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Abstract

Large-scale distributed real-time systems are increas-
ingly difficult to analyze within the Rate Monotonic Anal-
ysis framework. This is due partly to their heterogeneity,
complex interaction between components, and variety of
scheduling and queuing policies present in the system. In
this paper we present a methodology to extend the tradi-
tional RMA approach by allowing general characterization
of workload and flexible modeling of resources. We realize
our approaches within ProtEx, a toolkit for the prototyping
and schedulability analysis of distributed real-time systems.
This toolkit focuses on a wider set of methodologies than the
traditional RMA scheduling analysis tools.

1. Introduction

Large-scale distributed real-time systems are increas-
ingly characterized by a number of aspects. First, with
the current tendency towards Commercial Off The Shelf
(COTS) products, the computation and communication in-
frastructure is becoming more and more heterogeneous.
Typical systems will be deployed across a variety of proces-
sor platforms, with different operating systems and different
networking technologies. Second, such systems support a
variety of paradigms for the interaction among their com-
ponents. These range from traditional stream-based com-
munication, where data flows through the system in well-
defined flows, to publish-subscribe approaches, to highly
dynamic method invocations. Next, there is a need for in-
tegrated support for timely delivery of service and for reli-
ability. Real-time group communication, for example, will
be applied in various forms to realize replication. Finally,
there is a strong need to build such systems by integrating
reusable software components. A number of projects are
investigating standard software infrastructures so that com-
ponents can be re-used in a ”plug-and-play” manner [1, 2].

Unfortunately, the development of analysis methodolo-
gies to support the design and the verification of these
emerging systems has not kept pace. The current tech-
nologies are mostly based on the Rate Monotonic Analy-
sis (RMA) methodology. While RMA-based methods have
proven to be effective for the analysis and verification of
smaller systems, a number of shortcomings limit their use-
fulness for larger systems. We elaborate on three of them:

First, traditional design and analysis methodologies lack
an integrated model for computation and communication.
Practical considerations have traditionally led to very dif-
ferent ways of analyzing real-time computation and com-
munication. This artificial separation is awkward (for ex-
ample, it leads to lower utilization,) and becomes more so
as the boundary between the two becomes more fuzzy, as
sophisticated communication primitives, for example reli-
able group communication, evolve.

Second, traditional design and analysis methodologies
rely heavily on workload regulation and make make as-
sumptions about worst-case workload; typically they as-
sume periodic workloads. Various forms of regulators make
sure that these assumptions are satisfied. For example, rate
controllers in packet schedulers enforce a minimum inter-
arrival time of packets. Similarly, various forms of sporadic
servers ensure that non-periodic real-time workload is exe-
cuted in a controlled fashion (e.g., [9]). As another example,
resource access protocols [13] control the eligibility for ex-
ecution of the critical sections by appropriately modifying
the task’s priority. The pervasive use of regulation is prob-
lematic for the class of systems described above. It adds
run-time overhead and poorly handles integration of COTS
components and hardware and software composition.

Third, traditional analysis methodologies make simplis-
tic assumptions about resources. Active resources, such as
CPUs or communication links, are typically modeled as
constant-rate servers. In real systems, the rate at which
jobs can be served is highly variable. Lower-level operat-
ing system layers, for example, add various forms of hid-
den scheduling and priority inversion. Simply assuming



a worst-case rate for active resources is a common tech-
nique, which unduly reduces resource utilization. Rather,
resources must be modeled in a way that allows to flexibly
describe the worst-case availability to particular jobs.

Over the last few years our group has developed a num-
ber of workload modeling techniques to analyze systems
with widely varying workloads [6]. At the same time, we
have investigated the applicability of service functions for
the general modeling of communication and computation
servers [3]. The result of these investigations became a set
of techniques that can be used, possibly in conjunction with
traditional RMA, or other techniques used in real-time com-
munication [5], to analyze large-scale heterogeneous sys-
tems that consist of a wide variety of workloads and servers.
It also became apparent that some of these techniques (such
as service-function based [12] or integration-based [4]) for
end-to-end analysis are superior, to our knowledge, to all
currently used methods.

