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ABSTRACT
Every  reliability  analysis  effort,  in  some  way,  involves 
searching the state space of the system for those states that 
represent the events of interest, typically failure of the system 
or  a  given  node  to  meet  the  demand.  This  essentially 
translates into a search procedure to efficiently identify states 
to be examined and then using a mechanism to evaluate these 
states.  Traditionally,  reliability  analysis  methods  are  based 
either on an implicit or explicit enumeration process or Monte 
Carlo sampling.  More recently,  methods based on artificial 
intelligence have been investigated both as an alternative to 
Monte Carlo for the search process as well as state evaluation 
techniques  in  conjunction  with  the  Monte  Carlo  methods. 
This  paper  will  examine  the  conceptual  basis  of  overall 
reliability evaluation process and explore the role of artificial 
intelligence methods in this context. It will also provide some 
examples of application to the reliability analysis  of hybrid 
systems  involving  conventional  and  alternative  energy 
sources.

I. INTRODUCTION
Many  probabilistic  methods[1,  2]  have  been  developed 
over  the  past  several  decades,  and  are  now being  used 
more widely in power system operations and planning to 
deal with a variety of uncertainties involved. Examples of 
these  uncertainties  are  equipment  outages,  load  forecast 
uncertainties,  weather  conditions,  uncertainties  in  the 
availability of basic energy and operating considerations. 
In  the  new  restructured  environment,  the  probabilistic 
methods  have  even  a  stronger  potential  for  application 
because of their  inherent ability to incorporate economic 
analysis  market  uncertainties.  By  including  the  cost  of 
reliability  to  customers,  strategies  for  optimum planning 
and operation can be designed more systematically than is 
possible with deterministic methods. 

The  basic  steps  of  reliability  assessment  are  shown  in 
Figure  1.  The  first  step  is  to  define  the  system  being 
analyzed and its operating policies. The system consists of 
components and therefore the models of the components 
and  system  need  to  be  defined  and  specified.  The 
combination  of  component  states  and  system  operating 
strategies  describes  system  states.  A possible  approach 
would  be  a  complete  enumeration,  i.e.,  to  select  each 
possible state in turn and evaluate it for its status as success 
or failure defined for a given node or the system. In power 
systems, the failure of the system often means that the load 
can not be satisfied and thus some part of it needs to be 
curtailed. Then based on the probability of the failed states 
and the magnitude and location of load loss, the relevant 
reliability indices can be computed. It  can be seen from 
this process that the following are needed for the reliability 
evaluation.

1) Component  and  system  models,  data  and 
operating strategies;

2) A state evaluation procedure;
3) Specification  of  reliability  indices  to  be 

computed.
In  all  but  very  small  systems,  complete  enumeration 
scheme is  not  feasible as the number of states  increases 
exponentially  with  the  increase  of  components.  This  is 
sometimes  called  the  curse  of  dimensionality.  The  two 
categories of methods that have been developed in the past 
can  be  classified  into  analytical  and  Monte  Carlo 
simulation (MCS). The analytical methods deal with this 
problem by several basic approaches such as state space 
reduction, state space truncation, implicit enumeration and 
contingency ranking [3].  The Monte Carlo method deals 
with  this  problem  of  dimensionality  by  sampling  states 
using the basic concept that they occur proportional to their 
probabilities  of  occurrence  [1,  4].  More  recently, 



computational methods based on metaheuristic techniques 
have  been  developed  for  this  purpose  and  show  the 
promise of more intelligent search of state space [5, 6] than 
Monte  Carlo.  In  a  sense  these  metaheuristic  techniques 
provide  a  more  systematic  and  intelligence  based 
truncation  or  pruning  of  state  space.  The  intelligent 
methods have also been used for faster evaluation of the 
selected system states [13].
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Figure 1. Reliability evaluation steps

This  paper  examines  the  conceptual  basis  of  the  overall 
reliability  evaluation  process  and  describes  the  role 
artificial intelligence methods can play in this context. It 
also  provides  examples  of  such  applications  to  the 
reliability analysis of conventional and alternative energy 
sources.

