CHAPTER 7
Simulation

Introduction

The previous chapters were concerned with formulating and solving mathematical
models for system reliability. The solution may be either in the form of an
explicit expression or the results may be obtained by numerical methods. This
type of approach portrays the cause and effect relationships in the physical
system and enhances the insight. Methods have been described both for
Markovian and non-Markovian systems. It is obvious, however, that problems
involving non-exponential distributions can become very complicated. The
analytical approach is efficient and should always be employed when it is
possible to develop a model which is a reasonable representation of the physical
system and also when such a model is amenable to solution. Some problems
are, however, too complex to be solved in this manner and simulation
techniques have to be used.

In simulation, the system is divided into elements whose behaviour can be
predicted either deterministically or by probability distributions. These elements
are then combined to determine the system reliability. Simulation, therefore,
also employs-a mathematical model but it proceeds by performing sampling
experiments on this mathematical model. Simulation experiments are virtually
the same as ordinary statistical experiments except that they are performed on
the mathematical model rather than on the actual system.

Simulation is an imprecise technique by virtue of its very statistical nature.
Mathematical methods discussed in the previous chapters generally give exact
results under the assumptions made. Simulation techniques, however, provide
only the estimates of the exact results. Moreover they provide only a numerical
value and to obtain another numerical value for a different set of parameters,
the whole simulation experiment may have to be repeated. Sensitivity analysis,
using a simulation approach is therefore quite expensive. It is, however, a very
flexible approach and for many problems may be the only answer.

It should be noted this book deals only with digital simulation.. It is called
digital because most-often it is executed on the digital computer but there is
no inherent relationship between the two. It is a vast field and a separate book is
needed to-do justice to it. This book discusses the basics on which the reader
can build further simulation programs.
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Basic Procedure

It has been previously noted that simulation experiments are similar to ordinary
statistical experiments except that they use a mathematical model of the
system rather than the physical system itself. This is illustrated with the help
of an example of two independent components in parallel. The system is failed
when both the components are failed. The system could be constructed and
operated for a long time. The history of operation and failure of the system
could be recorded and the different reliability measures obtained using
statistical methods. Such a method would be very expensive, especially where
costly equipment is involved and would require a long time before any
statement could be made about its reliability. The simulation of this system is
conducted by making a mathematical model where the behaviour of the
components are represented by probability distributions. Assume that component
1is in the up state at the beginning of the experiment. Using a random number
and the probability distribution of the up time of component 1, the time at
which this component will fail is determined. Methods for doing this are
explained later in the chapter. In a similar manner a possible duration of the
repair time is generated. A history of the component generated in this

manner is one possible realization of the stochastic process. The realization of
component 2 is also constructed and the overlapping outage durations
represent the durations of the system failure. A number of realizations of the
system history can be constructed in this manner and the reliability measures
obtained from these realizations using statistical methods. .

In essence, simulation consists of constructing realizations of the stochastic
process underlying the system and then extracting the required system
performance parameters from these realizations. Most of the refinements in the
theory of simulation are concerned either with developing more efficient
methods of constructing realizations or extracting the information from the
least possible number of realizations.

Random Number Generation

Random numbers are needed to generate random observations from the
probability distributions. Tables of random numbers have been generated using
mechanical or electronic devices. The basic requirement for the numbers to be
random is that in a sequence each number should have equal probability of
taking on any one of the possible values and it must be statistically independent
of the other numbers in the sequence. While executing simulation on a digital
computer, the table of random numbers can be provided éxternally. It is,
however, more common to have the computer generate its own random
numbers. There are several good methods available and only one is described
here. It is a multiplicative congruential method and obtains the (n+1)th random
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number R, | from the nth random number R, by using the following
recurrence relation due to Lehmer

R4 = (aR,){modulo m)

where @ and m are positive integers, @ <m. The above notation signifies that
R, 1 is the remainder when (¢ R n) is divided by m. The first random number
R, is assumed and the subsequent random numbers can be generated by this
recurrence relation. The sequence of random numbers so generated is periodic.
Great care has to be exercised in the selection of a combination ()fR0 ,aand m.
The sequence cycle should be larger than the number of random numbers
required. One combination which is satisfactory is

a = 455470314
m = 2% -1 = 2147483 647

R, = Any integer between 1 and 2 147 483 646.

Now if random numbers between say 0 and 999 are required, then the computer
can be instructed to take the last three digits of the random number so
generated. It can be seen that the sequence of random numbers so produced

is predictable and reproducible and is not therefore strictly a sequence of
random numbers. For this reason these random numbers are called pseudo-
random numbers. They can, however, satisfactorily play the role of random
numbers in digital simulation. In fact in many applications where alternative
design configurations are being evaluated, the use of the same sequence of
random numbers may be desirable.