We integrated these techniques into ProtEx, a toolkit for
analysis of distributed real-time systems. ProtEx is a toolkit
used for prototyping and performing schedulability analy-
sis of distributed real-time system and is well adapted for a
networking environment. It gives the possibility to the user
to design, prototype, and analyze a system with varying re-
source and workload characteristics. A number of workload
characterization and delay analysis techniques developed by
the Texas A&M Real-Time Research Group and by others
are integrated in the ProtEx toolkit [3, 4, 6].

ProtEx performs end-to-end or single-server schedula-
bility analysis for a defined set of tasks based on a selected
analysis methodology. It provides the user with the abil-
ity to incrementally work on an application prototype be-
fore going into the implementation, testing, and integration
phases of the software life cycle. By performing exten-
sive schedulability analysis during the design and prototyp-
ing phase, ProtEx can ultimately save time during the next
phases of the application development.

In this paper we first motivate the need for general work-
load characterization and for flexible resource modeling for
end-to-end analysis of distributed real-time systems in Sec-
tion 2. Section 3 gives an overview of the general method-
ologies applied in ProtEx. We describe the modeling of the
system resources and of the workload. We also describe the
schedulability analysis techniques used for single node and
end-to-end analysis. A number of schedulability analysis
tools, most of them based on RMA, are available. We de-
scribe two of them in Section 4. We conclude in Section 5.

2. Challenges in the Modeling of Distributed
Real-Time Systems

In order to meet the requirements for analysis methods
for real-time systems, novel forms of modeling resources

and workload must be used. In this section, we propose
such methods, based on general characterizations of work-
load and flexible resource modeling.
General Workload Characterization. Traditionally, work
on schedulability analysis in endsystems focuses on peri-
odic tasks, where the inter-arrival time of requests is fixed
to be the period of the task. Non-periodic workload is typ-
ically transformed into periodic workload by either one of
the following three ways: (i) by treating the non-periodic
tasks as periodic tasks with the minimum inter-arrival time
being the period, (ii) having server, which look like peri-
odic tasks to the rest of the system, execute the non-periodic
tasks (e.g. [9]), or (iii) splitting the non-periodic tasks each
into collections of periodic tasks of different sizes and peri-
ods. In all three cases, well-known schedulability analysis
methodologies for periodic workloads can be used.

Applying the same methodologies for distributed real-
time systems, where tasks execute across multiple end-
systems, shows poor results, even for periodic workloads.
While the arrival of instances of a periodic task may in-
deed be periodic at the first processor, the completion of
these instances almost certainly is not. If no special action
is taken, and the completion of an instance indicates that the
second processor can go ahead, the ”arrival” of instances of
the tasks on the second processor is not periodic.

By appropriately synchronizing, or regulating, the exe-
cution of the tasks on the processors, excessive bursts can be
eliminated, which increases schedulability. The task execu-
tion can be made to adhere to simple workload descriptors,
which makes rigorous schedulability analysis possible. A
number of such synchronization schemes were presented in
[10]. They allow the use of traditional schedulability analy-
sis methods for periodic workloads.

Appropriate regulation reduces the worst-case end-to-
end response times as compared to systems without regula-
tion. However, regulation adds overhead to the system and
increases the average end-to-end response time for tasks. In
addition, it is of limited applicability when the workload is
inherently aperiodic.

To deal with systems that have limited or no support for
workload regulation, we use workload re-characterization:
instead of regulating the workload after each processor to
conform to a predetermined descriptor, we use general de-
scriptors and compute the descriptor of the workload af-
ter each processor. The methods for this depend on the
scheduling policies and the other workload present on the
processor. Our group has applied these techniques in vari-
ous forms at network level, and we are using some of these
within ProtEx for the analysis of systems with both network
and endsystem elements.