II. CONCEPTUAL CONSIDERATIONS
Methods  of  power  system  reliability  analysis  can  be 
considered to fall into two broad categories: analytical and 
computational methods where the computational methods 
include  Monte  Carlo  simulation  and  intelligent  search 
techniques. Basically, there are three stages inherent in any 
reliability  method:  state  selection,  state  evaluation  and 
index  calculation.  The  analytical  techniques  and 
computational  techniques differ  mostly in  the process of 
state selection as the number of possible states is extremely 
large  for  most  practical  applications.  The  analytical 
techniques use some device to circumvent the problem of 
straightforward  enumeration  such  as  state  merging, 
truncation,  implicit  enumeration  and  sequential  model 
building [1, 3]. The computational methods select system 
states  based  on  their  respective  sampling  or  searching 
mechanisms.  For  instance,  Monte  Carlo  techniques 
accomplish  this  by  sampling  states  proportional  to  the 
probabilities  of  their  occurrence while  Intelligent  Search 

(IS) techniques choose system states based on their fitness 
values  in  relation  to  the  target  problem.  Analytical 
techniques represent  the system by mathematical  models 
and  compute  reliability  indices  using  mathematical 
solutions.

A. State space
The whole state space is graphically illustrated in Figure 2 
by classifying all system states into different sets. 
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Figure 2. Classification of system states in the whole state 
space

The total state space can be broadly divided into two sets: 
success and failed system states. The failed states can be 
further classified into  dominant  and non-dominant failed 
states. Dominant failed states here mean states that  have 
more  dominant  effect  on  the  computation  of  reliability 
indices.  Any  power  system  reliability  model  using 
computational  methods  comprises  at  least  the  following 
steps:

1) Sampling of states: The states may be selected using an 
analytical  approach,  random  and  sequential  sampling  in 
MCS, or  intelligent (fitness-guided) sampling in IS.  The 
sampled state is defined by the status of all  components 
comprising the system.
2) Evaluation of states: This step is to determine whether 
the load can be satisfied given the status of generators and 
other components depending on the scope of investigation.
3) Estimation of indices: Reliability indices are estimated 
from  the  repeated  use  of  the  two  previous  steps.  The 
stopping criterion is based on the coefficient of variation 
being  less  than  a  stipulated  value  or  other  suitable 
consideration.



It is important to note that any selected state first needs to 
be  evaluated  before  it  can  be  classified  as  a  failed  or 
success state. The state evaluation may be simple in some 
situations  as  in  single  area  generation  reliability  studies 
where the sum of capacities is compared with the load to 
determine  loss  of  load.  In  multi-area  or  composite 
reliability  studies  a  flow  calculation  method  is  used  to 
determine magnitude and location of loss of load. The flow 
algorithm could be transportation flow method as in multi-
area studies or DC/AC power flow for composite system 
reliability studies. The state evaluation in such applications 
can be computationally intensive and may constitute  the 
most significant part of computational burden. Since every 
state selected needs to be evaluated, the number of states 
selected for the computation of the indices has a significant 
effect  on  the  computational  efficiency.  There  are  two 
important observations from this discussion:

1) The  number  of  states  sampled  or  selected  for 
evaluation should have as higher percentage of failed 
states as possible within the computational framework 
of the method.

2) The technique for state evaluation should be efficient.

In the remainder of this paper, we will first discuss the role 
of IS in the state selection and this will be the main focus 
of our paper. For comparison we will use the Monte Carlo 
simulation (MCS). Later we will also describe the role of 
artificial  intelligence  in  the  state  evaluation  process  and 
refer to the reader to relevant literature.

III. COMPARISON OF MONTE CARLO TO 
INTELLIGENT SEARCH

Let  us  first  examine  the  MCS  by  considering  its 
application to the estimation of the loss of load probability 
(LOLP) index. The various steps are outlined below.

Step 1: Select the seed for the random number generator. 
Set  the  maximum  iteration  number  and  let  the  initial 
iteration number k = 1;
Step  2:  Sample  the  system  state  randomly  (load  level, 
generation  status  and  line  status)  and  perform  a  flow 
calculation to classify it as loss-of-load or otherwise. 
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 Step 4: Check whether the coefficient of variation σ  is 

less  than  a  specified  threshold δ.   If  δ<σ or 

maxKk > , stop; otherwise, k=k+1, go to step 2.

It  can be seen from equation (2),  that  in MCS both the 
success  and  failed  states  enter  the  index  calculation. 
Therefore one can not focus on the identification of  the 
failed states  alone but  a  proportional  number of  success 
states  need  also  be  generated  to  calculate  the  reliability 
index. One should keep in mind though that both success 
and failure states will need to be evaluated before they can 
be classified as such.

