CHAPTER 3
Frequency and Associated Concepts

Introduction

This chapter develops the frequency balancing approach to the stochastic
process. This method has been used with considerable success in the field of
power system reliability evaluation and is known as the frequency and duration
approach. The concept of frequency is examined in detail and used to derive
expressions for the mean cycle time and the mean duration of a state. In
Chapter 5 the concept of frequency is used to derive conditions of mergeability
which are very useful in dealing with large systems.

Interstate Transition Rate

Consider a large number of identical systems having the underlying stochastic
process Z(7). All the systems start in state / and further assume that in one step,
state i can communicate with either state j or state k. If the histories of all the
systems are now plotted they may appear as shown in Fig. 3.1. These
observations are called independent realizations of the stochastic process Z(¢).
Further, if N realizations in which the system transits to state j are separated out,
the durations of the system in state i in this subset are called / independent
realizations of the random variable Xi ., i.e. the duration of the state i under the
condition that the system will transit to state j. In the stochastic process where
all the states intercommunicate, these realizations could be obtained from a
single long realization of the system by observing from the moment of each
entry into state 7 until the termination of state i by transiting to state j.

Define:

fii(x)
Fy(x)

The probability density function of the random variable X;

The distribution function of the random variable X;

P(X;<x)

-7 nma
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and

Sy(x)

1

The survivor function of the random variable X;;

I

f: fi(»)dy

Now introduce the random variable

Then

The expected number of transitions to state j in the interval (x, x + Ax)

n(x) = The number of realizations in which the system is in state i

at time x.

E{n(x)} = The expected value of n{x)

is given by

N[ faray

n(x)

An(x) = n(x) —n(x + Ax)
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Fig. 3.1. Independent realizations of the stochastic process Z(t).

@3.1)

Frequency and Associated Concepts 65

and the rate of transition from state i to state j, per realization surviving up to
x is
An(x) 1
Ay(x) = T
n(x) Ax
Ax - 0F

nx) dx

1_dn(x) ’ (.2)

dn(x
Substituting the values of n(x) and —giv) from (3.1)

- fux)
N = (3)

The transition rate from state i to j is therefore the same as the hazard rate
associated with the random variable X i The above derivation is useful in getting
an appreciation of the time specific transition rate as a relative expected rate. It
is, however interesting to transform Equation (3.3) into another form.

fiilx)
Nj(x) = =
(%) 5500)
_ fif(x)Ax 1
Ax—0t Ax Sij(X)
i P(x <X;; <x + Ax) 1
im
Ax—0* Ax P(x <X;;)
- lim P(x<X; <x+Axix <Xy) P(x <Xy)
Ax—o* Ax P(X <Xl})
P iS<x+ A X
- lim (x <Xy <x x|x <Xy) G4)
Ax—0" Ax
That is, as Ax > 0*

() Ax = P(x <X; <x + Ax |x <Xj)

= The probability of transiting from state 7 to state j in the
| interval (x + Ax) given that this transition has not taken
place up to time x

= The probability of a single transition from state  to state j
at the age x of state i




66 System Reliability Modelling and Evaluation

Therefore, as Ax - 0*
The expected number of transitions from state i to state j in the interval
(x,x + Ax)

Il

1.P(x <Xy <x+ Ax|x <Xj)
i) Ax

ie. Aj(x) = The expected or the mean transition rate from state i to
state j at the age x of state i.

The quantity A; {x) is called the age specific transition rate and under particular
conditions may be designated as the failure rate, hazard function, etc. The
concept of the interstate transition rate will be further treated in the next chapter
while dealing with the state transition diagram. When Xif is exponentially
distributed with probability density function p exp {-p x}, the age specific
transition rate, as shown in the last chapter, is constant, i.e.

