
Proceedings of the IASTED International Conference

Parallel and Distributed Computing and Systems
November 3-6, 1999 in Cambridge Massachusetts, USA

Protocols Aboard Network Interface Cards

C. Beauduy R. Bettati

fcbeauduy, bettatig@cs.tamu.edu
Department of Computer Science

Texas A&M University
College Station, TX

Abstract

Traditional host-resident protocol stacks are burdensome and
often fail to keep pace with today’s high-speed network data
movement. With the PANIC system (Protocols Aboard Net-
work Interface Cards), we explore shifting all or part of the
protocol processing to the network interface card (NIC). Our
system allows us to deploy user-level protocols, or portions
thereof, across a collection of machines. We have imple-
mented a first prototype of PANIC over Myrinet, and exper-
iments show the feasibility and efficiency of this approach.

Key Words: Network interface, protocol composition,
networks-of-workstations, Myrinet.

1 Introduction

As the performance provided by networking technologies
dramatically increases, solutions for high-performance fine-
grained distributed computing start to emerge. Computing
based on clusters, or on networks of workstations, greatly
increases the performance of a variety of applications at low
costs [1, 2, 3, 4].

The performance of such clusters relies heavily on low
communication latency. For example, applications on clus-
ters frequently rely on reliable multicast protocols to dissem-
inate the state of the computation and to manage the state of
the system. These protocols typically involve several rounds
of message exchanges, and so are very sensitive to commu-
nication latency. For example, it has been shown that the
effect of latency on the performance of Microsoft’s Cluster
Server is severe enough that, without low-latency communi-
cation, its scalability is limited to 8 nodes [5].

In the past, communication latency was mainly due to
insufficient network bandwidth and excessive protocol over-
head in the host. With the increases in available network
bandwidth and host computing power, latency in current sys-
tems is mostly caused at the network-host interface. In par-
ticular, context switches between kernel and user-level ap-
plications are burdensome.

A number of user-level network interface protocols have
been proposed [6, 7, 8, 9], which eliminate the kernel from

the critical path between the application and the network in-
terface card. While eliminating the kernel protocol stack
from the message path on the host greatly reduces protocol
processing latency, significant sources thereof remain. User-
level threads on the receiving host still suffer from schedul-
ing latencies and context switch overhead. If thread invoca-
tion is part of a receive-reply loop, the sender may be un-
duly delayed by the latencies first at the receiver and then
back at the sender. Thus, many user-level protocols that rely
on any form of request-reply cycle between sender and re-
ceiver incur such delays at the interface between network
interface card and user-level threads. Such protocols are
very common in distributed computing, for example, reliable
transmission, directory management and token-based mech-
anisms in general. Very often, the amount of computation
at the receiver is trivial, typically involving some form of
simple table lookup.

In this work, we propose to reduce latencies for user-
level protocol processing by moving portions of the proto-
col related computation into the network. The network in-
frastructure should support distributed applications by effi-
ciently performing latency-critical portions of the protocol
processing rather than placing the burden on the kernels or
user-level applications. As the protocol requirements of di-
stributed applications vary, the network support to such ap-
plications should be configurable. Components of protocol
stacks should therefore dynamically be deployable into the
network during application startup. The resulting paradigm
is that of aNetwork-Level Application Interfacefor distri-
buted applications: components within the network can be
programmed at user-level to perform protocol-related com-
putation on behalf of distributed user programs.

We investigate the feasibility of this approach in the pro-
ject PANIC (Protocols Aboard Network Interface Cards),
where we focus on network-level processing of user-level
protocols at the boundary of the network. That is, the user-
level protocol processing happens either in the host or in the
network interface card (NIC). While NIC-level processing
avoids the context-switch overheads in the host, it has other
advantages as well: Many query or dissemination protocols
(for example, directory look-ups or invalidation requests)

302–301 -1-

Host

NIC

User-level Program

Kernel

PANIC Virtual Machine

PDL Compiler

loader

Protocol
Components

Figure 1: Protocol Stack Split between Host and NIC

rely on multicast communication schemes. These protocols
cause unnecessary processing and interrupts at host level.
Only one host in the multicast group may have the directory
entry to be returned or invalidated, while all incur the over-
head of passing the message to the application layer. Pro-
cessing such requests within the network (that is, process-
ing the directory management at the network level) not only
significantly reduces the latency of directory look-ups, but
reduces the number of context switches on the host as well,
as requests are effectively handled at network level before a
host interrupt is generated.

