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1 Introduction

The imprecise-computation model has been pro-
posed in [1, 2, 3] as a means to provide flexibility in
scheduling time-critical tasks. In this model, tasks are
composed of a mandatory part, where an acceptable
result is made available, and an optional part, where
this initial result is improved monotonically to reach
the desired accuracy. At the end of the optional part
of a task, an exact result is produced. This model
allows one to tradeoff computation accuracy against
computation-time requirements.

Whenever a failure occurs in time-critical system,
several actions have to be taken. The fault has to be
identified and isolated. Recovery has to be invoked.
Some tasks that were running at the time when the
failure occurred may have to be restarted. The system
experiences a transient increase in workload. In some
cases the accumulated workload during the failure and
successive recovery may cause a temporary overload in
the system, and an increase of tasks that miss their
deadline. Means must be found to reduce the effect of
this temporary overload on the ability of the system to
terminate time-critical tasks in time. Imprecise com-
putation offers the flexibility to temporarily settle for
a lower degree of computation accuracy. In this way,
the computation-time requirements are lowered and
the effective workload therefore temporarily reduced.
Hence, an overload condition can be better handled.
Providing imprecise results in the presence of failures is
therefore a viable method to enhance the conventional
fault-tolerance techniques such as checkpointing.

The workload accumulated during a failure is the set
of tasks that were executing at the time when the fail-
ure occurred. If no provisions have been taken, these
tasks have to be repeated after the recovery and there-
fore add to the transient overload. One way to reduce
the amount of work to be repeated after a recovery is
to regularly checkpoint the state of the running tasks
to stable storage. In this way, only those portions
of the tasks that have not been checkpointed have to
be repeated. Checkpointing can therefore be viewed
as another method to reduce the temporary overload

caused by failures.
Due to its limited rollback and its predictable recov-

ery behavior, checkpointing is – besides various paral-
lel redundancy and replication schemes [4, 5] – a widely
used technique for fault tolerance in real-time systems.
Traditionally, checkpointing in real-time systems was
considered from a task-oriented view [6, 7]. Once a
task acquires a computational resource, it is supposed
to run until it finishes, or until a failure occurs. No
multiprogramming is therefore assumed in this model.
The problem of devising a checkpointing scheme for
real-time tasks typically reduces to determining the
optimal inter-checkpoint interval to minimize the ex-
pected execution time of tasks, a problem that has
found broad attention in the literature [8, 9]. How-
ever, most of todays real-time operating systems are
multiprogrammed. The execution of a task can be pre-
empted by other tasks. In such systems, minimizing
the expected execution time of tasks is still an impor-
tant means to meet timing constraints. In addition to
that, the problem of how to schedule both the execu-
tion of tasks and their recovery in case of a failure,
becomes an important issue.

In this paper we investigate ways to combine im-
precise computation and traditional checkpointing to
provide fault tolerance in time-critical systems. We
propose the model of checkpointed imprecise computa-
tion to achieve dependability in time-critical systems.
In Section 2 we review the traditional imprecise com-
putation model. In Section 3 we describe checkpoint-
ing time-critical tasks. An approach will be presented
on how to determine optimal checkpoint intervals with
a fixed number of failures. In Section 4 we propose
the checkpointed-imprecise-computation model. We
describe an approach to schedule checkpointed impre-
cise tasks with a given upper bound on the number
of failures from which the system has to recover dur-
ing the execution of any given task. In Section 5 we
use this approach to schedule tasks in a transaction-
processing system. Simulation results are given to
measure its performance under various loads and fail-
ure rates. The last section summarizes the proposed
method and points to future work.