1

M) =Ny = p = Mean value of X;

The transition rate is, therefore, constant, i.e. independent of the age of the
state and is equal to the reciprocal of the mean of the random variable X . This
property is true only for the exponential distribution when all the random
variables generating the stochastie process are exponentially distributed, the
transition rates are constant and the process is Markovian. The case of constant
transition rates will be treated in detail in this chapter. The discussion of non-
Markovian processes is deferred to Chapter 6.

The Concept of Frequency

The state space X of the stochastic process Z(r) is assumed to be partitioned into
two disjoint subsets X and X If any state of the subset is entered, that subset
is said to have been encountered.

Define:

f4(t) = The time specific frequency of encountering the subset xt, Thls is the
expected rate at which X% is encountered at time ¢. For Az > 07 (DAL
represents the expected number of times x*is encountered in the interval
(¢, t+AL).

El-{t) = The time specific frequency of encountering state j from state i. This is
the expected rate at which state j is encountered from state i or the mean rate
at which the system transfers from state i to state j at time 7.
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p{t) = The probability of being in state i at time ¢, for the given initial
condition.

p4(2) = The probability of the system being in X" at time ¢ for the given initial
conditions.

= Y @
iex*

)‘i' = The transition rate from state i to state j.

State j is encountered from state i at a rate A;; if the system is in state i, but if
the system is not in state i then this rate is obvxously zero. The transition rate
or the encounter rate can therefore be represented by a discrete random variable
ﬁl-](t) such that

N ifZ(H) = i

=1, ifZ(r) # i
Ey(y= NgP{Z(t) =i} +0.P{Z(t) #i}
= Nypi(t)

Since the states are all mutually exclusive

=Y T Ei®

i€X" jext

=Y X o (3.9)

iEX jext

If there is only one state j in X+, then the time specific frequency of
encountering it is

O =Y o (3.6)

i#i
Similarly, denoting the expected transition rate fromj to ieX ~ by Ej(t)

Ei(t) = pi(t) 3, N
ex-

AsAr—> 0" 1 (t)At and E(f)At represent respectively the expected number
of transitions mto and out of] state j in the interval (¢, £ + Af). Since the
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probability of more than one transition in (¢,  + Af) can be reasonably assumed
as 0(Ar), the quantities f (f)At and E(f)At can be interpreted as the probabilities
of a single transition mto and out of state j. The difference [f(t)At E (t)At]
therefore represents an increase in the probability of being in state 7, i e

Api(t) = fi(HAr —Ef(n)At

As At - 0"
dp;(t
dpi() _ —-pi®) Y, Nt ¥ PNy (€]
dt Se iex-

This can be recognized as the forward differential equation of state j. In matrix
form

Ap() = p'(2) (3.8)

where

p(t) = The column matrix whose ith value p,(¢) represents the probability
of being in state i at time ¢ for the given initial condition.
p'(t) = The differential of p(f)
= The transpose of the transition rate matrix used in the Markov
approach.

The frequency balancing approach has been used to write the forward
differential equations for the system and can be extended to derive expressions
for the system reliability indices both in the time specific as well as the steady
state domains.

Time Specific Domain

It is often necessary to examine the probable system performance over a finite
interval of time. It is usual in the literature to define reliability indices in terms
of system success or system failure. However, in many complex systems, there
may be more than one degraded mode of failure. For example, a large chemical
plant may not be just up or down but may have many possible capacity states.
This is also true of transportation systems which may not be just available or
unavailable and may have degrees of availability or unavailability. It is therefore
appropriate to define reliability measures in terms of a subset X+ where this
subset may contain just one state or several states of the system. In particular
applications the state will be referred to as success, failure, or some other
appropriate name. In the transient domain the following indices are commonly
used for repairable systems:
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1 Time Specific Availability of Subset X*

This is also designated in the literature as pointwise availability or instant
avallablhty and is the probability of the system being in any state contained in
subset XT at a particular instant of time ¢. This will be denoted by A () and
since all states of the system are mutually exclusive, i.e. separated in time

AL = Y pdD) (3.9)
S of

The probability of being in state i at time ¢ can be found from Equation
(3.9) and has been discussed in Chapter 2. When XV is constituted by the
system states which denote system failure, this can be called unavailability
of the system at time f and designated by U(¢). This is probably the most
widely used index in the transient domain.

