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Abstract

We propose and analyze a methodology for provid-
ing absolute differentiated services with statistical perfor-
mance guarantees for real-time applications in networks
that use class-based (as opposed to flow-aware) static-
priority schedulers. We develop a method that can be used
to derive statistical delay guarantees in a flow-unaware
fashion. Traditionally, both deterministic and statistical de-
lay analysis methods either depend on schedulers that keep
per-flow state information, or require detailed information
about flow population at delay analysis time. The fact that
no such information is needed for delay analysis allows us
to perform deadline tests during system (re-)configuration
time. We are so able to reduce the runtime admission con-
trol to a simple utilization test. No explicit delay computa-
tion is necessary at admission time, making this approach
scalable to large systems.

1 Introduction

Architectures for providing delay-guaranteed commu-
nication over internetworks either follow a connection-
oriented model or at least rely on detailed per-flow infor-
mation. In the IETF Integrated Services (intserv) archi-
tecture [2], for example, each connection is controlled both
by admission control at connection admission time and by
packet scheduling during the lifetime of the connection. At
establishment time, the necessary resources must be allo-
cated to the new connection, and during the lifetime, the
connection is policed to ensure that the abnormal behavior

of a connection does not affect other connections. This ne-
cessitates that information about each connection is kept by
each node along the path for admission control and packet
forwarding.

It is agreed upon that Integrated Services do not scale.
High-speed routers are required to maintain state and per-
form scheduling decisions for large numbers of connec-
tions. In addition, as the number of connections increases,
the run-time overhead incurred in connection establishment
and tear-down increases as well. The Integrated Services
architecture therefore cannot provide scalable QoS guaran-
teed services, and the lack of scalability is due to overhead
both at connection establishment and during the connection
lifetime.

The Differentiated Services (diffserv) architecture is
aimed at supporting service scalability through aggrega-
tion of flows into service classes [7]. Network nodes in
diffserv display per-hop, per-class behavior, and need
not maintain per-flow information. Since each router only
guarantees that service agreements are locally maintained
on a per-class basis, intserv-style end-to-end guaran-
tees are difficult to provide. The end-to-end service might
vary with networking conditions. A number of approaches
have been proposed to provide intserv-like end-to-end
performance without per-flow information in the network
core. For example, assuming that no dynamic routing oc-
curs, the Premium Service, which has been defined within
the diffserv architecture, can offer the user a perfor-
mance level that is similar to that of a leased-line, as long
as the user’s traffic is limited to a given bandwidth [18]. We
call this type of service absolute differentiated services.

In order to provide service guarantees, an admission



control mechanism has to be in place, which makes sure
that enough resources are available to satisfy the require-
ments of both the new and the existing connections after the
new connection has been admitted. In order to keep steps
with the scalability requirements for differentiated services
networks, any admission control mechanism must be ex-
tremely light-weight so that can be realized in a scalable
fashion. While the benefits of flow aggregation in terms of
reduced overhead for packet scheduling are clear, the ques-
tion of how to take advantage of the flow aggregation in
differentiated-services networks for scaling of connection
admission remains to be answered. In particular, meth-
ods must be found that work in the absence of per-flow
information and when policing in the network is done on
a per-class basis only. A number of approaches are being
studied (e.g., [4, 24]) for admission control that relies on
class-based information. In [24], we use appropriate system
(re-)configuration steps to derive safe resource utilization
bounds in each network node. Admission control is then
reduced to a simple utilization-based test along the path of
the flow: as long as the utilization of links along the path
of a flow is not beyond a given bound, the probabilistic per-
formance guarantee can be met. Thus, this approach (called
Utilization-Based Admission Control – UBAC – in the fol-
lowing) eliminates explicit delay analysis at admission time,
and helps the system scale up.

Utilization-based admission control (UBAC) is not new
to networks. The fluid-flow model in the intserv frame-
work, for example, allows various forms of utilization based
admission control [20]. Such approaches cannot be used in
a diffserv framework, however, because the fluid-flow
model relies on guaranteed-rate schedulers, which need to
maintain per-flow information and provide strong isolation
between flows. The challenge of using the UBAC method
is how to verify the correctness of a safe utilization bound
at configuration time, when (i) schedulers in the nodes pro-
vide no policing and generally no isolation between flows
belonging to the same class (we will be using class-based
static-priority schedulers in this paper) and when (ii) no in-
formation is available yet about the flow population. For the
case of deterministic performance guarantees for absolute
differentiated services, we have derived methods to deter-
mine and/or assign safe utilization bounds (e.g., [24]).