It is important to note that we do not envision workload
re-characterization as a replacement for regulation. Rather,
it is complementary and can be naturally combined with it,
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Figure 1. Simple Server Graph

allowing for an integrated analysis methodology.
Flexible Resource Modeling. A model for processors
must reflect that resources are not ideal. (i) Service to par-
ticular tasks may be interrupted or delayed because of vari-
ous forms of priority inversion. (ii) Processors may be con-
trolled by a variety of different scheduling policies. (iii) A
modeling methodology must lend itself to effectively and
accurately model hierarchical compositions of processors,
be this a collection of processors, or processors in combi-
nation with operating system layers incorporating resource
managers, or processors controlled by multi-level sched-
ulers.

To achieve this, we make available a rich variety of dif-
ferent server types, for example FIFO, static-priority, EDF,
and others). In addition, we generalize the concept of ser-
vice rate, which is traditionally used in processor modeling.
We allow processors to be modeled by service functions,
a well-known method to model service to traffic streams in
networks [12]. In addition, we take advantage of the flexible
workload modeling described above as a means to compose
systems with multiple different server types.

3. Schedulability Analysis in ProtEx

3.1. System Model: Server Graphs

For analysis purposes, the system is decomposed into its
basic resource components, which we call servers. Some
servers can be mapped onto real hardware components
(such as CPU, I/O ports, busses,) while others are logical
in nature (such as workload regulators or servers for critical
sections). We describe the collections of resources in form
of a server graph, whose m nodes represent the available
servers S1; S2; : : : ; Sm, and the edges describe the connec-
tivity among servers.

Figure 1 depicts a possible representation of a server
graph of two workstations connected by an ATM switch.
In this example, we model the ATM switch as a collection
of input ports (S3), the switch fabric (S4), and a collection
of output ports (S5). Each worksthation is described by a
server representing the CPU and possible memory manage-
ment and DMA machinery to the network interface card (S1

and S7) and one server representing the network interface
card and the link to the ATM switch (S2 and S6). System
designers can model systems at higher levels using hierar-

chical compositions of server graphs.
We distinguish three classes of servers, depending on

how they affect the analysis:
Constant Delay Servers: The delay for such servers is in-
dependent of other workload on the server. Examples are
physical links in a switched network or non-blocking fab-
rics in switches. For delay computation purposes, con-
stant delay servers can be easily eliminated by appropriately
adapting the end-to-end delay requirements of the work-
load: After the deadline for each workload that uses a par-
ticular constant delay server is reduced by the constant de-
lay added by that server, the server itself can be deleted from
the server graph.
Variable Delay Servers: The amount of delay offered by a
variable delay server to a particular workload depends on all
the workload on that server. Virtually all servers for which
contention can occur belong to this class, and delay analy-
sis deals mostly with variable delay servers. Examples are
CPUs and output ports in switches with output port queuing.
Variable delay servers may perturb the workload, typically
making it more bursty, as it leaves the server and proceeds
to the next. If no workload regulator is in place at the next
server, this increase in burstiness of workload arrival must
be taken into account during the analysis.
Regulator Servers: These server can be used to model
workload regulators, for example periodic or sporadic
servers to handle sporadic workloads on processors, or traf-
fic shapers on switches or routers. Similarly, different pro-
cessor synchronization methods in end-to-end systems [10]
can be realized through regulator servers.

The system represented in Figure 1 consists of four vari-
able delay servers (S1, S5, S6, and S7) and three con-
stant delay servers (S2, S3, and S4). There are no reg-
ulator servers in this example. The connectivity among
components is described using ports. Figure 1 illustrates
how the first workstation is connected to the switch by con-
necting the two portsws1.port1 and switch.portIN.
Figure 2 gives a textual representation of the same server
graph. Two server classes are defined (workstation
and ATMswitch), and their instantiations (wsA, wsB, and
switch) are then connected using the appropriate ports.