2 Fractional Duration of Subset X +

The fractional duration of subset X* in the interval (z‘l s z) is also known as the
interval availability or average time in xt and is defined as the expected
proportion of the interval (¢, .z, )} spent in X% and denoted by D (¢, ,tz). Since
the states of the system are separated in time, the expected duration of X is
the sum of the expected durations in the states constituting X+, ie

+(r)dt

I pitydr = = — (3.10)

Dy(ty,t;) = s — 1
1iex*

Equation (3.10) can be understood by considering probability as a relative
duration. The probability of being in xtat tlme t,1.e. 4,(#) can be considered
constant over the interval (¢, t + Af), as At~ 0*. Since A ((?) can be considered
constant over the interval, in a very large number of realizations of the associated
stochastic process, on the average 4 (z)A¢ time will be spent in xt during
(t, t+Ar). Considering (¢,,t,) to be divided into m increments of At

Dy(ty, 1) = { Y AJt)At]/(t; —1)

e
fttle+(t)dt

s — 4
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Another interpretation of Equation (3.10) can be provided by denoting the
state occupied by ¢ by S(#) such that

Si(®)

1 if the system is in state i

0 if otherwise.

The proportion of (¢;, ;) spent in X is, therefore

1
T(t.t) = —— L S i(t)at
t2 —h ext
where the right hand side can be regarded as the limit of a time average taken
at points (0, At, 2A¢t, 3At, . . . ) as At > 0. Therefore, the expected value
Di(ty, t2) = E{T.(t1, 12)}

= f E{S{t)}dt =

Ir — 1 jex+

Y ( :’ P{S(1)=1}dr

1iextJ e,
1 t. ft2A+(t)
= L. | pdr =
1y =t ext Ji, 2 " h

3 Interval Frequency

The mterval frequency F. +(t1 it ) is defined as the expected number of times the
subset X" is encountered in the interval (t ,t.). Since the subset X is said to
have been encountered once, if the system transits from X~ to xt, Fy(t, it )
represents the expected number of transitions from X~ to X" and not from x*
to X™. In this treatment the state transition rates are assumed constant which
puts the stochastic process in the Markovian class. Similar treatments can,
however, also be made for non-Markovian processes.

The interval frequency can be obtained by integrating the Expression (3.5)
for time specific frequency over the interval, i.e.

t
Futi6) = |  foar

IR 311
- Yy jiext

Sometimes the interval frequency may be divided by the interval length to
obtain average interval frequency.
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Methods of Calculation

‘When the state space of the system is small, it may be possible to find explicit

expressions for the interval frequency and fractional duration. When the state
space becomes relatively large, this approach is not feasible. Methods for obtain-
ing time specific probabilities have already been described in Chapter 2. This
section extends those methods to the calculation of interval frequency and
fraction duration.

Method 1

The time specific state probabilities can be found by solving the following
differential equation in matrix form

P'(t) = P()R
with the initial condition P(0) =1, i.e. the identity matrix.

Here, A(t) = The matrix whose (#/)th term p; (t) denotes the probability of
being in state j given that the process was in state i at t =0
R = The transition rate matrix.

It was shown in the last chapter that if R has distinct eigenvalues then the
probability matrix can be expressed as
P(t) = SD()S™! (3.12)

where
D(t) = The diagonal matrix whose (ji )th element is exp (7;¢), r; being
the /th eigenvalue of R

S,S87! = The matrices formed from the right and left eigenvectors of R

If the distribution at £ = 0 is given by the row vector p(0), the distribution of
tis given by

p(®) = p(O)P(®)

The ith element of the row vector p(t) is denoted by p;(f) and represents
the probability of being in state i at time ¢ for the given condition at r = 0.
After finding p;(¢), 4 .(¢) can be calculated using Equation (3.9).