Simulation Model

A simulation model representing the system to be simulated is required. The
analyst should become thoroughly familiar with the system as in the case of
mathematical modelling. In complex systems, failure modes and effects
analysis is quite useful in gaining an insight into the system behaviour. The
system is broken into elements whose behaviour can be predicted either in a
deterministic manner or in the form of probability distributions. In reliability
evaluation, continuous probability distributions are most often used. When
historical data is available, either the frequency distribution of these data or
the probability distribution which best fits these data may be used. The latter
alternative is, however, more satisfactory as it comes closer to predicting the

“expected future performance rather than repeating the idiosyncrasies of the

recorded data.

The operating rules which define the effect of the elements on each other and
on the system should be specified. These rules may be either probability
distributions, tables or some set of rules. It may be preferable to draw logical
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flow diagrams of the system specifying the rules and logical linkages. The
tendency to be over-realistic at the expense of simplicity should be guarded
against.

Timing Controls

Simulation studies deal with the passage of time. There is no connection between
the simulated time which represents the passage of time in the actual world and
the computational time. There are two methods of representing time in
computer simulation programs:

i. fixed time interval method
ii. next event method

A brief description of each is given below.

Fixed Time Interval Method

This is also called the synchronous timing method. This is a two step method. The
basic time interval is A¢ which may be microseconds, minutes or days. The
interval length At will be chosen depending upon the operating characteristics

of the system. Starting in the initial state, time is advanced by Az and the
program then looks to see if an event has occurred. The system is then up dated
by determining the resulting state of system. If no event has occurred then the
system stays in the same state. These two steps may be repeated as many times as
desired.

Next Event Method

This is also called the asynchronous timing method. Simulated time, in this
method, is advanced by a variable amount rather than a fixed amount each

time. The computer proceeds by keeping a record of the next few simulated
events scheduled to occur. The most imminent event is assumed to have occurred
and the simulated time is advanced to the point of occurrence of the event. The
cycle is repeated as many times as desired.

In essence, in the synchronous timing method, the time is advanced by
definite amounts and every time the system is updated by determining the event
that occurred during this interval and in the asynchronous timing method, the
next event is determined and the time is advanced to the occurrence of this
event. The occurrence of an event during an interval or the time to the
occurrence of an event is determined using the following sampling techniques.

Random Sampling

When all the elements operate and interact in a deterministic manner, the
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event occurring during an interval or the time till the next event, is easily
determined. In systems with stochastic elements, these random observations
are obtained from the probability distributions using random numbers and
methods of generating random observations from probability distributions are
required.

Discrete Distributions

Two methods for modelling discrete distributions are described below.

1 Proportionate Allocation Technique

It consists in allocating the possible values of the random number to the
various values of the random variable underlying the distribution in direct
proportion to their respective probabilities. A random number is selected and
the corresponding value of the random variable is the random observation.
The method is quite useful in simulating discrete time Markov chains when the
transition probability matrix is specified. This method is illustrated by the
example of man who if he does his exercises one day, is 70% sure not to do
them next day. On the other hand, if he does not do his exercises one day, is
60% sure not to do them the next day. Denoting the doing and not doing of
the exercises by 0 and 1 respectively, the transition probability matrix is

Final state

Initial state 0 1
0 03 07
1 04 06

The realizations are constructed using a table of random digits. If the man
is in state 0, select a single random digit and the next state is determined as
follows

digit event
0-2 stay in O
3-9 transit to 1

Similarly if the man is in state 1

digit event
0-3 transit to 0
4-9 stay in 1

The construction of a realization for ten days is shown in Table 1. It is
assumed that the man does his exercises on the first day. It should be noted
that this is only one possible realization of the stochastic process. The stochastic
nature is evident from the sequence of states occupied. For deriving probabilites,
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a number of such realizations have to be constructed. The methods for deriving

measures from these realizations is described later in the chapter.

Table 7.1  Constructing a Realization

Day Random number State
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2 Inverse of the Probability Distribution Method
This method is practically the same as method 1 but is a little more involved
and proceeds in the following steps:

1.  Construct the distribution function of the random variable X, i.e. F(x) =
P(X <x). The distribution function has the property that is monotonically
increasing. The probability mass function of an arbitrary random variable X
and its distribution function are shown in Fig. 7.1.
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Fig. 7.1 Probability mass function and probability distribution function
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2. Generate a random decimal number between O and 1. This is achieved by
obtaining a random integer with the desired digits and then placing a decimal
point before it.