While deterministic services provide a very simple
model to the application, they tend to heavily overcommit
resources because they account for the worst-case scenario.
In real systems, this mostly results in significant portions of
network resources (bandwidth etc.) being wasted [25]. Sta-
tistical services, on the other hand, significantly increase the
efficiency of network usage by allowing increased statisti-
cal multiplexing of the underlying network resources. This
comes at the expense of packets occasionally being dropped
or excessively delayed. In this papers we will show how

such probabilistic guarantees can be provided in a differen-
tiated services framework.

We will describe below how significant progress has
been made to provide statistical performance guarantees
within the intserv framework. All these results depend
either on flow-aware schedulers or on information about
flow population during admission control, and would there-
fore not be suited for use in a diffserv setting.

Our approach is based on rate-variance envelopes [11,
12], a simple and general traffic characterization. Such en-
velopes describe the variances of the flow rates as a function
of the interval length. The results on delay violation proba-
bility derived in [12] depend on detailed information about
the flow population. In this paper, we will develop flow-
unaware versions of these results, and so develop a method
that allows us to analyze delays and determine safe utiliza-
tion bounds without depending on the dynamic status of the
flow population. This will provide the basis for a scalable
admission control for statistical performance guarantees in
absolute differentiated services.

We will consider networks that use class-based static pri-
ority schedulers. Given that static priority scheduling is
supported in many current routers (e.g., Packet Engines’
RowerRail Routing Switch), our approach can be easily im-
plemented in existing networks. As expected, our experi-
mental data show that statistical services can achieve much
higher utilization than deterministic services.

The rest of the paper is organized as follows. In Sec-
tion 2, we describe previous work on absolute differenti-
ated services and statistical service in general. The under-
lying network and traffic models for this study are intro-
duced in Section 3. In Section 4, we develop a delay anal-
ysis methodology that is insensitive to flow information. In
Section 5, we provide extensive experimental data to illus-
trate that the utilization achieved within a statistical model
is much higher than within a deterministic model. A sum-
mary of the paper is given in Section 6.

2 Previous Work

A good survey with recent work on absolute differenti-
ated services has been done in [21]. Nicols et. al. [18] pro-
pose the premium service model, which provides the equiv-
alent of a dedicated link between two access routers. This
model provides absolute differentiated services in priority-
driven scheduling networks with two priorities, in which
the high priority is reserved for premium service. Cruz
[5] describes SCED+, which provides both guaranteed and
statistical rate and delay bounds, and addresses scalability
through traffic aggregation and statistical multiplexing. Sto-
ica and Zhang [23] describe an architecture to provide guar-
anteed service without per-flow state management by using
a technique called dynamic packet state (DPS). Our work is



based on static-priority scheduling, which is relatively sim-
ple and widely supported.

Statistical service has been studied via envelopes of
bounding moment generating functions [3], exponentially
bounded envelopes [22, 27], and envelopes consisting of
families of bounding distributions [13, 28]. Statistical en-
velopes have also been applied to resource allocation for
inter-class resource sharing [19] and video-on-demand ser-
vices [9]. Much work has been done to generalize schedu-
labilty conditions for a deterministic service to a probabilis-
tic framework. Several researchers made probabilistic ex-
tensions to deterministic service models. In [12], a rate-
variance envelope is introduced, which describes the vari-
ance of the arrivals of a flow as a function of a time pe-
riod of length. In [10], arrivals on a flow are assumed to be
characterized by the rate-variance envelope and a long-term
arrival rate. Then, applying the a central limit theorem argu-
ment, a bound for the probability of a delay bound violation
is derived for a static priority scheduler. In [12], the same
framework is used to address bounds on the rate-variance
envelope for regulated, adversarial traffic sources. In [11],
the authors use a rate-variance envelope as a simple way
to capture the second-moment properties of temporally cor-
related traffic flows, and to describe how quickly the rate-
distribution becomes concentrated at the mean rate with in-
creasing interval-length, a key factor for computing delay-
bound-violation probabilities. They show empirical rate-
variance envelopes for several long traces of compressed
video to show how it captures the burstiness properties of
realistic network traffic sources. In this paper, we will use
this rate-variance envelope to do statistical delay analysis.

Admission control has been investigated widely [6, 8,
16]. The various approaches differ from each other in that
they may require different scheduling schemes and so can
be of vastly different complexity. For example, traditional
admission control in networks with static priority schedul-
ing is very complicated. Due to absence of flow separa-
tion, for any new flow request, admission control needs to
explicitly compute and verify delays for the new and exist-
ing flows. This procedure is very expensive with increasing
numbers of flows. The Utilization-Based Admission Con-
trol (UBAC) adopted dramatically reduces this complexity.

In its basic form, UBAC was first proposed in [15] for
preemptive scheduling of periodic tasks on a simple pro-
cessor. A number of utilization-based tests are known
for centralized systems(e.g., 69% and 100% for periodic
tasks on a single server using rate-monotonic and earliest-
deadline-first scheduling, respectively [15]), or distributed
systems(such as 33% for synchronous traffic over FDDI
networks [1]). In this paper, we adopt utilization-based
tests in providing differentiated services in static priority
scheduling networks.