Fractional duration

Since only D(z) on the right hand side of (3.12) is time dependent
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J- ttzp (Hdt

1

t
p(O)SL D@)dtS™!

p(0)SM(z11,1,)S ™ (3.13)

where
(e"itz— elity )

ri

M(t,,t;) = The diagonal matrix whose (i) term =

Equation (3.13) thus yields f:z pi(t)dt and by substituting these values
in Equation (3.10), D,(z,, £,) can be calculated.

Interval Frequency
t

2
When the quantities/pl(t)dt have been calculated by Equation (3.13), these can
t

be substituted in (3.11) to determine Fo(t,.1,)

Method 2

If the initial state of the process is known, the differential equation becomes

p'(H) = p@®)R

The initial row vector p(0) is such that its ith element p{0) is equal to 1 if the
process started in the ith state, otherwise it is 0. The process can be segmented
into steps of a very small length At as shown in the last chapter and the
probability vector at time ¢ = jAr is

p(Ar) = p(j—1Af) [I + RAt] (3.14)

The state probabilities can be calculated by repeated application of the above
recursive relationship.

Fractional Duration

The fractional duration, using this technique, can be calculated using a discrete

time equivalent of (3.10). Assuming p{(At) to be constant over the interval
(AL (+1)Ar)
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3

pGADAL (3.15)

o

Dr(0,1)

~ =

.
L

where

Dr(0,¢) = The row vector whose i th entry, D;(0, ¢) represents the
fractional duration of state i in the interval (0, #).

Therefore
D.0,7) = 3, Dy0,7)
iExt
Interval Frequency

The interval frequency in the interval (0,f) can be evaluated using a discrete time
approximation of (3.11), i.e.

F0,0) =t ¥ Df0,1) 2 Ny (3.16)
ex- jex*

The above expression is readily understood by realizing that ¢ Dl(O,t) denotes
the expected duration in state {, which when multiplied by the constant
transition rate yields the expected number of transitions.

Steady State Domain

In many applications the time interval under consideration is very long, the
stochastic process is remote from the time of origin and therefore the probability
distribution has reached statistical equilibrium or is in a steady state condition.
Under these conditions

}1_{11 pit) = p;

Therefore
€ii(l‘) = Ej
= NyPi

Equation (3.5) in this limiting condition becomes

fi=Y Y N 3.17)

i€x- jex*
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Now as t - oo Equation (3.7) becomes

0=—p; ¥ Mt 2 PNy
Ex-

exX”
That is
= Y pN;
iex-
=p 2 N
i€x-
= E (3.18)

Equation (3.18) describes the frequency balance of state j with the rest of
the state space. This means that the frequency of encountering state j is equal
to the frequency of encountering the rest of the state space from state j. The
frequency of encountering a state may therefore be computed either by
calculating the expected transition rate out of the state or into the state. Purely
from a conceptual viewpoint, however, the frequency of encountering a state
is the expected transition rate into the state. This definition holds in both the
transient as well as the steady state domain. If the subset X" consists of more
than one state, then by following the same reasoning as for (3.7)

dpi(?)
)y ‘; c=—= Y Y N+ Y o) X N
iexr dt iext jex- ex- iext
Ast—> oo

fo= 2 P 2 N

jEX" iext

N ZDNRT

ext  jex-

= (3.19)

In further treatment, the steady state frequency will be simply denoted as
frequency. Equations (3.17) and (3.19) are of fundamental importance in
determining the frequency of cumulative or individual states.

The Frequency, the Cycle Time and the Mean Duration

The probability of being in X* at any time in the interval (¢, + T) as
t>ooisp, = .EX¢ p; and the corresponding frequency is f,. Therefore, as
1€

t = oo, the interval frequency
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F,(t,t +T) = The expected number of times X" is encountered in
the interval (¢, ¢ + T).