2 Imprecise Computation

Our model of an imprecise-computation system con-
sists of a set T of n tasks, that is to be executed on
a single processor. Each task Ti in T has a execution
time τi, and consists of a mandatory part of length
mi and an optional part of length oi = τi − mi. The
task Ti is said to have reached an acceptable level of
accuracy after executing for mi units of time. During
the optional part, the result is improved until a precise
result is reached after oi units of execution. The error
ei of the result of Ti describes the amount of accuracy
that is lost if the task can not execute to the end of
its optional part. The error function ei(σ) describes
the error of Ti in a schedule where σ is the amount
of time that the schedule has assigned to the execu-
tion of the optional part of Ti. The total error e of
a schedule is the weighted sum of the errors ei for all
tasks in the schedule, that is, e =

∑n
i=1 αiei. If we

want to model a linear error behavior, for instance, we
choose ei = (oi − σi) and αi = 1/oi. The total error is
then e =

∑n
i=1(oi − σi)/oi, the normalized sum of the

amount of computation that has been discarded.
Each task Ti is subject to timing constraints, which

are given as release time ri and deadline di. They are
the points in time after which Ti can start its execution
and before which Ti must terminate, respectively. If
the deadline of a task is reached, the portion of the
task that has not been executed yet is discarded. If any
portion of the mandatory part has not been executed,
a timing fault is said to occur.

3 Checkpointing Time-Critical Tasks

We assume a fault model where faults are transient.
Tasks do not communicate with each other. Therefore
the effect of a fault is confined to the task that was
executing at the time when the fault occurred.

Each task Ti is checkpointed every si units of ex-
ecution. It takes ci units of execution to generate a
checkpoint. We call si the checkpoint interval and ci

the checkpoint cost. While the checkpoint is generated,
a sanity check of the computation is made and the
status of the computation is written to stable storage.
During the sanity check, the state of the computation
is analyzed and checked for correctness. Sanity checks
are assumed to not fail. Whenever a failure occurs, it
is detected by the next sanity check, and recovery is
initiated. During the recovery, the state of the com-
putation at the time of the last checkpoint is loaded,
and execution is resumed from there. The task is said
to be rolled back to the beginning of the checkpoint
interval.

When the task is scheduled, provisions must be
made for the case that failures occur during its exe-
cution. Analysis of checkpointing strategies typically
assume a stochastic error model, usually in terms of
an inter-failure distribution. Modeling failure occur-
rences as stochastic events makes the design and anal-

ysis of deterministic scheduling policies difficult. To
determine the schedulability of a task set, a worst-case
number of failures must be assumed. In this way, the
necessary recovery time can be allocated and sched-
uled. In our model, we assume that a task Ti can fail
up to ki times. If it fails more than ki times, it is
considered “erratic”, and special measures have to be
taken. For example, the Ti could be allowed to con-
tinue after it fails more than ki times if there is no
other task waiting to be executed; otherwise it would
be aborted and discarded from the schedule. For dif-
ferent tasks Ti and Tj , the values for ki and kj can
be different, reflecting such aspects as the execution
times of the tasks and their importance, and the avail-
abilities of the resources they access.

In general, the scheduler has to reserve enough time
for a task to recover from its failures. We call a
schedule ki-tolerant for task Ti if enough computa-
tion time has been reserved for Ti to recover from
ki failures without any task in T missing its dead-
line. More generally, a schedule for the task set T
is (k1, k2, . . . , kn)-tolerant (or k̄-tolerant where k̄ is
the vector (k1, k2, . . . , kn)) if it is k1-tolerant for T1,
k2-tolerant for T2, and so on. In traditional check-
pointing, a schedule that is ki-tolerant for Ti is as-
signed ki additional intervals of length si + ci to
the execution of Ti. This is to allow for ki roll-
backs and recoveries. Sometimes we will call the to-
tal length of the ki additional intervals the recovery
time hi of Ti in the ki-tolerant schedule. The total
time scheduled to execute Ti, assuming that ki fail-
ures occur, is the total execution time wi of Ti, and
wi = τi + bτi/sic(si + ci) + ki(si + ci).