3 Network and Traffic Models

Our assumptions about network nodes and network traf-
fic follow the Differentiated Services architecture: In the
network, we differentiate flow-aware edge routers from
core routers, which are only aware of aggregations of flows
in form of flow classes. The network traffic consists of
flows, which each belong to one of several flow classes. Ex-
amples of such flow classes are best-effort, voice-over-IP,
video, or others. The flow class specifies both the traffic
descriptor of a flow and its QoS requirements. We proceed
below to describe our models in more detail.

3.1 Network Model

The IETF diffserv architecture distinguishes two
types of routers: Edge routers are located at the bound-
ary of the network, and provide support for traffic polic-
ing. Core routers are within the network, and maintain no
flow information. Scheduling decisions within the core are
therefore made based on class information only. Routers
are connected through links, which we assume – for sake of
simplicity of argument – to all be of capacity C, in bits per
second.

When we compute delays, we follow standard practice
and model a router as a set of servers, one for each router
component where packets can experience delays. Packets
are typically queued at some of these servers, typically at
the output buffers, where they compete for the output link.
Hence, we model a router as a set of output link servers.
The other servers (input buffers, non-blocking switch fab-
ric, wires, etc.) are typically not congested, and therefore
can be eliminated by appropriately subtracting their con-
stant delays from the deadline requirements of the traffic.

We assume that the schedulers in the nodes are not flow
aware. Policing and scheduling therefore happens at class
level, with class-based static priority schedulers assumed in
this paper. Packets belonging to classes with higher priori-
ties will be served prior to those with lower priorities.

Using class-based static priority schedulers alone makes
it difficult to determine statistical end-to-end delays. The
delay analysis methods described below rely on statistical
independence among flows, and without additional mech-
anisms, the flows are no longer independent after being
multiplexed at a server. Statistical independence can be re-
established with the use of class-based jitter controller [14]
at each core router. Class-based jitter control works by de-
laying each packet in a core router by its ahead time before
passing the packet to the schedulers. The ahead time is the
amount of time by which the packet left the previous server
ahead of the deadline for its class. In this way, the statis-
tical properties of the traffic arriving at the network edge
is re-generated at each core router. It follows that the end-



to-end delays can be easily determined from local delays
at each server along the path of a flow. For example, we
will describe in Section 4.2 how the end-to-end delay prob-
ability is bounded by a product formula of the local delay
probability of each server along the path of a flow. In the
following discussion, we will therefore focus on the single-
server analysis, and return to the end-to-end delay case in
Section 4.2.

3.2 Traffic Model

We call a stream of packets between a sender and re-
ceiver a flow. Packets of a flow are transmitted along a sin-
gle path, which we model as a list of link servers. Follow-
ing the diffserv architecture, flows are partitioned into
a number, say M , classes. QoS requirements and traffic
specifications of flows are defined on a class-by-class basis
1. We assume that at each link server, a certain percentage
of bandwidth is reserved for each particular traffic class. Let
αi denote the percentage of bandwidth reserved for Class i.
It is the responsibility of the admission control module to
ensure that the bandwidth usage of individual classes does
not exceed the reserved portion. This is necessary to pro-
vide isolation among classes and hence to guarantee end-
to-end delays to the flows in each class.

We model the traffic arrival for a flow as a stochastic ar-
rival process A = {A(τ), τ ≥ 0}, where random variable
A(τ) denotes the incoming traffic amount of the flow for a
link server during time interval [0, τ ]. The arrival process A
is stationary and ergodic. The traffic arrivals for any two dif-
ferent flows are stochastically independent at the edge of the
network and jitter controllers in the core routers preserve in-
dependence throughout the network core. The traffic arrival
can be bounded either deterministically or stochastically by
the arrival traffic envelopes as follows:

Definition 1 (Deterministic Arrival Traffic Envelope).
The function b(t) is called the deterministic arrival traffic
envelope of the traffic arrival A if

A(τ + t) −A(τ) ≤ b(t), (1)

for any τ > 0 and t > 0.

Definition 2 (Statistical Arrival Traffic Envelope).
The distribution B(t) forms the stochastic arrival traffic
envelope of the traffic arrival A if

A(τ + t) −A(τ) ≤st B(t), (2)

for any τ > 0 and t > 0 2.
1While at network level all flows within a class have identical traffic

specifications and QoS requirements, user-level connections with varying
bandwidth and burstiness requirements can be established by using more
than one flow.

2X ≤st Y means P{X > Z} ≤ P{Y > Z} [13].