Distinguished from the random sampling in  MCS, in  IS 
sampling can be interpreted as the “optimization process”. 
The  process  of  applying  IS  optimization  operators  in 
deriving the next generation of individuals is the sampling 
mechanism  of  IS  algorithms.  Here  the  individuals  with 
higher fitness values have higher chances to be sampled in 
each  iteration. The  general  computational  flow  of  any 
population-based intelligent search (PIS) algorithms can be 
illustrated in the following:

• Step 1: A population of individuals is randomly created.
•Step 2: Each individual is evaluated based on the specified 
objective function, which is used to measure the “fitness” 
of  each  individual.  Here  the  term  “fitness”  is  slightly 
abused  to  generally  indicate  the  “goodness”  of  each 
individual with respect to the specific problem, though it is 
usually used in genetic algorithms.
• Step 3: Determine if any stopping criterion is satisfied. If 
yes, halt the PIS algorithm; otherwise, go to next step.
•  Step  4:  Different  PIS  operations  are  applied  to  each 
individual  in  order  to  create  the  next  generation  of 
individuals.



• Return to Step 2 until any stopping criterion is satisfied.

It can be appreciated here that in IS, only the failure states 
contribute to the index calculation. Thus the focus here is 
to generate the dominant failure states. Success states also 
will  be  created  during  this  process  but  the  efficiency 
depends on the design of the fitness function to minimize 
the  generation  of  success  states.  In  this  fashion,  much 
fewer states need to be evaluated than the MCS. Therefore, 
unlike  MCS,  PIS  is  rather  problem  dependent,  where 
system states with higher failure probabilities have higher 
chances  to  be  selected  and  evaluated.  Here  in  PIS  the 
failure  probability  of  system  state  is  used  to  guide  the 
search.  In  some sense,  this  characteristic  enables  PIS to 
have  promise  to  outperform  MCS  for  some  type  of 
problems  due  to  its  potentially  higher  algorithmic 
efficiency. The driving force behind each PIS renders the 
search more purposeful by avoiding problem-independent 
random  sampling.  Due  to  the  difference  of  estimation 
philosophies  between  MCS  and  PIS,  the  deviations  of 
estimated results  in relation to the “real” values may be 
different  between  them.  For  instance,  in  MCS,  the 
estimated values of indices may be larger or smaller than 
the actual values; however, in PIS, the estimated values are 
always somewhat smaller than the actual ones. Especially, 
in highly reliable systems, since failure states are scattered 
in  the  state  space  in  an  extremely  sparse  fashion,  it  is 
possible  that,  in  a  given  sampling  window,  the  MCS 
method  can  not  sample  the  failure  states  in  their  “real” 
ratio with respect to the total number of system states. This 
will  inevitably  lead  to  larger  estimation  errors  of  the 
intended  reliability  indices  or  even  cause  convergence 
problem. It should be noted that PIS-based algorithms can 
have a special advantage in cases where flow calculations 
using DC/AC load flow are needed to evaluate a sampled 
state. When a state is sampled, it can be identified to be 
loss  of  load  only  after  the  evaluation  process.  Since  in 
MCS, majority of the states sampled are success states, this 
flow calculation will need be carried out more often. On 
the other  hand,  in  PIS the states are sampled in  a  more 
directed  fashion and thus  the  evaluation process  will  be 
used more efficiently.

In  PIS  algorithms,  each  individual  is  regarded  as  a 
potential  solution  and  many  individuals  comprise  a 
population.  For  a  specific  PIS algorithm,  individual  has 
different names. For instance, in GA, each chromosome is 
an individual,  which is made up of a bunch of genes. In 