One way to increase the schedulability of Ti, that
is, the probability for it to be feasibly scheduled, is
to minimize its worst-case execution time. Under the
assumption that ki failures occur, a checkpoint interval
s̃i can be determined that minimizes the worst case
execution time of Ti. We call s̃i the optimal checkpoint
interval.
Theorem 1. For a task Ti with execution time τi and
checkpoint cost ci, the optimal checkpoint interval s̃i

in a ki-tolerant schedule is s̃i =
√

τici/ki.
Proof: If exactly ki failures occur, we have wi =
τi + bτi/sic(si + ci) + ki(si + ci). This expression is
minimized when si =

√
τici/ki. 2

If less than ki failures occur, the total execution time
is naturally smaller, since the amount of time used for
recovery is smaller.

The problem of deriving optimal checkpoint inter-
vals has been extensively discussed under a variety of
assumptions, for example by Young [8], Gelenbe [9],
Coffman and Gilbert [10], Nicola et al. [11], and Grassi
et al. [7]. Most previous research assumes stochas-
tic failure occurrences, mostly in form of Poisson pro-
cesses. Our definition of an optimal checkpoint inter-
val, however, assumes a maximum number of failures,



si is chosen to minimize the worst case execution time
when there are ki failures that occur during the exe-
cution of the task Ti.

4 Checkpointed Imprecise Computa-
tion

In the traditional imprecise-computation model, we
want to generate schedules where two goals are met,
namely: (1) all mandatory parts meet the timing con-
straints to avoid timing faults, and (2) the total error
e is minimized. Shih et al. [12, 13] have developed sev-
eral scheduling algorithms that address this problem.
In [12] they formulate it as a network-flow problem. In
[13] much faster algorithms are found, that are based
on a variation of the traditional earliest-deadline-first
algorithm.) If we want to generate a k̄-tolerant sched-
ule for a checkpointed-imprecise-computation system,
on the other hand, we have to consider one addi-
tional goal; (3) for every task Ti, enough time hi

must be reserved to execute ki additional recoveries.
Moreover, when we minimize the total error (the sec-
ond goal), we have to consider that the total error
of a schedule varies, depending on whether any spe-
cific failure does or does not occur. The total error
of a k̄-tolerant schedule has to be defined more pre-
cisely. In the following discussion, by total error we
mean the total error of a schedule, assuming that all
K = k1 + k2 + . . . + kn failures do occur. We call
a k̄-tolerant schedule of T that meets the three goals
stated earlier an optimal k̄-tolerant schedule of T .

In this section we describe a technique to determine
an optimal k̄-tolerant schedule in an imprecise com-
putation system. We assume that tasks can be pre-
empted at any time, even during the checkpoint gen-
eration. We assume the total error e of a schedule to be
the weighted sum of the amount of computation that
has been discarded, that is, e =

∑n
i=1 (oi − σi)/oi.

This definition of a total error is said to define a lin-
ear error behavior. Shih et al [12, 13] distinguished
two cases of linear error behavior. In the simpler case,
called the unweighted case, all weights in the total er-
ror are identical. In the more general weighted case,
they may vary.

Figure 1 shows a basic algorithm (Algorithm C) to
optimally schedule k̄-tolerant checkpointed-imprecise
computations. The following argument shows that Al-
gorithm C is optimal in the way we defined earlier: As
shown in [13], Step 2 either generates a feasible sched-
ule for the mandatory part or declares failure. Goal (1)
is therefore met. Since we included the recover time
in the mandatory part in Step 1, goal (3) is also met.
Since Step 2 minimizes the total error for T k̄ (the task
set T with all K failures occurring,) it minimizes the
total error for the case where all K failures occur, and
hence satisfies goal (2).

If one of the fast algorithms described in [13] is
used, Algorithm C has a complexity of O(n2logn) and

Algorithm C:

Input: Task set T defined by mandatory parts mi,
optional parts oi, a vector k̄, recovery time hi and
timing constraints ri and di.