Since A(τ) is stationary, A(τ + t)−A(τ) possesses the
same probability distributions for all τ . Therefore, we can
define a random variable R(t) as the stochastic arrival traffic
rate as follows:

R(t) =
A(τ + t) −A(τ)

t
. (3)

In this paper, we will be using the rate-variance envelope,
which describes the variance of the arrival traffic rate during
a time interval. The rate-variance envelope RV (t) describes
the variance of the arrival rate for the incoming flow over an
interval of length t [11], i.e.

RV (t) = var(R(t)). (4)

We assume that a class-i traffic flow is controlled by a
leaky bucket with burst size σi and average rate ρi.

In the following, we will use the notation Gi,j to denote
a group of flows of Class i from Input Link j of a server and
use bi,j , Bi,j , and RVi,j to specify the deterministic arrival
traffic envelope, the stochastic arrival traffic envelope, and
the rate-variance envelope applied to the group of flows Gi,j

respectively.

4 Providing Absolute Differentiate Services
with Statistical Guarantees

In the following, we will use a utilization-based test to
realize admission control in a scalable fashion. During
system (re-)configuration, a safe utilization bound is deter-
mined, which is then used for the tests during run time. As
long as the utilization values of links along the path of a new
flow do not exceed the safe utilization bound, the perfor-
mance guarantees of all the flows will be met. The value for
this utilization bound depends on network topology, traffic
characteristics, and performance requirements of flows.

The challenge of using any utilization-based admission
control method is to verify the correctness of a safe utiliza-
tion bound at configuration time. Two critical issues have
to be addressed:

• Statistical Delay Analysis: The main challenge for
statistical delay analysis is how to clearly describe the
traffic arrival process. The strong assumptions on the
stochastic properties of traffic streams are inherently
difficult for the network to enforce or police. Conse-
quently, if a particular application does not conform
to the chosen stochastic model, no guarantees can be
made. Moreover, if admitted to the network, such a
stream could adversely affect the performance of other
applications if it is statistically multiplexed with them.
In this paper, we will use an approach previously de-
veloped in [12] to do the statistical delay analysis.



• Flow-Population-Insensitive Delay Analysis: The de-
lay violation probability derived in [12] depends on
the information about flow population, i.e., the num-
ber of flows at input links and the traffic characteris-
tics (e.g., the average rate and burst size) of flows. In
our case the delay analysis is done at the system con-
figuration time, when information about flow popula-
tion is not available. Hence, it is necessary to derive a
flow-population-insensitive formula. We will apply an
approach similar to that used in [24] for deterministic
traffic to solve this.

4.1 Statistical Delay Analysis at Configuration
Time

First, we will address the issue of statistical delay analy-
sis, and then derive the flow-population-insensitive statisti-
cal delay formula.

4.1.1 Statistical Delay Analysis

A probabilistic performance guarantee can be defined as a
bound on the probability of exceeding a deadline as follows:

P{D > d} ≤ ε, (5)

where the delay D suffered by a packet is a random vari-
able, d is the given deadline, and ε is the given violation
probability, which is generally small.

In statistical service, all input traffic conforms to a set
of random processes. Suppose these processes are inde-
pendent. If we know the mean value and the variance of
each individual traffic random variable, and the number of
flows is large enough, then by the Central Limit Theorem,
we can approximate the random process of the combined
flows. The Central Limit Theorem states that the summa-
tion of a set of independent random variables converges in
distribution to a random variable that has a Normal Distri-
bution. Actually, using rate-variance envelopes, the traffic
arrival rate of each individual flow is a random variable, and
the mean rate and the rate-variance of each individual flow
can be determined using deterministic traffic models. The
following theorem can be found in [12]:

Theorem 1. Consider a static-priority scheduler with L in-
put links and link capacity C such that the traffic with
Class i has an associated deadline di. Suppose that the
group of flows Gi,j has mean rate φi,j and rate-variance
envelope RVi,j(t). With application of a Gaussian approx-
imation over intervals, the delay violation probability for a
random packet with Class i is approximately bounded by

P{Di > di}

≤ max
t<βi

P{ 1
C

(
i−1∑
q=1

L∑
j=1

Bq,j(t + di) +
L∑

j=1

Bi,j(t)) ≥ tdi}

≤ max
t<βi

1√
2π

exp (− (C(t + di) − µi(t))2

2σ2
i (t)

), (6)

where

µi(t) = (t + di)
i−1∑
q=1

L∑
j=1

φq,j + t

L∑
j=1

φi,j , (7)

σ2
i (t) = (t + di)2

i−1∑
q=1

L∑
j=1

RVq,j(t + di) + t2
L∑

j=1

RVi,j(t),

(8)
and

βi = min{t :
i∑

q=1

L∑
j=1

bq,j(t) ≤ Ct, t > 0}. (9)

By this theorem, the delay violation probability for any
random packet can be computed approximately. In the
above formula, the question left is how to get the values of
mean rate and rate-variance envelope. In [12], two methods
are presented for obtaining the rate-variance envelope:

• Adversarial Mode: the traffic arrival process conforms
to a binomial distribution, where the rate-variance en-
velope is upper bounded.