Similarly, authentication and authorization checks for in-
coming messages in a distributed security framework can be
done at network level, that is, before the message reaches
the host. In this way, hosts can be effectively shielded from
many forms of denial-of-service attacks.

2 Abstraction

Traditionally, NICs contain some amount of protocol pro-
cessing in their firmware. Additional protocol components
can therefore easily be embedded. The drawback of this
method is that the NIC control program must be recompiled
and re-installed whenever a significant change in protocol
behavior is desired, however.

The PANIC approach focuses on greater versatility. To
achieve this, we incorporate a virtual machine (VM) for pro-
tocol processing into the NIC firmware. Protocol stacks, or
portions thereof, can be dynamically deployed or recalled, or
portions dynamically swapped at runtime. These operations
can happen either on the local NIC or across the network
on several NICs in an orchestrated fashion. A programming
environment on the host allows us to define protocol compo-
nents in a high-level language, PDL, which we specifically
designed to support protocol processing. A compiler trans-
forms PDL programs into loadable modules that are then in-
terpreted by the virtual machine on the NIC. Protocol stacks
are defined either as single PDL programs or as collections
of inter-operating PDL programs.

PANIC is specifically designed to augment the existing

protocol processing on the card. In this spirit, it does not
interfere with existing packet delivery mechanisms. At no
point do the operations on the VM affect the execution of the
remainder of the NIC control program. The structured com-
munication between PANIC programs allows them to form
a dynamic protocol stack, or portions thereof, on the card.
The complete protocol stack may reside entirely in the host,
entirely in the card, or be split between the host and card as
illustrated in Figure 1. The designer chooses how to best dis-
tribute the burden of protocol processing. For example, in an
authentication subsystem, the table lookups and simple hash
operations for incoming requests could be easily performed
within the NIC, while more expensive encryption operations
would remain on the host. Similarly, preprocessing of out-
going video data in a distributed multimedia system would
be done on the host, while the shaping and policing of the
outgoing traffic would be performed on the NIC.

3 Realization

As platform for implementation of PANIC we have chosen
Myrinet. Myrinet is a good candidate because of its readily
modifiable, modular firmware, real-time clock, very low la-
tency, and high data transfer rate (1.2 Gbit/sec). Myrinet’s
high performance is particular interesting in this context,
as it exposes the limitations of the processing messages on
the host particularly well. Sustained transfer rates are con-
strained by the inability of the host to process data at these
speeds, and the low latencies provided by the network are
countered by the protocol processing overhead on the host.

3.1 The PANIC Virtual Machine

In its current realization, PANIC executes protocol compo-
nents on the NIC within a virtual machine (VM). The first-
generation VM is a simple stack machine that interprets code
generated by the PDL compiler on the host. It has two main
parts: a loader to manage the memory used to store PANIC
programs, and an interpreter to execute those programs.

The VM is targeted towards simplicity rather than per-
formance. Memory for PANIC programs is divided into in-
struction and data sections, both implemented as global ar-
rays in the NIC SRAM. With few exceptions, memory in
PANIC programs is static, and as such is allocated at load-
time. The VM instruction set relies on relative addressing,
making the code relocatable. Similarly, memory references
are resolved relative to the beginning of the memory section
allocated to the PANIC program.

We chose to develop a custom virtual machine rather than
use a Java or other off-the-shelf VM for two reasons. First,
the size of a minimal Java VM prohibits its integration onto
our memory-challenged (256 kBytes) Myrinet NICs. Sec-
ond, other VMs support instructions that have little or no use
for our purpose, for example, string operations. Our instruc-
tion set is specifically tailored for use in the NIC environ-

-2-

ment. Special instructions support, for example, send and
receive operations to and from the network, and host/card
synchronization.

3.2 PANIC VM Interface to the Network

In order to quickly direct incoming packets for processing
by the PANIC VM, they must be readily identifiable. In
the Myrinet implementation we take advantage of a tagging
mechanism used by the control program on the NIC to dis-
tinguish incoming control messages from data messages. We
designate a new packet type, called PANIC packet, that co-
exists with other Myrinet packet types.

To cause minimal intrusion to normal packet processing
on the host, we let PANIC packets be dispatched in the same
fashion as all other incoming packets. Normal Myrinet be-
havior is unaffected except for the delay of executing the
PANIC programs. For complex operations, the work is spread
over two or more PANIC components, which each comprises
a portion of the protocol stack. In this fashion, PDL pro-
grams temporarily relinquish control to the Myrinet firmware,
and thus allow for some amount of multiprogramming on the
card.