=Tf,
Consequently

T* = The expected time between the two encounters of X*, i.e., the
mean cycle time

T/F(t,t+T)

= 1/f, (3.20)
Also
d, = The mean duration of X*, i.e., the expected time of stay in X*
in one cycle
= T'p, (3.21)
= p.fs (322)

Equations (3.19), (3.20), and (3.22) are the backbone of the frequency and
duration method of system reliability evaluation. The application of the concepts
discussed is now illustrated with the help of the following example.

Example:  The state space diagram of two independent and identical compo-
nents is shown below in Fig. 3.2. The failure and repair of each component is
denoted by X and u respectively. The state description is as follows:

State 1 Both components up
State 2 One component is up and the other is down
State 3 Both components down

2 A
P N e B

u 2

Fig. 3.2. State transition diagram of two independent
identical components.

It is assumed that initially both the components are up. The calculation of
various indices is now illustrated.
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Time Specific Probabilities

The state differential equations can be written using the concept that the
expected transition rate into the state minus the expected transition rate out
of the state equals the rate of change of the state probability, i.e. using
Equation (3.7)

STATE 1: pi(t) = — 2\, () + up2(2)
STATE2: p5(f) = — (u+ Np2(2) +p1 (2N + p3(£)2u
STATE3: p5(f) = — 2ups(t) + p (O

The Laplace transform of the above equations, using the initial condition

pi(0) = 1, p(0) =0, and p3(0) =0
is as follows

sP1(s) = 1 —=2Np1(s) + up2(s)

$P2(8) = — (U + NPy (s) + B1(s)2N + pa(s)2u

sPa(s) = —2up3(s) + P2 (A

Solving the above equations

1 20u(s + 2u)
Pi®) = 5T
s+2N s(s+ A+ (s + 2N+ 2u)(s + 2N)
B NG + 21)
P = N T G+ 2t )
, 222
pa(s) =

ss+FA+ (s +2N+2w)

Expanding into partial fractions

2 2 2

pi(s) = 2 Es i + y
A+’ s s+x+pu s+20+w

pa(s) = 2\ 3 A—p A
b M+ ls sHrA+tu s+200+w)

)\2

1 2 1
: = |-y -
P = i s s ata s+2()\+u)}
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Converting the above

pi(®) = O\i 5 [U2 + e~ AHt 4 \2g-2(hri)l]
u

2\
- = + — (M)t a-2(A+u)t
p2() Ot n? [+ (= pe Ae ]
2

A
pi(?) = 2

= [1 *26_()‘”")1‘ + e—-2()\+u)t]
O+ w?

It should be appreciated that since the two components are statistically
independent, the above equations could have more easily been derived by
finding the probabilities of each component and using the product rule of
probabilities.

Steady State Probabilities
As t = =, the exponential terms disappear. The steady state values are

2

_ M
7T oy
2
7T o
)\2
T oy

The remaining indices are calculated for state 3. The calculation for the other
states is left to the reader as an exercise.

Fractional Duration

D:0.7) = 1 [ psat

2  a-(A+wT a2+ wT
A o, 1—e - e ]

T(\ + 1)? A+ + 20+
AsT oo
)\2
20D = G
= P3
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Interval frequency

F3(0,T) = fo T pa(P)Ndt

2’ A—u “ A )
= \uT+—(1— A+ T 1—e 20T
O+ )P [“ A S0+ )
Steady State frequency
f3 = ps2u
N
Ty

It can be seen that as T'— oo, the average interval frequency approaches the
steady state frequency.
F3(0,1) 2%