• Non-adversarial Mode: the traffic arrival process con-
forms to a weighted uniform distribution, where the
rate-variance envelope is approximated but non-worst-
case.

Therefore, given the aggregated arrival traffic constraint
function bi,j(t) of all ni,j flows, we can specify the mean
rate and the rate-variance envelope as a function of ni,j

etc.. By Theorem 2 in [24], the aggregated arrival traffic
constraint function bi,j(t) is given as follows

bi,j(t) =
{

Ct, t ≤ τi,j

ni,j(σi + ρi t), t > τi,j
(10)

where

τi,j =
ni,jσi

C − ni,jρi
, (11)

Therefore, we have the following theorem:

Theorem 2. Given the same condition as Theorem 1, the
mean rate φi,j is

φi,j = ni,jρi, (12)

and the rate-variance envelope is upper bounded by:



• Adversarial Mode

RVi,j(t) ≤ 1
t
(ni,j)2ρi σi (13)

• Non-adversarial Mode

RVi,j(t) ≈ 1
12t

(ni,j)2ρi σi (14)

The proof of Theorem 2 is given in Appendix.
At this point, the only undetermined is the number of

flows on each link. In the following subsections, we de-
scribe how we eliminate the dependency on the number of
flows on each link. The result is a delay formula that can be
applied without knowledge of the flow population.

4.1.2 Flow-Population-Insensitive Statistical Delay
Analysis

As we described earlier, admission control at run-time
makes sure that the link utilization allocated to each class
of flows is not exceeded. The total number Ni of flows of
Class i from all input links is therefore subject to the fol-
lowing constraint:

Ni =
L∑

j=1

ni,j ≤ αi

ρi
C, (15)

where αi is the ratio of the link bandwidth allocated to
traffic of Class i. With this constraint, by (12), (13), and
(14), the mean rate and the rate-variance can be upper-
bounded. Therefore, the delay violation probability can
be upper-bounded without relying on information about the
flow-population. This is shown by the following theorem:

Theorem 3. Consider a static priority scheduler with L in-
put links and link capacity C such that the traffic with
Class i has an associated deadline di. Suppose that the
group of flows Gi,j has a stochastic envelope Bi,j(t). Then
the delay violation probability for a random packet of
Class i is bounded by

• Adversarial Mode

P{Di > di} ≤ 1√
2π

exp(−1
2

min
t<βi

ξi(t)), (16)

• Non-adversarial Mode

P{Di > di} ≤ 1√
2π

exp(−6 min
t<βi

ξi(t)), (17)

where

ξi(t) =
(ηit + ηi−1di)2

ζit + ζi−1di
, (18)

βi =
1
ηi

i∑
q=1

αq
σq

ρq
, (19)

and

ηp = 1 −
p∑

q=1

αq, (20)

ζp =
p∑

q=1

(αq)2
σq

ρq
, (21)

in (20) and (21), the value for p is either i− 1 or i.

This is the main result of this paper. We observe that the
formula does not depend on the flow population. Hence it
can be used for utilization bound verification at configura-
tion time. In the following, we will give the proof. The
basic idea is that using inequality (15), flow-population will
be removed.

Proof: Substituting (12), (13) and (14) into (7) and (8), we
have

C(t + di) − µi(t) = t(C −
i∑

q=1

L∑
j=1

nq,j ρq)

+di(C −
i−1∑
q=1

L∑
j=1

nq,j ρq),(22)

and

• Adversarial Mode

σ2
i (t) = t

i∑
q=1

L∑
j=1

(nq,j)2 ρq σq

+di

i−1∑
q=1

L∑
j=1

(nq,j)2 ρq σq. (23)

• Non-adversarial Mode

σ2
i (t) =

1
12

( t

i∑
q=1

L∑
j=1

(nq,j)2 ρq σq

+di

i−1∑
q=1

L∑
j=1

(nq,j)2 ρq σq ). (24)

By (15), we have

L∑
j=1

nq,j ρq ≤ αq C, (25)

and
L∑

j=1

(nq,j)2 ρq σq ≤ (αq C)2
σq

ρq
, (26)

therefore,



• for the adversarial mode

(C(t + di) − µi(t))2

2σ2
i (t)

≥ 1
2
ξi(t), (27)

• and for the non-adversarial mode

(C(t + di) − µi(t))2

2σ2
i (t)

≥ 6ξi(t), (28)

where ξi(t) is defined in (18).