3.3 Host-PANIC Virtual Machine Interface

In order for applications on the host and their programs within
PANIC VMs to effectively interact, we provide a shared mem-
ory space between host and PANIC VM and mechanisms for
efficient synchronization between processes and threads on
the host and programs on the PANIC VM. In addition, an
interface is in place to control the loading and activation of
PANIC programs.
Program Management: A library and suite of tools to
load, unload, run, and send messages to PANIC programs
is supplied. These operations can control programs locally
or on remote PANIC VMs and currently use programmed
I/O rather than DMA to transfer data because the program
messages typically are small.
Memory Management: We provide a shared memory space
between the PANIC VM and user programs within a DMA-
able memory segment allocated by the device driver on the
host. Applications acquire segments of this memory through
malloc /attach -style calls, which reserve segments for
use. The application and the PANIC VM attach to the same
memory segment by sharing its segment identifier. The shared
memory paradigm is not fully supported here: while user
programs access memory directly, the PANIC VM has to ac-
cess it through DMA operations. When applications exit,
they free the memory to restore it for general use.
Synchronization: Synchronization between host and NIC
is based on a lock/flag model. The host may set locks and
clear flags; the NIC may clear locks and set flags. The lock-
ing structure is in Shared Memory and may be protected with
mutexes from the host side. There are no interrupts involved.
An application is expected to create a lightweight process to

PROGRAM PING: # -- This program initiates, awaits reply from remote program.

VAR timesent[100], timerec[100], i, msg[1024]; # -- Variable declarations
TRIGGERS 10; # -- Trigger declarations

BEGIN # -- Program Initialization
i = 0;
timesent[i] = CLOCK;
SEND msg[0] LEN 64 AS 12 TO 415 AT 0:0:0:96:221:127:255:140;
AWAIT; # -- Wait for first message to come in

END;

MESSAGE 10: # -- Trigger block for trigger 10
BEGIN

timerec[i] = CLOCK; i = i + 1;
if i < 100 THEN BEGIN

Timesent[i] = CLOCK;
SEND msg[0] LEN 64 AS 12 TO 415 AT 0:0:0:96:221:127:255:140;
AWAIT; # -- Wait for the next trigger to arrive
-- We never reach this point

END;
i = 0; # -- Reach here when i >= 100
-- Send timestamp information to buffer for reading by host
WHILE i < 100 DO BEGIN

DISPLAY timesent[i]; DISPLAY timerec[i]; i = i + 1;
END;
STOP;

END; # -- End of Trigger block
END; # -- End of program

Figure 2: Sample PDL Program

periodically check the flag that may be set by a PANIC pro-
gram. Similarly, a PANIC program may check for a lock set
by an application and take some appropriate action.

3.4 The PDL Language

PDL is a general purpose programming language created for
this research project. Through modifications to the compiler,
the language evolves to meet ever-changing demands. Fig-
ure 2 shows a sample PDL program, the ”ping” program,
which we use for latency measurements in Section 4.

4 Performance

We performed two experiments to assess the performance of
our PANIC VM. First, we measured the message delivery
latency between two VMs. For this, we performed a series
of message round-trip measurements in a ping-pong setting.
Second, we focused on the VM-host interface and measured
the data transfer latency from a VM to the host memory.

4.1 Round-trip Latency

On a small network of Myrinet-connected hosts, we selected
two, a Sparc-5 and Sparc T-1000 for the latency test. The
hosts were connected by two Myricom 4-port switches (M2F-
SW4) and Myricom LAN/SBus interfaces (M2F-SBus32A).
Both hosts were executing no other user applications besides
the test suites.
mcp2mcp: The applications are a pair of PANIC programs,
see Figure 2, running entirely on the Myrinet NIC. Times-
tamps were captured on the card using the PDL CLOCK
function and the NIC’s real-time clock register. Each CLOCK
operation has an overhead of approximately 7�secs. The
test applications include the timestamp overhead, but ex-
clude the time required to increment and compare the coun-
ter that determines the number of packets transmitted. Pay-