3. Set F(x) equal to the random number and select the value of x
corresponding to F(x). This value of x is the desired random observation from
the probability distribution.

It should be noticed that F(x;) — F(x;_,) is equal to P(X = x;), and if the
random number falls in the interval (F(x;), F(x;_,)), the value of X = x;
will be selected. The procedure therefore essentially allocates the random
numbers to the random variables in the proportion of their probabilities of
occurrence. The basic procedure is therefore the same as that of method 1.

Continuous Distributions

The above procedure can also be used for continuous distributions.
Continuous distributions are approximated by discrete distributions whose
irregularly spaced points have equal probabilities. The accuracy can be increased
by increasing the number of intervals into which (0,1) is divided. This requires
additional data in the form of tables. Although the method is quite general, its
disadvantages are the great amount of work required to develop tables and
possible computer storage problems. The following analytic inversion approach
is simpler.

Let z be a random number in the range O to 1 with either a uniform
probability density function or a triangular distribution function, i.e.

0 Z<0
f@={1 o0<z<1
0 z>1

Similarly
0 zZ<0
Fz) =z 0<Z<1
l Z>1

1

Let F(x) be the distribution function from which the random observations
are to be generated. Let

z = F(x)
Solving the equation for x gives a random observation of X. That the

observations so generated do have F(x) as the probability distribution can be
shown as follows.
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Let ¢ be the inverse of F, then
x = ¢(z)

Now x is the random observation generated. To determine its probability distri-
bution

Px <X) = PFx)<FX)) = Pz <FX)) = FX)

Therefore the distribution function of x is F(x) as required. In the case of
several important distributions, special techniques have been developed for
efficient random sampling. A few cases are described in the following section.
The reader can refer to Reference 5 for a more detailed treatment.

Exponential Distribution

The exponential distribution Has the following probability distribution
PX<x) =1—e P
where 1/p is the mean of the random variable X. Setting this function equal to a

random decimal number between 0 and 1

z=1—eP*

Since the complement of such a random number is also a random number the
above equation can be written as
z = e P¥
Taking the natural logarithm of both sides and simplifying
In (2)
X = —
P
which is the desired random observation from the exponential distribution
having 1/p as the mean.

Erlang Distribution

The above procedure can be readily extended to generate random
observations from an Erlang distribution. It has been shown in Chapter 6 that
the sum of ‘@’ independent exponentially distributed random variables each with

mean%has the Erlang distribution with mean%and ‘a’ as the shape parameter.

Therefore if we have a sequence of ‘@’ random decimal numbers in the interval
(0,1), denoted by LA S the random observation from Erlang
distribution is ,
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& In(z)
x = -
tgl —-p
1 a
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4 i=1
Normal Distribution

The following describes a technique developed by Box and Muller. The
method proceeds by generating pairs of normal deviates. The joint distribution of
two independent standardized normal deviates is given by

fir(3) = 5-exp 1402 3% 1)

Consider the polar transformation
x = uCosv
y = uSinv

The inverse transformation is

w = (2 4y
and

<
I

Yy
arc tan —
x

The above functions can be written in a general form
U=UXY) V =VX,Y)
X = XU, V) Y = Y(U,V)

and

When X is near x and Y is near y, U and ¥ must be near u and v. Therefore
Px<X<x+dx,y<Y<y+dy)=fxy(x,y)dx dy
=Pu<U<u+du,v<V<v+dv)

= fuv(u,v) du dv (72)
Therefore
dx dy

fov(,v) = fxy(x,») T v

Absolute values are used so that the expression is applicable for both non-
increasing and non-decreasing functions.
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dxdy = ududv

Therefore

] 2
fov(u,v)dudv Tn e ¥ ududv (7.4)
m

2 1
e d(3u?) —dv
2m

This expression can be interpreted in this manner: 12 is exponentially distri-
buted and v has a uniform distribution in the interval (0, 27). Now if there are
two random decimal numbers z,, z, in (0, 1)

u* = —nzg
ie.
u =+nl/z,
and
v =212z,
Hence
X= [In LCos27rzz
zy
and

Y= [In iSin 2nz,
Zy

are exact independent normal deviates.

This book covers only a few cases of analytic inversion. Many other methods
exist for analytic inversion of particular probability distributions including
inversion by graphical or tabular means.

Estimating Reliability Measures

Reliability measures can be calculated from the realizations using statistical
methods. It is possible to construct probability distributions for the various
residence times but usually the mean values are the main parameters.