As an illustrative example, we apply the above theorem
in the case of two classes, only one real-time class traffic.
Suppose that α = α1, σ = σ1, ρ = ρ1, d = d1, D = D1,
ξ(t) = ξ1(t), β = β1, for real-time class traffic. Simplify-
ing the formula, we can get the following corollary:

Corollary 1. In the case of a single real-time class, the de-
lay violation probability for a random real-time class traffic
packet is bounded by

• adversarial mode

P{D > d} ≤ 1√
2π

exp(−1
2

min
t<β

ξ(t)), (29)

• and for the non-adversarial mode

P{D > d} ≤ 1√
2π

exp(−6min
t<β

ξ(t)), (30)

where

ξ(t) =
((1 − α)t + d)2

α2 σ
ρ t

, (31)

and
β =

α

1 − α

σ

ρ
. (32)

Define the right hand side of (29) and (30) as ε1 and ε2.
We can find that ξ(t) reaches its minimum at t = t0(=

d
1−α ). By the property of function ξ(t), we find

• if β ≥ t0, i.e., α ≥ d
σ
ρ

, then

ε1 =
1√
2π

exp(−2
1 − α

α2

d
σ
ρ

) (33)

ε2 =
1√
2π

exp(−24
1 − α

α2

d
σ
ρ

) (34)

• if β < t0, i.e., α < d
σ
ρ

, then

ε1 =
1√
2π

exp(−1
2

1 − α

α3
(α +

d
σ
ρ

)2) (35)

ε2 =
1√
2π

exp(−6
1 − α

α3
(α +

d
σ
ρ

)2) (36)

By the above formulas, we know that as αk decrease
to below d

σ
ρ

, ε1 and ε2 will quickly approach zero.

For the deterministic model, by Theorem 4 in [26], a
bandwidth ratio formula can be derived as follows:

α =
d
σ
ρ

. (37)

Therefore, the bandwidth ratio value in the deterministic
model is a critical point to the one in statistical model. Be-
low this value, the delay violation probability is quite small
and quickly approaches zero.

4.2 Verification of Utilization Bound

Having derived the flow-population-insensitive statisti-
cal delay formula, we can verify the utilization bound, and
obtain the worst-case achievable utilization (WCAU). By
the worst-case achievable utilization, we refer to the max-
imum of total utilization bound for all classes. Under the
condition that the probabilistic delay guarantee can be met,
we can compute the WCAU.

For a given delay violation probability εi and deadline di

along route R , we can split di into {dk
i : k ∈ R}, and the

delay guarantee is met when

P{De2e
i >

∑
k∈R dk

i }
≤ 1 −

∏
k∈R(1 − P{Dk

i > dk
i }) (38)

≤ εi. (39)

By Theorem 3, for the adversarial mode and the non-
adversarial mode, substituting (16) and (17) into (39) re-
spectively, we solve the inequalities and get the maximum
value of αi, for i = 1, 2, · · · ,M . The WCAU is

∑M
i=1 αi.

5 Experimental Evaluation

In this section, we evaluate the performance of the ap-
proaches discussed in the previous sections. We will first
define the performance metrics, and then describe the sys-
tem configuration and present the performance results.

5.1 Experimental Model

• Performance Metrics: We are interested in two met-
rics:

– WCAU: The worst-case achievable utiliza-
tion (WCAU) is the maximum of total utilization
bound for all classes. We use this metric to mea-
sure the performance of the systems.

– Admission Probability: This is the probabil-
ity that a flow is admitted in a stable system (all
packets have bounded delays). The higher the
admission probability, the better the network re-
sources are being used.



• Traffic Model: We assume that the traffic belongs
to a single real-time class. We simulate voice traffic,
with bursts of 640 bits, an average rate of 32kbit/sec.
We assume that the deadline is 5msec. We assume that
requests for flow establishment form a Poisson process
with rate λ, and that flow lifetimes are exponentially
distributed with an average of 180 seconds. The real
system would support best-effort traffic as well, which
would not affect the results of this evaluation, and is
therefore omited in these experiments.

• Evaluation Methods: The WCAU can be computed
by (16) and (17) using simple binary search. The ad-
mission probability of systems we consider can be an-
alyzed by queuing theory and fixed point method [17].

5.2 Numerical Results and Observations

In this sub-section, we report performance results and
make observations. Due to the limited space, we only
present a limited number of cases here. However, we find
that the conclusions we draw here generally hold for many
other cases we have evaluated.