Output: An optimal k̄-tolerant schedule S or the con-
clusion that the tasks in T cannot be scheduled
to both be k̄-tolerant and meet the timing con-
straints.

Step 1: Transform the task set T into a task set T k̄

by modifying the mandatory part mi of each task
Ti according to the following rule:

• mk̄
i = mi + hi

Step 2: Apply an algorithm to schedule the imprecise
task set T k̄ to minimize the total error.

Figure 1: Algorithm C.

O(nlogn) for the weighted and unweighted case, re-
spectively. Its low cost makes it suitable for on-line
scheduling. Whenever a new task is released and its
parameters become known, the scheduler recomputes
a new schedule, including this new task along with the
remaining portions of other tasks.

The assumption that all K failures do occur is con-
servative. Under normal circumstances, very few fail-
ures occur, if any at all. In the following, let qi in
q̄ = (q1, q2, . . . , qn) denote the number of failures ac-
tually experienced by Ti during its execution. If task
Ti terminates successfully after experiencing qi ≤ ki

failures, the recovery time for the remaining ki − qi

failures could be made available to the remaining tasks
for their execution. In its basic form, Algorithm C does
not make use of this additional time. The low complex-
ity of Algorithm C allows the scheduler to generate dy-
namically adjusted schedules when less than ki failures
occur during the execution of any task Ti. This idea
is used in the following Algorithm C1 (see Figure 2)
that dynamically adjusts the schedule to the occur-
rence of failures. We note that Algorithms C and C1
are identical when all K planned failures occur. The
following theorem states that Algorithm C1 generates
the optimal k̄-tolerant schedule, independently of how
many failures actually occur during the execution of
the schedule.
Theorem 2. For every k̄ = (k1, k2, . . . , kn) and q̄ =
(q1, q2, . . . , qn) with qi ≤ ki, Algorithm C1 generates
a k̄-tolerant schedule S that is optimal among all the
q̄-tolerant schedules.



Algorithm C1:

Input: Task set T defined by mandatory parts mi,
optional parts oi, two vectors k̄ and q̄ with qi ≤ ki,
recovery times hi, and timing constraints ri and
di.

Output: An schedule S that is both k̄-tolerant and
optimally q̄ tolerant, or the conclusion that the
task set T cannot be scheduled to both be k̄-
tolerant and meet the timing constraints.

Step 1: Use Algorithm C to generate an initial k̄-
tolerant schedule S1.

Step 2: Whenever the mandatory part of task
Ti successfully terminates at time ti af-
ter qi failures, use Algorithm C to generate
a (k1, k2, . . . , ki−1, ki+i, . . . , kn)-tolerant schedule
SC

i+1, starting at time ti, of the remaining parts
of the tasks. Define the schedule Si+1 to be the
sequence of Si up to ti and SC

i+1 from ti on.

Step 3: Return the schedule Sn.

Figure 2: Algorithm C1.

Proof: We assume that the tasks in T are sorted ac-
cording to increasing termination time ti (as generated
by Algorithm C1,) i.e. for Ti and Tj , i < j iff ti < tj .
We define t0 = 0. For every j, the schedule Sj is identi-
cal to the schedules Sj−1 in the interval [t0, tj ] and SC

j

in the interval [tj , tn]. Sj−1 is optimally (q1, . . . , qj)-
tolerant for the portions of the tasks that are scheduled
in the interval [t0, tj ]. SC

j is optimally (kj+1, . . . , kn)-
tolerant for the remaining parts of the task set. By
virtue of the linearity of the total error, the schedule
Sj must be optimally (q1, . . . , qj , kj+1, . . . , kn)-tolerant
for the entire task set T . 2