ACS, the tour traveled by each ant (referred to as “ant” for 
brevity)  is  deemed  a  potential  solution.  In  PSO,  each 
particle  flying  in  the  search  space  is  thought  of  as  a 
candidate  solution.  In  AIS,  each  antibody  is  seen  as  a 
potential solution. A binary coding scheme may be used to 
represent each individual, where each bit takes one or zero 
to  indicate  the  component  state.  “One”  and  “zero” 
represent the working and failed status of each component. 
The  target  problem  is  concerned  with  combinatorial 
optimization, and its objective is to find  the failure state 
array which can be  used to  calculate  different  adequacy 
indices.  There  are  two  major  stages  in  the  evaluation 
procedure: First the failure-state array with respect to the 
maximum load demand is derived using PIS, and then the 
reliability  indices  are  calculated  by  convoluting  the 
effective total capacity with the hourly load based on the 
state array achieved previously. The computational flow of 
the  proposed  evaluation  procedure  is  laid  out  in  the 
following.
• Step 1: Generate a population of individuals randomly. 
The  states  of  components  are  initialized  by  binary 
numbers.
• Step 2: Evaluate each individual  i based on the defined 
objective function, for example LOLP with respect to the 
defined load. If its value is less than the specified LOLP 
threshold  (a  small  LOLP  value  below  which  the 
corresponding states are filtered out), it is assigned a very 
small  fitness  value  in  order  to  reduce  its  chances  of 
participating in subsequent PIS operations. Also if the state 
is a success state, the fitness of corresponding individual is 
assigned a very small value so as to reduce its chances to 
contribute to next generation. 
• Step 3: Increase the iteration number by one;
• Step 4: Check if any stopping criterion is met. If yes, halt 
the algorithm and output the state array derived. If no, go 
to the next step.
• Step 5: Different PIS operators are applied for producing 
the next  generation,  and then  repeat  the procedure  from 
Step 2 to Step 4 until any stopping criterion is satisfied.
•  Step  6:  Calculate  the  adequacy  indices  based  on  the 
achieved state array.

IV. STATE EVALUATION: NEURAL NET BASED 
METHODS

From the steps of the straight Monte Carlo simulation, we 
can make two observations: 1) for each sampled state, a 
flow calculation has to be performed to determine its load-
loss  status;  2)  because  of  the  random  sampling,  many 



similar  states  are  sampled  in  the  simulation  and  their 
chracteristics determined repeatedly. Therefore, the straight 
Monte Carlo simulation is very time-consuming.

Two  neural  net  based  methods  have  been  proposed  for 
state evaluation [13]. The first method (designated Method 
A in this paper) is to more efficiently determine the load 
loss characteristic of the sampled state. In this method, the 
Self-Organizing  Map  (SOM) is  trained  to  recognize  the 
loss-of-load  states.  Once  this  training  is  complete,  the 
SOM is  used along with  the  Monte  Carlo  simulation to 
estimate  the  reliability  of  the  system.  This  method 
overcomes  the  first  disadvantage  of  the  straight  Monte 
Carlo  simulation.  Incidentally,  another  method  that  has 
been  used  to  identify  system  states  in  flexible 
manufacturing systems[14] is based on Group Method of 
Data Handling (GMDH). This method can also be easily 
used for power system applications.

The  second  method  (designated  method  B)  proposes  to 
cluster  the  sampled  states  before  determining  their  load 
loss  characteristics.  In  this  method,  Monte  Carlo 
simulation is used first to accumulate states, then SOM is 
used to cluster these states and flow calculation is used for 
analysis  of  clustered  states.  This  method  overcomes  the 
second  disadvantage  of  the  straight  Monte  Carlo 
simulation.

It  has been shown that Monte Carlo simulation can be 
made  more  efficient  using  SOM  [13].  We  will  first 
discuss  the  input  training features for  SOM. Then the 
approaches to marry SOM and MCS will be discussed.

Input Training Features
For  the  problem  of  loss-of-load  state  identification,  a 
power  system  state  can  be  characterized  by  load 
conditions,  network topology and availability status of 
generators.  Because  the  probability  of  outage  of  a 
transmission line is very small, it may be assumed that 
the lines are fully available all the time. The input vector 
corresponding to a system state then is:

],...,,,,...,Q,[ 1i11 imiininii PGPGQPPX = (5)

ikP : Real power load of bus k for state i

ikQ : Reactive power load of bus k for state i

imPG : Available real power generation of bus 

m for state i 
n : The number of load buses
m: The number of generation buses

Marriage between MCS and SOM
It  may be recalled from the earlier discussion that  the 
two drawbacks of MCS are the excessive time taken by 
state  characterization  and  the  sampling  and 
characterization  of  similar  states  repeatedly.  This 
subsection  describes  two  methods  to  overcome  these 
drawbacks.