ε WCAU
deterministic adversarial non-adversarial

0 0.250 – –
10−6 – 0.250 0.488
10−4 – 0.250 0.563
10−2 – 0.307 0.699

Table 1. Sensitivity of WCAU to Delay Viola-
tion Probability

5.2.1 Sensitivity of WCAU to Delay Violation Proba-
bility

Data on sensitivity of utilization to delay violation probabil-
ity are given in Figures 1 and Table 1. Figure 1 and Table 1
show the data on the cases of the delay violation probabil-
ity ε. From Figures 1 and Table 1, we have the following
observations:

• As expected, the utilization for both adversarial and
non-adversarial model increases as the delay violation
probability increases. This means that the higher the
delay violation probability, the higher utilization we
can get for both adversarial and non-adversarial mod-
els. A higher delay violation probability allows for
larger bandwidth allocations and, therefore, higher val-
ues for the WCAU. Both statistical models can achieve
higher or equal value for WCAU than the deterministic
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Figure 1. Sensitivity of WCAU to Delay Viola-
tion Probability

model. Since the deterministic model does not allow
delay violations, more resources need to be reserved,
which decreases WCAU.

• The non-adversarial models achieve much higher
WCAU than deterministic ones for any delay violation
probability. Non-adversarial models are much closer
to real traffic models, and much better exploit avail-
able statistical multiplexing gain [12].

5.2.2 Admission Probability Comparison of Determin-
istic and Statistical Model
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Figure 2. Admission Probability Comparison
of Deterministic and Statistical Model

Data on sensitivity of admission probability is given in
Figure 2 (Note that the curve for deterministic model and
the curve for statistical model (adversarial, ε = 0.001) over-



laps). From this figure, we make the following observa-
tions:

• Admission probability is sensitive to the flow arrival
rate λ for all models. Admission probability decreases
as λ increases in all models. The reason is obvious:
A large λ value implies a large number of flows in the
system. Since the bandwidth is limited, some flows are
not allowed to enter the network, therefore, the admis-
sion probability decreases.

• Different models have different sensitivities to λ in
terms of admission probability. The statistical models
always achieve higher admission probabilities than the
deterministic model. Non-adversarial models always
achieve higher admission probabilities than adversarial
models. This is because of the achievable utilization.
The higher this utilization, the higher the admission
probability.

6 Conclusions

In this paper, we have proposed a methodology for pro-
viding absolute differentiated services with statistical per-
formance guarantees in networks that use static priority
schedulers. Given that static priority schedulers are widely
supported by current routers, we believe that our approach
is practical and effective to support real-time applications in
existing networks.

We have used Utilization-based Admission Control
(UBAC) approach which uses a configuration-time verifica-
tion to determine a safe utilization level of servers. Admis-
sion control at runtime then is reduced to simple utilization
tests on the servers along the path of the new flow. Hence,
the approach is scalable.

Obviously, the verification will have to be involved with
delay analysis. The general delay derivation depends on
flow population information, which is not available at the
system configuration time. We have extended the general
approach and developed a method that allows us to analyze
the delays without depending on the dynamic status of flow
population.

Acknowledgements

This work was partially sponsored by NSF under con-
tract number EIA-0081761, by DARPA under contract
number F30602-99-1-0531, and by Texas Higher Education
Coordinating Board under its Advanced Technology Pro-
gram.

References

[1] G. Agrawal, B. Chen, W. Zhao, and S. Davari, Guar-
anteeing Synchronous Message Deadlines with the
Timed Token Protocol, Proceedings of IEEE ICDCS,
June 1992.

[2] R. Braden and D. Clark and S. Shenker, Integrated
Services in the Internet Architecture: an Overview, In-
ternet RFC 1633, June 1994.

[3] C. Chang, Stability, queue length, and delay of de-
terministic and stochastic queueing networks, IEEE
Transactions on Automatic Control, 39(5):913-931,
May 1994.

[4] Anna Charny and J. Y. Le Boudec, Delay Bounds in
a Network with Aggregate Scheduling, Proceedings of
QOFIS, October 2000.

[5] R. L. Cruz, SCED+: efficient management of quality
of service guarantees, Proceedings of IEEE INFO-
COM, March 1998.

[6] A. Dailianas and A. Bovopoulis, Real-time admis-
sion control algorithms with delay and loss guaran-
tees in ATM networks, Proceedings of IEEE INFO-
COM, June 1994.

[7] C. Dovrolis, D. Stiliadis and P. Ramanathan, Propor-
tional Differentiated Services: Delay Differentiation
and Packet Scheduling, Proceedings of ACM SIG-
COMM, August 1999.

[8] V. Firoiu, J. Kurose, and D. Towsley, Efficient ad-
mission control for EDF schedulers, Proceedings of
INFOCOM, April 1997.

[9] S. Kweon and K. Shin, Video-on-demand service us-
ing a statistical traffic envelope, Technical report, Uni-
versity of Michigan, Ann Arbor, MI, 1998.