5 Results

In this section, we evaluate the checkpointed-
imprecise-computation model in the simulation of a
transaction-processing system. On-line transaction-
processing systems are a good example of an area
where fault-tolerance and real-time techniques are
applied to achieve bounded-response-time and high-
availability requirements. Our model contains a single
processor that executes transactions, modeled as tasks.
The time between the arrival of tasks is exponentially
distributed with rate λ. The service time (i.e. the
processing time τi) of task Ti is normally distributed

and is partitioned into a mandatory and an optional
part according to a factor µ, so that mi = µτi and
oi = (1 − µ)τi. All tasks have identical checkpoint
cost c, checkpoint interval s, and number of planned
failures k. Each task is subject to timing constraints;
the release time ri is identical to the arrival time. The
deadline di is defined as ri +D, where D is a constant
denoting the upper bound on the response time for
all tasks. If the mandatory part of the task Ti is not
terminated at time ri + D, Ti missed its deadline and
causes a timing fault. It is discarded from the system.
The processor is allowed to fail, and the time to failure
is exponentially distributed with rate ρ. Whenever a
failure occurs, it is detected at the next sanity check
of the currently running task, which is rolled back to
its last checkpoint.

In the following simulations we use Algorithm C to
generate a new schedule whenever a new task arrives.
If the task cannot be feasibly scheduled, it is rejected
at scheduling time. Whenever a task experiences more
than k failures, it is assigned the lowest priority among
all the tasks. This is done by declaring the remain-
ing portion of the mandatory part to be optional. In
the following, the processing times are normally dis-
tributed with mean 1.0 and standard deviation 0.3.
The error e is defined to be the unweighted sum of
the lengths of the optional parts that were discarded.
The following parameters are constant throughout the
simulations: D = 10.0, c = 0.01, and k = 1.

Figure 3 shows the effect of the checkpoint inter-
val s on the performance of the system. As predicted
in Section 3, for tasks with mean processing time of
1.0, c = 0.01, and k = 1, the checkpoint interval
s̃ =

√
τc/k results in the lowest miss rates. The failure

rate is ρ = 0.3. The dotted line is used as reference
and represents the case where no failures occur and no
checkpointing is performed.

6 Summary

In this paper we introduced the model of check-
pointed imprecise computation. It uses the imprecise-
computation model as a technique to increase the flex-
ibility required when scheduling recoveries in a check-
pointed real-time system. This is especially suitable in
systems with very low failure rates, where most of the
time reserved for recovery could be used to perform
optional computation. In addition, checkpointing is
an integral part of the imprecise computation model.
Whenever a new, more accurate result has been cal-
culated, either at the end of the mandatory part, or
during the optional part, the system may store it to
stable storage. We may think of it as a checkpoint
being generated.

We have presented two basic algorithms to sched-
ule checkpointed imprecise task sets. Both algorithms
guarantee that the task set is schedulable with a
specific number of failures and generate a schedule



that minimizes the average error. We are currently
evaluating the performance checkpointed imprecise-
computation approach in general, and of the al-
gorithms in specific for a transaction-based model
through simulation. The performance evaluation does
not consider several important aspects at this stage.
We want to evaluate the performance of the algorithms
for systems with very small failure rates. We are cur-
rently looking into general techniques to evaluate sys-
tems with very rare event occurrences. We also want
to analyze if – and how – fluctuations in the failure
rate affect the performance of our approach differently
than fluctuations in the basic workload (in terms of
arrival rate.)

The basic algorithms presented here schedule the
task sets to guarantee in a conservative way that the
system can recover from a worst-case number of fail-
ures. In systems with very low failure rates, this either
limits the workload that can be feasibly scheduled, or
becomes prohibitively expensive (in terms of time to
generate the schedule) when the schedule is adapted
whenever a failure does not occur. We are currently
evaluating algorithms that take an opposite approach.
They allocate the minimum number of recovery time
at any given point in time and adapt the schedule only
in the rare event that the system experiences a failure.
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Figure 3: Effect of checkpoint interval s.