3.2. Workload Characterization: Task Graphs and
Arrival Functions

We model the workload as a set of n tasks
T1; T2; : : : ; Tn, independently of whether it is computation
workload in the end systems or routers, or traffic in the
network. Each task Ti consists of a (typically infinite) se-
quence of invocations. All invocations of portion j of Task
Ti form the subtask Ti;j . We say that Ti;j executes on
Server Si;j . Each subtask has a worst-case execution time
of ei;j time units, meaning that each invocation executes for



SERVERGRAPH sgexample: # Two workstations connected using a single switch

# Definition of component classes
CLASS SERVERGRAPH workstation # Definition of the workstation component
SERVER cpu:

TYPE = VARIABLE; POLICY = static_priority; # other parameters...
END;
SERVER nic:

TYPE =CONSTANT; # other parameters...
END;
# Definition of the connectivity within the workstation
cpu -> nic;
nic -> port1

END;

CLASS SERVERGRAPH ATMswitch # Definition of the ATM switch component
SERVER input_port:

TYPE = CONSTANT; # other parameters...
END;
SERVER switch_fabric:

TYPE =CONSTANT; # other parameters...
END;
SERVER output_port:

TYPE =VARIABLE; POLICY = FIFO; # other parameters...
END;
# Definition of the connectivity within the switch fabric
port1 -> input_port; input_port -> switch_fabric;
switch_fabric -> output_port; output_port -> port2;

END;

# Definition of the instances
SERVER wsA, wsB OF CLASS workstation;
SERVER switch OF CLASS ATMswitch;

# Definition of connectivity for the server graph using ports
wsA.port1 -> switch.portIN; switch.portOUT -> wsB.port1;

Figure 2. Example Resource Graph

no more than ei;j time units on Si;j .

An invocation of task Ti on a server can trigger one or
more invocations on one or more subsequent servers. Sub-
jobs belonging to the same invocation are therefore in a de-
pendency relation to each other that can be represented by a
directed graph, which we call the task graph Gi for a given
Task Ti.

In order to allow for specification of non-periodic tasks
and for uniform description of arrivals of tasks to servers
in the system, we generalize the traditional periodic work-
load model by using arrival functions. The arrival func-
tion Fi;j;ARR(t) of subtask Ti;j is defined as the maximum
number of invocations of Ti;j released during any interval
of length t. A strictly periodic task arrival would therefore
be represented by the arrival function Fi;jARR(t) = dt=pe,
where p is the period of the task. Using this notation, the
arrival function of Task Ti is Fi;1;ARR(t). Arrival functions
thus provide a deterministic, time-invariant, way to bound
general arrivals of tasks to the system.

3.3. Schedulability Analysis

A number of different methods can be used to analyze
the overall system, and the designer can pick the most ap-
propriate method depending on the types of servers in the
system and the system topology. All method rely explic-
itly or implicitly on the same approaches to analyze single-
server systems. These approaches are then expanded to al-
low the analysis of end-to-end systems.

3.3.1 Single-Node Analysis

A number of delay formulas exist for workload that is de-
fined by general arrival functions for a number of servers
types. In its most general form, the delay dk;j for task Tk
on Server Sj is given by the following formula:

dk;j = maxm>0(F
�1

k;j;DEP (m)� F�1k;j;ARR(m)) ;

where Fk;j;ARR is the arrival function defined earlier, and
Fk;j;DEP is the equivalent departure function of Task Tk
from Server Sj , that is, the maximum number of invoca-
tions of Task Tk finishing on Server Sj during any time
period t. In its most general form, the departure func-
tion Fk;j;DEP (t) can be derived from the arrival functions
F_;j;ARR(t) of all tasks on the server, and the service func-
tions Sk;j(t) of the server: Fk;j;DEP (t) = bSk;j(t)=ek;jc.
The service function Sk;j(t) for Task k on Server j spec-
ifies the minimum amount of service Task k receives over
any interval of length t. In order to use these general for-
mulas, the service function must be derived for each server
type. Such service functions exist for FIFO and Preemp-
tive Static-Priority Servers. Approximations exist for Non-
Preemptive Static-Priority Servers [3]. For the various re-
alizations of Generalized Processor Sharing Servers, the
derivation of these functions is straightforward.