[10] E. Knightly, H-BIND: A new approach to provid-
ing statistical performance guarantees to VBR traffic,
Proceedings of IEEE INFOCOM, March 1996.

[11] E. Knightly, Second Moment Resource Allocation in
Multi-Service Networks, Proceedings of ACM SIG-
METRICS, June 1997.

[12] E. Knightly, Enforceable quality of service guaran-
tees for bursty traffic streams, Proceedings of IEEE
INFOCOM, March 1998.

[13] J. Kurose, On computing per-session performance
bounds in high-speed multi-hop computer networks,
ACM Sigmetrics, June 1992.



[14] J. Liebeherr, S. D. Patek and E. Yilmaz, Tradeoffs in
Designing Networks with End-to-End Statistical QoS
Guarantees, Proceedings of IEEE/IFIP IWQoS, June
2000.

[15] C. L. Liu and J. W. Layland, Scheduling algorithms
for multiprogramming in a hard real time environ-
ment, Journal ACM, Vol. 20, No. 1, 1973, pp.46-61.

[16] J. Liebeherr, D.E. Wrege, and D. Ferrari, Exact admis-
sion control in networks with bounded delay services,
IEEE/ACM Transactions on Networking, 1996.

[17] D. Mitra and J. A. Morrison, Erlang capacity and uni-
form approximations for shared unbuffered resources
IEEE/ACM Transactions on Networking, 1994.

[18] K. Nicols, V. Jacobson, L. Zhang, A Two-bit Differen-
tiated Services Architecture for the Internet, Internet-
Draft, Nov. 1997.

[19] J. Qiu and E. Knightly, Inter-class resource shar-
ing using statistical service envelopes, Proceedings
of IEEE INFOCOM, March 1999.

[20] S. Shenker, C. Partridge and R. Guerin, Specification
of Guaranteed Quality of Service, RFC2212, Septem-
ber 1997.

[21] R. Sivakumar, T. Kim, N. Venkitaraman and V.
Bharghavan, Achieving Per-Flow Weighted Rate Fair-
ness in a Core Stateless Network, Proceedings of
IEEE ICDCS, March 2000.

[22] D. Starobinski and M. Sidi, Stochastically bounded
burstiness for communication networks, Proceedings
of IEEE INFOCOM, March 1999.

[23] I. Stoica, H. Zhang, Providing Guaranteed Services
Without Per Flow Management, Proceedings of ACM
SIGCOMM, August 1999.

[24] S. Wang, D. Xuan, R. Bettati and W. Zhao, Providing
Absolute Differentiated Services for Real-Time Appli-
cations in Static Priority Scheduling Networks, Pro-
ceedings of IEEE INFOCOM, April 2001.

[25] D. Wrege, E. Knightly, H. Zhang, and J. Liebeherr,
Deterministic delay bounds for VBR video in packet-
switching networks: Fundamental limits and practical
tradeoffs, IEEE/ACM Transactions on Networking,
4(3):352-362, June 1996.

[26] D. Xuan, C. Li, R. Bettati, J. Chen and W. Zhao,
Utilization-Based Admission Control for Real-Time
Application, Proceedings of IEEE ICPP, 2000.

[27] O. Yaron and M. Sidi, Performance and stabil-
ity of communication networks via robust exponen-
tial bounds, IEEE/ACM Transactions on Networking,
1(3):372-385, June 1993.

[28] H. Zhang and E. Knightly, Providing end-to-end
statistical performance guarantees with bounding in-
terval dependent stochastic models, Proceedings of
ACM SIGMETRICS, May 1994.

Appendix: Proof of Theorem 2

The following lemmas (1, 2, and 3) [12] define the mean
rate for a group of flows and show how an upper bound on
the stochastic rate variane envelope can be derived from the
deterministic parameters.

Lemma 1 (Mean Rate). The mean rate of the group of
flows Gi,j can be defined as:

φi,j = lim
t→∞

bi,j(t)
t

. (40)

Lemma 2 (Adversarial Mode). The rate-variance enve-
lope of the group of flows Gi,j is upper bounded by:

RVi,j(t) ≤ RV ∗
i,j(t) = φi,j(

bi,j(t)
t

− φi,j) (41)

where φi,j is defined in (40).

Lemma 3 (Non-adversarial Mode). The rate-variance
envelope of the group of flows Gi,j is approximately:

RVi,j(t) ≈ R̂V i,j(t) =
φi,j

12
(
bi,j(t)

t
− φi,j) (42)

where φi,j is defined in (40).

We know that the aggregated arrival traffic constraint
function bi,k,j(t) is given as follows

bi,j(t) =
{

Ct, t ≤ τi,j

ni,j(σi + ρi t), t > τi,j
(43)

Then applying (43) to (40), (41), and (42), Theorem 2
can be proved as claimed.