Method  A
Method A can determine the load loss characteristics of 
the  sampled  state  more  efficiently.  In  method  A,  the 
SOM is trained to recognize the loss-of-load states. Once 
this training is complete, the SOM is used along with the 
Monte Carlo simulation to estimate the reliability of the 
system. In this version of MCS-SOM the state evaluation 
is done by the trained SOM rather than OPF calculation. 
Thus this method overcomes the first disadvantage of the 
straight Monte Carlo simulation.  The overall procedure 
of method A consists of the following steps.        
Step 1: Prepare the training patterns for SOM. Training 

patterns  are  obtained  by  OPF  calculations 
which characterize each training pattern as loss 
of load or otherwise.

Step 2: Carry  out  SOM  training  with  the  prepared 
training patterns.

Step 3:  Label a neuron in the map as loss-of-load or no-
loss-of-load  according  to  the  majority  label 
voting of  the training patterns mapped to that 
neuron.

Step 4: After the SOM network is trained, Monte Carlo 
simulation  follows  the  same  procedure  as  in 
section  III  except  that  state  classification  is 
performed by SOM instead of OPF. The class 
(loss-of-load  or  no-loss-of-load)  of  each 
sampled state is determined by the label of the 
nearest neuron in the map.

Method B
In  Method  B,  states  sampled  by  MCS  are  clustered 
before determining their load loss characteristics. Monte 
Carlo simulation is used first to accumulate states, then 
SOM is used to cluster these states and OPF is used for 
analysis  of  clusters.  Thus  Method  B  overcomes  the 
second  disadvantage  of  the  straight  Monte  Carlo 



simulation.  The overall procedure of method B consists 
of the following steps.        
Step  1:  Perform Monte  Carlo  sampling of  the  system 

state space to get N samples. These samples are 
taken as training vectors to SOM. N is decided 
by experience, for example, N=10,000.

Step 2: Put the training vectors generated in step 1 into 
Self-Organizing Map and train it. After training, 
the  weight  vector  of  each  neuron  represents  a 
kind  of  equivalent  power  system  state  and 
maintains  the  original  data’s  topological 
relationships. Also some neurons do not map any 
of  the training vectors,  and some neurons map 
one or more training vectors.

Step 3: Perform OPF calculation for each neuron that has 
mapping of the training vectors. Determine the 
load-loss status of the neuron by using its weight 
vector as inputs to the OPF program. Label the 
neuron as “1” if it is loss-of-load and “0” if it is 
not loss-of-load. 

Step 4: Count the number of sampled states  in  which 

are mapped to each loss-of-load neuron i in the 
Self-Organizing Map.

Step 5:  Calculate the estimated LOLP value.

N

n

LOLP i
i∑

=  (6)

V. CASE STUDIES
In this section, two case studies using PIS and MCS-SOM 
methods for reliability evaluation are discussed.

PIS BASED STATE SELECTION
Some  studies  are  reported  in  Ref.  [6]  on  a  WTGs-
augmented IEEE RTS-79. The original RTS has 24 buses 
(10 generation buses and 17 load buses), 38 lines and 32 
conventional generating-units [7]. The system annual peak 
load is 2850 MW. The total installed generating capacity is 
3405  MW.  In  this  study,  one  unconventional  subsystem 
comprising  of  multiple  identical  WTGs  is  added  to  the 
RTS.  Each WTG has  an  installed  capacity of  1  MW, a 
mean up time of 190 hours and a mean down time of 10 
hours. The hourly derating factors for WTG output can be 
found in [8]. Reliability indices are calculated for a time 
span of one week and the load cycle for week 51 with peak 
load 2850 MW, low load 1368 MW and weekly energy 
demand  359.3  GWh.  The  impact  of  wind  power 

penetration  is  examined  by  incorporating  installed  wind 
power capacity of 400 MW.

For peak load of 2850 MW with wind power penetration of 
400 MW, the system adequacy indices obtained using the 
exact  method  [8],  MCS,  and proposed  PIS methods  are 
listed  in  Table I.  The PIS techniques include ant  colony 
system (ACS)  [9],  artificial  immune  system (AIS)  [10], 
binary  particle  swarm  optimization  (BPSO)  [11],  and 
genetic algorithm (GA) [12]. The units for LOLE, EENS, 
and LOLF are h/week, MWh, and occ./week, respectively. 
The  time  is  in  seconds.  Here  all  the  four  discrete  PIS 
optimizers are used to derive the meaningful system states. 
The population sizes for all PIS algorithms are set 300. We 
can see that the performance of MCS is the worst among 
all  methods  in  this  scenario of  our  problem in  terms of 
solution  quality  and  computational  time.  The  solutions 
derived by all PIS algorithms are comparable to the exact 
ones.  Among them,  the solutions  from ACS are  slightly 
more  accurate  than  those  of  others.  GA  is  the  most 
computationally expensive one primarily due to its time-
consuming  genetic  operations.  BPSO  has  the  shortest 
convergence time because of its simpler operations.

