruments, and Movies and TV, respectively.

3) Neighborhood Sampling: As discussed in Section III-C2,
without neighborhood sampling, the memory and expected
runtime of a single batch is unpredictable and in the worst case
is O(n), where n is the number of nodes in the product graph.
Therefore, we study the effectiveness and efficiency of our
proposed IRGNN with and without neighborhood sampling on
Video Games, as shown in Table VII. The runtime in Table VII
records the average running time of a message propagation
step for one node. The results suggest that neighborhood
sampling could help IRGNN achieve higher performance with

TABLE VII

IRGNN WITH AND WITHOUT NEIGHBORHOOD SAMPLING

TABLE VIII

IRGNN WITH DIFFERENT RATIOS OF POSITIVE TO NEGATIVE SAMPLES

lower space and time complexity since message propagation
without neighborhood sampling has to aggregate messages
from all neighbors, which is less efficient and may involve
noisy neighbors.

4) Negative Sampling: Directly treating all unobserved
edges as negative samples is extremely computationally expen-
sive, as the number of the unobserved edges is huge and power
to the number of nodes [19]. To this end, we uniformly sample
negative samples as in [23] and study the effect of the ratio of
positive to negative samples. As shown in Table VIII, IRGNN
is generally not sensitive to the ratio of positive to negative
samples—different settings yield similar results. The perfor-
mance is getting slightly better when adding more negative
examples. Yet, more negative samples require more time and
space for training the model, and we use the 1:1 balanced
setting in our experiments.

I. Case Study (RQ5)

1) Item Relationship-Based Recommendation: To perform
recommendation according to the learned item relationships,
we randomly select a query item. We rank the remaining
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TABLE IX

EXAMPLES OF PREDICTIONS ON MULTIHOP CONNECTIONS (TWO TYPES OF RELATIONSHIPS: SUB/COMP)

TABLE X

PREDICTIONS ON MULTIHOP CONNECTIONS (FOUR TYPES

OF RELATIONSHIPS: AB/AV/BT/BV)

items by the predicted score for each type of relationship with
the query item. Illustrations of the top-3 recommendation are
shown in Fig. 5. For the convenience of visualization, we use
the category of Musical Instruments and Electronics. For the
ground-truth relationships, since the data are sparse and are
hard to find an item in the test set that contains all four
relationships, we need to densify the data set. We perform
a content-based technique [60] and create pseudoitems by
grouping the ten-nearest neighbors to one pseudoitem accord-
ing to the item features. Ground-truth relationships of the
pseudoitems are presented in the second row.

Fig. 5 shows that compared to the ground truth, IRGNN can
perform reasonable recommendations according to multiple
complicated relationships. For example, IRGNN is capable to
learn the pattern that users also viewed other electronic guitars
after viewing the queried guitar and bought guitar picks and
shoulder straps together with the guitars. Such results may
also be useful for understanding item relationships and user
behavior prediction.

2) Multihop Prediction: To investigate whether our pro-
posed IRGNN is capable of learning meaningful knowledge
from multihop connections, we use IRGNN to predict item
relationships where items are connected by a 3-hop path.
We count predictions made on three most frequent 3-hop paths
as an illustration. To start with, we consider edges with single
relationships (either complements or substitutes) for easier
understanding. We refer to AB and BT as complements and
AV and BV as substitutes. Table IX computes the ratio of
the number of the given patterns to all the predictions made
by IRGNN. We also show examples of positive and negative
cases. Four products are connected sequentially by the given
relationships and we let that IRGNN predicts the item relation-
ship between the first and the last item. Positive cases represent

the cases that the item relationship predicted by IRGNN is in
accordance with the given pattern such as [(sub, sub, sub) ⇒
sub] on the left, whereas negative cases represent that IRGNN
predicts the opposite (e.g.[(sub, sub, sub)⇒ comp/unrelated]).
Results show that IRGNN can discover useful dependencies of
substitutes and complements among 3-hop paths. For example,

IRGNN learns that if i0
sub−→ i1

sub−→ i2
sub−→ i3, then likely

i0
sub−→ i3, which matches our intuition. As shown in Table IX,

in Musical Instruments, i0, i1, i2, and i3 are four keyboard
controllers but with different brands, and then i0 and i3 are
also substitutable. Negative cases suggest that apart from the
edge relational information, IRGNN also considers the item
content information to make predictions.

We further display the multihop dependencies with multiple
relationships learned by IRGNN in Table X. We compute
the ratio of the frequency of the given multihop pattern to
all the predictions made by IRGNN. Table X presents the
three most frequent patterns and reveals that IRGNN can
discover multihop patterns such as [(AB, BT, AB) ⇒ AB].
In sum, IRGNN is able to preserve useful path dependencies
and thereby improves the performance of item relationship
prediction.

V. CONCLUSION AND FUTURE WORK

In this work, we propose a GNN-based framework, IRGNN,
with multihop relationships to discover item multirelation-
ships. Rather than solely relying on the item content infor-
mation, IRGNN automatically learns topological features and
relational dependencies in multihop neighborhoods to improve
the quality of item relationship prediction. The edge rela-
tional network is carefully designed to impart both node and
edge features to the message propagation process. Moreover,
we study a more generalized setting—multigraph—for dis-
covering item relationships. Extensive experiments on large
real-world item graphs demonstrate the rationality and effec-
tiveness of IRGNN.

This work exploits multihop connections in inferring item
relationships. Multihop connections offer the potential of pre-
serving complex relational dependencies that can help identify
item relationships. This is the first work that emphasizes on
edge relational features for the item relationship prediction.
We hope that it can provide insights on how to better model
the complex item relationships in real-world e-commerce
scenarios.
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In practice, item relationships may change dynamically and
evolve over time due to daily transactions, which may not be
handled well by our current model due to the assumption of
static training data [61]–[63]. An online variant of IRGNN
on how to efficiently update the model can be investigated
in the future. The temporal evolutionary patterns can also be
incorporated to improve the representation quality of items.
In addition, as item relationships may vary for individuals,
we plan to personalize the message propagation step and
thereby generate personalized recommendation in our contin-
uing work.
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