The use of these elaborate formulas is only necessary
when the task arrival is bounded by a general arrival func-
tion. When tasks can be modeled as periodic, for example
traditional time-demand analysis can be used to determine
the local delay at a server.

3.3.2 End-to-End Analysis

The simplest form of end-to-end analysis partitions the sys-
tem into isolated servers, computes the local delay on each
server, and then computes the end-to-end delay by summing
up all local delays along the critical path of a task. This
method is called Decomposition-Based Analysis, and has
been first described in [11].

In order to compute the local delays at a server, the ar-
rival functions for all tasks at that server must be known.
These arrival functions are identical to the departure func-
tions on the previous servers. Decomposition-based analy-
sis can therefore easily be performed after the servers have
been topologically ordered as defined by the task graph. If
the task graph contains cycles, an iterative approach is used
that terminates whenever the solution converges or when a
deadline is missed.

Decomposition-based analysis is simple and suitable for
systems with arbitrary topologies and server types. The
drawback of this method is that it tends to overestimate the
end-to-end delay suffered by the traffic. This is because
it assumes that a task suffers the worst-case delay at every
server along its connection path [4].



Better methods exist for special cases of workloads and
servers. If service functions for all servers in the system
exist, servers can be clustered by convoluting the service
functions of the individual servers to generate service func-
tions of aggregated servers [12]. The end-to-end analysis
is then performed by performing a single-server analysis on
the aggregated server. We call this method for end-to-end
analysis the Service Curve method.

Servers can be aggregated in special cases even when
no service functions are provided. The Integrated Analysis
method described in [4] aggregates pairs of FIFO or Static-
Priority servers, and can be used to significantly improve
the performance of decomposition-based analysis.

4. Related Work

A number of prototyping and schedulability analysis
tools for distributed real-time systems exist. We elaborate
on two: Tri-Pacific offers a product suite of tools that in-
clude Rapid Rma, Rapid Sim, and Rapid Build [7]. This
toolkit is based on PERTS [14], and uses a RMA approach.
It allows the designers to test, simulate, and execute soft-
ware models against various design scenarios and evaluate
how different implementations might optimize the perfor-
mance of a system.

TimeSys’ TimeWiz [8] is another schedulability analy-
sis tool that allows the user to build prototypes and validate
them before implementation by analyzing and simulating
the timing behavior of the system. This tool can analyze
real-time applications to be run on network elements. As for
TriPacific’s toolkit, TimeWiz is based on the Rate Mono-
tonic Analysis.

The main strength of these tools is that they provide con-
venient mechanisms for integrating and using multiple dif-
ferent tool characteristics, such as workload extraction and
analysis, into a single development environment. These
tools also offer support for end-to-end analysis and simu-
lation. However, they focus on a single schedulability anal-
ysis methodology approach, namely Rate Monotonic Anal-
ysis.

5. Conclusion

The initial ProtEx toolkit version has been developed to
establish an infrastructure for large scale distributed real-
time system prototyping and analysis. Resource and work-
load definitions with general characterization is a central
aspect of the tool. The real-time software designer can use
varying workload representation through service and arrival
curves and specific schedulability analysis methodologies.

We have shown earlier [3, 4] that this type of delay com-
putation along with an appropriate methodology such as

decomposition-based or integrated-based analysis generates
excellent results for the schedulability analysis in terms of
worst-case execution time and system utilization. Addition-
ally, we have also built a framework that allows the user
to hierarchically define and use resources and tasks for a
given real-time application. Through clearly defined soft-
ware module de-coupling, our tool is scalable for large scale
distributed real-time system analysis.
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