TABLE I. RELIABILITY INDICES FOR UNCONVENTIONAL 

CAPACITY 400 MW
Method   LOLE      EENS      LOLF Time 

ACS 0.789780   98.921   0.193233 21.6 
AIS 0.789768   98.912   0.193229 22.7 

BPSO 0.789760   98.909   0.193221 15.4 
GA 0.789740   98.900   0.193213 29.3 

MCS 0.771991   96.211   0.190632 59.4 
Exact method 0.789840   99.085   0.193275 29.9 

To  measure  the  efficiency  of  the  various  methods,  we 
define a ratio to measure the convergence performance (i.e. 
sampling  efficiency)  of  different  PIS algorithms  for  the 
scan and classification task.

 

samples  totalofNumber 

sampled states meaningful ofNumber =λ  

(7)
This  ratio  can be  used  in  each generation or  across  the 
whole  optimization  process.  It  varies  depending  on  the 
algorithm  efficiency  and  solution  density  in  the  search 
space. It should be noted that although this ratio is defined 



for measuring the convergence performance of PIS, it also 
has significance in the context of MCS which is virtually 
the estimate of LOLP as defined in (2), if the “meaningful 
states” are also interpreted as the “dominant failed states”. 
As compared with PIS,  in MCS a smaller  proportion of 
sampled system states are expected to be dominant failed 
states.

MCS-SOM BASED STATE EVALUATION
Here studies were performed on the original IEEE RTS-
79.  The reliability analysis  was  performed at  the peak 
load level. Studies using hourly load level can be found 
in [13].

Method A

A.  Input selection

The total load is fixed at the peak load of 2850MW. The 
input  features  for  the  SOM  network  consist  of  the 
generating  unit  statuses  only  with  the  lines  assumed 
available at all times. There are 32 units distributed at 10 
buses leading to the input vector:

],,......,,[ 10921 PGPGPGPGX =  (8)

B.  SOM training 

A total of 500 different training patterns were used to train 
the  SOM  network.  These  training  patterns  were  non-
repetitive and from the high probability region of the state 
space. This was achieved by varying the availability status 
of units through a preliminary Monte Carlo experiment and 
evaluation by OPF.  Table II [13] shows the characteristics 
of the SOM training.

TABLE II. CHARACTERISTICS OF SOM (METHOD A, PEAK LOAD 
LEVEL)

Input dimension 10
Number of training patterns 500
Kohonen layer (x*y) 20*20
Topology rectangular
Neighborhood type bubble
Learning rate type linear 

function
Iteration number for phase I 2000
Initial neighborhood radius for phase I 15
Initial learning rate for phase I 0.8
Iteration number for phase II 20000
Initial neighborhood radius for phase I 3

Initial learning rate for phase II 0.03

After  training,  the  map  was  calibrated  and  labeled 
according to the samples in the input data file.  The best 
matching neuron in  the  map corresponding to  each data 
vector was found. The neurons were then labeled as loss-
of-load  or  no-loss-of-load  according  to  the  majority  of 
labels “hitting” a particular map neuron. The neurons that 
got no “hits” were left  unlabeled.  Using this procedure, 
143  neurons  were  labeled  as  loss-of-load  or  no-loss-of-
load.

C.  Monte Carlo simulation

Monte Carlo simulation was performed to estimate the loss 
of load probability (LOLP) but for each sampled system 
state,  SOM, instead of OPF, was used to characterize it. 
The label of the nearest neuron to each sampled system 
state  was  the  estimate  of  load-loss  status.  Ten  thousand 
states were sampled in the simulation - there were 8759 no-
loss-of-load  states  and  1241  loss-of-load  states 
characterized  by  SOM.  Thus  the  estimated  LOLP  is 
0.1241.