2
L. 0+

=/

Mean Cycle Time to the Encounter of State 3.
1

T h

_ v+

Ty

T,

Mean Duration of State 3.
ds = ps3Ts
-1
2u

Frequency Equilibrium in a System of Independent Components

Equation (3.19) denotes the frequency equilibrium of the subset X * with the
disjoint subset X". A case of special interest, from the point of view of the
frequency equilibrium, is the system comprised of V independent binary
components. The term ‘binary components’ is used here in the general sense of
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a process which exists in either of the two states, up and down, the duration in
each state being assumed exponentially distributed with the mean values of m
and r. The reciprocal of m is X which is the rate of transition from the up to the
down state, and similarly u, the reciprocal of r denotes the rate of transition
from the down to the up state. In such a system it can be shown that in
addition to frequency equilibrium of the state i with the disjoint subset
containing the rest of the states, there is also a frequency equilibrium between
any two individual states, i.e.

E;; = The frequency encounter of state i from state j, i.e. the expected
transitions per unit time from state j to state i.

E..
i
Tl’{e frequency encounter of state j from state i.

U}

This relationship is of considerable value when dealing with independent binary
unit systems.

Proof:  Let the state i comprise m components in the up state and &
components in the down state. Whenever a component changes state, the
system transits from state i to the state fitting the resulting description of
component states. Let it be assumed that if the component ‘0’ transits from
the up to the down state, the system transits from state i to j. Then

Ej = piNj
Mo Hp A

= 1 A 323
po+>\op1;[,; M + Npa€B g +2g| ° @.23)

where A is a set containing all the components in the up state, except the
component ‘0’ which is in the up state but is not contained in the set 4.
Similarly B is a set containing all the components in the down state.

Also

Eji = pik;;

Ao Mp Aq
= 3.24
Mo + >\0 PI;[A Mp + )\p QI;IB Mg + >\q Ho ( )

From Equations (3.23) and (3.24)

Ey = Ey
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Alternative Interpretation of Mean Cycle Time, Mean Duration and Mean
Frequency

The emphasis in the preceding sections is on the frequency as an expectation of
the state encounter rate. The mean cycle time is then obtained as the reciprocal
of the mean frequency. This section describes an alternative approach by first
deriving the expressions for mean times and then deducing the frequency
relationships.

This treatment is intended for theoretically inclined readers and requires some
acquaintance with renewal theory. This section may be omitted without any
loss of continuity.

The entire state space is again assumed to be partitioned into two disjoint
subsets X+ and X",

Let

U = The random variable specifying the time of uninterpreted wandering
of the system among the states ieX+} , i.e. starting in ieX+, this is
the time which the system spends in subset X" before once getting
out.

D = The random variable defining the time of uninterrupted wandering
of the system among the states {ieX' }

The sequence of random variables U and D defines an alternating renewal
process. This is shown in Fig. 3.3. The random variable U + D specifies the

cycle time, i.e. the time between two successive encounters of subset xtor

X". The quantity of interest is the mean value T}, of the random variable U + D,
ie. E(U+D) = E(U) + E(D) where

Uy D4 %) D Uz D3 Ug Dy
; —o"e z
\4—U1 + D]A—‘Pl
|- CYCLE TIME I
O RENEWAL OF x* 5 X —»
@ RENEWAL OF X~

Fig. 3.3 The alternating renewal process (U/,D) defined on the state space X.

E(U) and E(D) are respectively the mean values T, , T,; of the random variables
Uand D. In long term or steady state analysis the interval of interest is (¢, 7 + T),
t oot If the origin is, however, fixed at 7, i.e. the time is represented by x such
that x = 0, at ¢, then the origin of the process is at # = -oo, i.e. the process started
remote from the time origin. Such a process is called an equilibrium alternating
renewal process.
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Let
Sy(u) = The survival function of U

P{U>u}

il

For the equilibrium renewal process, the residual life time of random
variable U, i.e. the time y from a random instant ¢eU (i.e. under the condition
that the system is in subset X" at the instant t) to the termination of U has the
probability density function