Time Specific Probability ofX+

If N observations of the state of system are made at time ¢, and ny of the
times the system is found in xt , the estimate of the probability of XV is found
by
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P = | @5)

It is well known from the frequency concept of probability that

5 n.
p.(2) = p.(t) = F

N—>oo
Interval Frequency

If in IV realizations of the system state, the system visited X* n, times, the
estimate of F(0, £) is
nC

F 0,0 = v . (7.6)

Fractional Duration

The fractional duration in X is estimated by

N
Z Uy
i=1

D.©,n = o~ (7.7)

where u; is the time spent in X* in the ith realization.

Steady State Probability of being in X+
This can be calculated either from a number of realizations, allowing

sufficient time for letting each realization to reach equilibrium state or it can be
calculated as the fraction of time spent in X" ina very long realization, i.e.

~ t

P, = F+
where £, is the time spent in X’ * in interval (0,T) when T'is large. This latter
approach is less time consuming as in the former approach considerable time is
spent in reaching the equilibrium condition.

Mean Cycle Time
After the simulated system has reached an equilibrium, the mean cycle time
can be estimated as follows

M

L

i=1

T, =
n

where ¢; is the time interval between the (i — 1)th and the ith encounter of X*.
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Equilibrium Conditions and Sample Size

The most important reliability measures in repairable systems are obtained from
the steady state or equilibrium conditions. In this case the system state
probabilities are independent of the initial conditions and the time elapsed
since the start of system. The system reaches a steady state condition when the
system state probability distribution reaches a limiting equilibrium distribution.
It should be remembered that steady state condition can only be approached
“but never exactly attained.

In determining the mean cycle time, the data obtained during the initial
period of simulated system operation should be excluded. It is difficult to
know how long the system should be operated before taking observations. It
could, however, be roughly estimated by having a few trial runs and estimating -
the probability distributions at various points in time. It should be noted that
even when steady state measures are the basis of evaluating alternative designs,
the same initial conditions should preferably be used. Simulation or Monte
Carlo techniques are used to obtain a numerical estimate of the inherent system
reliability parameters. As the sample size increases the estimated value approaches
the estimand. The question which now arises is how big should the sample size
be? It is not adequate to simulate the system for an arbitrary long time and then
simply assume that the results are sufficiently precise.

Reliability measures obtained from each simulated sample run are generally
different and one object is to determine the mean value of the measure. A
simple case is when these observations of the measure are statistically independent
and have a common normal distribution. This case is considered and then
extended to more general situations. The confidence interval for the mean m of
the normal distribution having variance ¢? can be obtained as follows. Let X
be the sample mean obtained from a random sample of size 7. X is then also a
random variable and it can be shown that

X —m)vn
Z -_——
v
has a t distribution with (z — 1) degrees of freedom. The value of v is
0?2 = < (X i —X )2
=1 n—1

where X; is the ith observation. Now

where £5,;' is the 100 /2 percent point of the distribution with (n — 1) degrees
of freedom and can be found from Tables of the ¢ distribution. The above
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expression can be rearranged as

= v - v
PIX—ti—=<m<X+6] —}=1—
SN o n *
Therefore with confidence 1 — a, the upper and lower bounds of m are
upper bound = X + ¢3! -
" n

= v
lower bound = X — 5! —=

a

The required sample size can be predicted by obtaining an estimate of the
standard deviation of the observations either from pilot runs or from initial
observations. As can be seen from above, the interval between the upper and .
lower bounds can be made as narrow as desired by making the sample size
sufficiently large.

Two assumptions made above are that the observations of the measure are
statistically independent and have a common normal distribution. This,
however, is not true in general and the following methods may be employed
to realize these assumptions in practice.

The first method is to have a number of independent simulated runs. The
mean measure obtained from each run can be used as an independent
observation. These can be assumed to be normally distributed in accordance
with the Central Limit Theorem. The confidence interval therefore can be
found by the procedure described.

When steady state measures are being estimated, the above procedure can
be quite wasteful since in each simulation run, the initial period is unproductive.
The alternative is to use a single simulated run and to divide the steady state
period into equal long intervals. The value derived from each interval can be
used as an observation. It should be noted that these observations are not
completely independent but by making the intervals sufficiently long, the
correlation can be decreased.

Variance Reducing Techniques

It has been pointed out that the precision of sample estimates can be increased
by making the sample size large enough. Increasing the precision is equivalent
to decreasing the variance of the sample estimates. The simple method of
repeated runs (or making a single run very large and dividing it into equal
intervals), treating the measures obtained from each sample as independent
sample values until the variance has been reduced to the desired level is
usually quite time-consuming. Special techniques for reducing variance have
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been devised. These techniques, extract as much and as precise information
as possible from the amount of simulation that can be economically executed.
These are three generally used techniques:

1. stratification
2. control variates
3. antithetic variables

The reader is referred to References 45 for discussion of these methods.
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