Monte  Carlo  simulation  using OPF was performed to 
obtain the benchmark value of LOLP at peak load level. 
For  the  10000 system states  sampled  above,  there  were 
8774  no-loss-of-load  states  and  1226  loss-of-load  states 
characterized by OPF. The computed benchmark value of 
LOLP is  thus  0.1226.  Among  the  8774  no-loss-of-load 
state classified by OPF, 8720 states were classified as no-
loss-of-load correctly by SOM in method A, resulting in a 
classification accuracy of 99.38%. Among the 1226 loss-
of-load states,  1187 states were classified as loss-of-load 
correctly  by  SOM,  giving  a  classification  accuracy  of 
96.82%.  It  should  be  noted  that  calculations  for  the 
classification accuracy were made for the benchmark case 
and  not  for  the  case  where  only  SOM  was  used  for 
calculating the LOLP.

D.  Computing time

It  required  5  seconds  for  the  phase  I  of  SOM  training 
(global ordering) and 31 seconds for the phase II of SOM 
training  (fine-tuning).  For  the  characterization  of  all  the 
10000 sampled states, the computing time was 3 seconds. 
Compared to the straight Monte Carlo simulation,  which 
needs  to  perform  10000  OPFs,  the  computing  time  is 
greatly  reduced.  The  program  was  implemented  in  C 
language and run on a Sun Solaris 2.5.



Method B
Reliability analysis discussed below was also performed 
at the peak load level.

E.  SOM training 

The total load is fixed at the peak load of 2850MW. The 
input features for the SOM network are the same as (8). 
A total of 10,000 training vectors generated from Monte 
Carlo  sampling  were  used  to  train  the SOM network. 
The training parameters of SOM are listed in Table III.

TABLE III. CHARACTERISTICS OF SOM (METHOD B, PEAK 
LOAD LEVEL)

Input dimension 10
Number of training patterns 10000
Kohonen layer (x*y) 30*30
Topology rectangular
Neighborhood type bubble
Learning rate type linear function
Iteration number for phase I 3000
Initial neighborhood radius for phase I 20
Initial learning rate for phase I 0.9
Iteration number for phase II 30000
Initial neighborhood radius for phase I 3
Initial learning rate for phase II 0.03

F.  LOLP calculation

After SOM training, there were 368 neurons in the map 
that  had mapping of the training vectors.  These neurons 
were  labeled  as  loss-of-load  or  no-loss-of-load by using 
their weight vectors as inputs to OPF. After the map was 
labeled, the total number of samples mapped to the loss-of-
load  neurons  was  counted.  Among  the  10000  samples, 
there were 1187 samples mapped into loss-of-load neurons. 
Thus the estimated LOLP value is 0.1187.

As shown before in straight Monte Carlo simulation, there 
were  8774  no-loss-of-load  states  and  1226  loss-of-load 
states of the total 10000 samples and the benchmark value 
of LOLP at peak load level is 0.1226. Among the 8774 no-
loss-of-load  states  classified  by  OPF,  8763  states  were 
classified correctly by SOM in method B, resulting in a 
classification accuracy of 99.87%. Among the 1226 loss-
of-load states classified by OPF, 1176 states were classified 
correctly  by  SOM,  giving  a  classification  accuracy  of 
95.92%.

G.  Computing time

The computation time required for method B consists of 
two major components, the time required for training the 
SOM and that for using OPF to label the neurons as loss-
of-load or not. For the peak load condition, it required 6 
seconds for the phase I of SOM training and 55 seconds 
for the phase II.  Also because there were 368 neurons 
that had mapping of the training vectors, 368 OPFs were 
performed to label these neurons after the SOM training. 
Compared to  the  straight  Monte  Carlo  simulation  that 
needs  10000  OPFs,  the  computing  time  is  greatly 
reduced.  Method  B  was  also  implemented  in  the  C 
language and run on a Sun Solaris 2.5.

VI. CONCLUDING REMARKS
Artificial  intelligence  techniques  have  drawn  much 
attention  in  dealing  with  complex  and  challenging 
problems  in  power  systems.  Among  them,  reliability 
evaluation is a type of representative applications. In this 
paper, some concepts on reliability evaluation based on 
population-based  intelligent  search  as  well  as  neural 
network enhanced MCS are presented. Also some case 
studies are presented to demonstrate the effectiveness of 
the  proposed  methods.  It  appears  that  the  intelligence 
based methods hold promise for reliability studies and 
merit further investigation.
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