S.(x)
€ (x) = 44
16,6} T,

The survival function Sy, (x) of the residual life time of U, U, therefore is

Su,x) = Tlf f " Suu)du

Differentiating this expression

dSu,) _ _ 1
P Tusu(x)

Since Sy(0) = 1

dSy (x -1
T, = [— dSu,(x) ] (325)
dx x=0
Now
Sy,(x) = P{U, >x}
= ¥ Pn (3.26)
S«
where
P} = P{Z=ili€X"},ie., the conditional steady state probability that
the system is in the ith state given that it is in the subset X*
2= 40
and

r{x) = The probability that the system which begins to operate in
state i € X* at some random instant of time in the equilibrium
process will not once get out of X* during x.
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It is obvious that

=p; ( > p.-)—l (3.27)

=

Since the transition rates )‘i K are assumed constant, the transitions from state 7
to state k are governed by random variables which have exponential probability
density functions. The probability density and the survival functions of the kth
process will be

fie(®) = Ao k=

and
e‘)‘ik"‘

Sin(x)

When the probability density function is exponential, the instant of entry does
not affect the probability density function, i.e. the probability density function
of the residual life time of the random variable is the same as that of the random
variable. Therefore, the probability that the system which begins to operate in
the state ieX" at some random instant of time, will not once get out of state

i to state j

me) = [ £ I sweau

R#i,j

= f“ \;j exp { Z )\,ku] du
x l

#i

(g o o

k#i
Therefore

) = % m)+ % [ 0- g0 E—)
JEX" JjEXT VO

k#i

PR RIS

+ 3 Agexp {"Z )\ikx}f 1 -0 EXP{ Y Aiky} dy
= EEE b

where Q;(y) is the probability distribution of the time at which the system gets
out of X* given that the system entered state jeX* at y = 0.
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-1 n
k=1
ki

+ Y Ajexp [‘ Zn: Xikx}J: a—-g,om

jex*

g4

Substituting into (3.26)

Z Aij

jeX”

Sy x) = P

ext

/—\
ng:

ok
$

dSUT(X) = Z Px* - Z >\u exp l_ Z )\xkx})
dx ex” i€ ’l::&li
+ Y ()\ij exp {* i .kx} (1 —Qix) exp{ i Kikx})
Eex* k=1 k=1
PE kR#i
—1 7)\”’(% Airx  exp {— i )\,»kx}
b3 e
«|. a-e0m exp{ ) A,-k(y)} dy)]
R
and
dSy,(x) _ *
dx oo iEZX'Pi j;:-kﬁ

Substituting into (3.25) and substituting the value of P;* from (3.27)

T, = Y Pf(Z P Y N,—)_l (3.28)

iex* o j€EX”
Similarly
Td - Z Pi ( Z Pi Z )\u) (329)
eX" i€X- JE

The expressions for T, and T,; have been derived by examining the
distribution of the states constituting Xt and X under stationary conditions.
The behaviour of the altematmg renewal process {U D¢ is now examined in
detail. Since x =0isat t > o (see Fig. 3.3)
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P,(x =0) = The probability that the system is in X* at the
observation origin, given the process started a long

time ago

= Py(t >=")

- iezx* bi '

T,

= = P 3

G (3.30)
Similarly
Ty
Pp(x =0)= Pp(x) = p; = (3.31)
D D i;{‘ i Tu + Td

Substituting (3.30) and (3.31) into (3.28) and (3.29) respectively

-1
Tpw=T,+Ty = (Z P; ZAU)

= jEX"

jex*

(Z pi Y )\ij)7 (332)
ie€X"

This expression for the cycle time is the same as that derived using the
expectation concept. The frequency of encountering X" at x is the same as
the renewal density of the random variable U + D. The renewal density is
defined as

= E(Nx,x+Ax)

Ax—0*

h(x)

where

Ny x+ax = The random variable representing the number of renewals
in (¢, x + Ax)

E Denotes the expectation
Now, let

h;i(x) = The renewal density of subset j given that the system is in
atx=0
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It can be shown that for a modified renewal process, i.e. a sequence of
independent random variables in which all the random variables are identically
distributed except the first one which has a different distribution, the expression
for renewal density is

L (m) (m)
f1(s), f(s) and A (s) are the Laplace transforms of f1(x), f(x) and & (x)
respectively.

The quantities f;(x) and f(x) are the probability density functions of the
first and the subsequent random variables respectively.

1. Determination of fix+x-(s)

If the system is assumed to be in subset xtat 0, the first renewal of X~ or
the encounter of X* occurs at U , T D, where the subscript indicates the .
number determined from x = 0 and not 7 = 0 (see Fig. 3.3) and the prime
indicates that the distribution of the first U is different from the subsequent
ones. The second renewal of X~ is at U,+D, and so on.

Now

fux) = Sux)

Tu
and

fp,(x) = fp(x)

Therefore

i = (L0

and
f(S) = fU(S)fD(S)
Therefore

- _ _(1 _fU(S))fD(S)
Px ) = =70 7o) (333)
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2. Determination of hix-x-(s) .’

o 1 —fp(s)
fils) = Tys
and B
1) = Fu)fp(s)
Therefore ; © )
A P L L I— 3.34
PO = T fe 06 (3.34)
Now _ .
fdx) = hx-(¥) = hxx-(x) P{Z0)=i€X"} »
+ hx-x-().P{Z(0)=iEX"}
ie.
Fus) = hx-(s) = hyrx-(5).P* + hx-x-(9) P
1
T T, + T
Converting
1
flx)y=f, = T, +T,
=L
T
= . N
PR
=3 pn 2 N
iext j€x-
=f&) =f (3.35) :

since it can be proved similarly that
1) = .=
Also from (3.29)

T, = The mean duration in X*
= T,P,

= PJf. (3.36)
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It can, therefore, be seen that the expressions for frequency, mean cycle time
and mean duration are the same as those derived using the expectation concept.

The Relationship to Average Values

It is quite well known that the arithmetic mean of a variable tends to its
expected value as the number of trials becomes large. This section examines its
application to the cycle time, the mean duration and the frequency indices. It
can be seen from Fig. 3.3 that the cycle time between two successive encounters
of X% is characterized by the random variable T = U + D. Thus T, =U +D is
the cycle time to the first encounter of X+ and T;=U;+D;is the cycle tlme
between the (i-1)th and the ith encounter of X™. The random variables T'; are
independently and identically distributed with mean T,,- Assume the random
variable T} to be observed » times and define the random variable

= Ty+T,+...+T,

T =
n

Then for any constant € >0
lim P{T—T,|1>e} =0

This can be interpreted that, as the number of encounters of xt increases,
the average cycle time approaches the mean cycle time with a probability of one.
The mean cycle time found by Equation (3.32) is therefore the long run
average interval between the two successive encounters of X7 Similarly it can
be seen that T, and T ; are the long run average residence periods of the system
inX" and X", Since the frequency is the reciprocal of the mean cycle time, it
can be appreciated that it is also a long term average.

The Concept of Equivalent Transition Rate

The concept of equivalent transition rate plays an important role in system
reliability evaluation. Equation (3.5) can be written as

[0 = 2 _z’pi(’))‘ij
iex” jEX
= P2k (1)
where
P.= Y pl®)

S
and
)\S}")— x+(¢#) = The equivalent transition rate from subset X~ to X*.
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Therefore A7
*
i€X" jEX* i€X"

The most important application of this concept is in reducing the system
state space. The states can be merged and the equivalent transition rate from
the merged states found by the application of Equation (3.37). The full
implications of the equivalent transfer rate and the limitations on its use are
outlined in Chapter 5 while deriving conditions of mergeability.
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