-3-

Round trip ping times

0
200
400
600
800

1000
1200
1400
1600
1800
2000

16
B

32
B

64
B

12
8B

25
6B

51
2B

10
24

B

20
48

B

40
96

B

81
92

B

Payload Size

µ-
se

c

mcp2mcp get/deliver api app2app

Figure 3: Round Trip Delays in PANIC

load size excludes any header data, which is 16 bytes for all
Myrinet packets and 16 bytes additionally for PANIC pack-
ets. For these tests, we send the uninitialized content of a
PANIC variable to the second card, which returns that data.
GetDeliver: This experiment performs host-to-host DMA
using two PANIC programs on two NICs, and measures the
round-trip time: the NIC-resident applications move, via DMA,
the packet payload from host memory into a PANIC vari-
able and send that variable to the second card. The receiver
DMAs the payload into a reserved location in host mem-
ory. Immediately after that delivery completes, the data is
DMA’d into a PANIC variable for return to the first card.
The host is not notified of the arrival or departure of the data.
api: This test uses Myricom’sapi latency tool execut-
ing on the hosts to measure application-to-application round-
trip times using a send-receive model that uses busy-polling
to constantly check for an arrival packet. Although our PANIC
mcp was installed, this test did not use PANIC.
app2app: In this most complicated of the tests, an applica-
tion on the host and PANIC program on the NIC co-operate
in the exchange. The PDL program is identical to that in
the GetDeliver test, except that the host is notified of
packet delivery and re-transmission does not occur until the
host initiates the action. Like theapi latency , the user-
application employs busy-polling to detect changes in a lock
signaling packet arrival. Times are measured on the host.

The results of this series of measurements are illustrated
in Figure 3, which depicts the packet round-trip latency as a
function of exchange mechanism and packet size.

Our goal was not to improve Myrinet’s overall perfor-
mance. Other researchers have demonstrated that packet la-
tencies can be reduced by as much as an order of magni-
tude over those inherent in a standard Myricom distribution
[10, 11]. Rather, we show that our PANIC subsystem causes
little, if any, degradation to the system in which it is em-
bedded. Our performance benefits will come from selec-
tively processing some packets on the card instead of speed-
ily moving all packets to the host.

As was expected, themcp2mcppings show the promise
of limiting communication to the card. The difference be-
tween theGetDeliver andapp2app curves exposes ex-

PROGRAM delivertest: # DELIVER and trigger test program

VAR y, msg[50];
TRIGGERS 10;

BEGIN
msg[0] = 2;
msg[1] = 3;
msg[2] = 4;
AWAIT

END;

MESSAGE 10: BEGIN
DELIVER msg[0] OFFSET 0 INTO 2 LEN 64;
AWAIT

END;
END;

Figure 4: PDL Program for Measuring Internal Time Con-
sumption

cessive delay in our host-to-card collaboration. A small part
of this latency is from the host reading and resetting the lock
used for notification. A larger portion, up to 48�secs on
each side, stems from an inefficient messaging interface be-
tween the host and the NIC. We have designed strategies to
minimize the latter overhead.

4.2 Internal Latency

These experiments measured the time spent in different sec-
tions of our VM using the MCPstimestamp() function.

The PDL program in Figure 4 with a single trigger block
was loaded on the card from a Sparc-5 host. That trigger
block contained aDELIVER statement, which DMAs data
from the PANIC VM memory to a previously allocated por-
tion of memory on the host.

The PANIC VM first demultiplexes the incoming mes-
sage to the correct PANIC program. Control then passes
to the interpreter, which further demultiplexes the message
to the correct program block, sets the program counter, as-
certains the beginning of the memory segment for the pro-
gram, and executes statements until aAWAIT is encoun-
tered. The two statements executed in the test program were
DELIVER followed by anAWAIT. TheDELIVER causes a
DMA transfer from PANIC VM variable space into the spec-
ified segment in host memory. We break theDELIVER op-
eration into two phases: time required for the VM to reach
the DELIVER op code, and time required to complete the
actual DMA. The small amount of time required to process
theAWAIT is also included in the execution time of the in-
terpreter.

The measurements of time spent in various components
of the PANIC VM are shown in Figure 5. Most of the time
spent in the interpreter is attributable to start-up costs. This
cost cost is disproportionate to the work actually performed.
Had we executed several statements, interpreter overhead
would appear less burdensome.

The experiments reveal one obvious candidate for im-
provement - the interpreter - and a less obvious need for
compiler modification. Execution of the interpreter is more
costly than DMA movement of 512 bytes of data. Most of

-4-

Time Spent in VM Components

0

10

20

30

40

50

60

70

80

16B 128B 512B 1024

Payload Bytes

µ -
se

c

Load Deliver DMA Interp

Figure 5: Proportion of Time Spent in VM Components

this latency is due to start-up costs that could be ameliorated
over several statements; we are investigating ways to reduce
this delay.

As the amount of data being moved via DMA increases,
time required for the transfer increases linearly. For DMA
movements of 1 kByte or more, time spent in the DMA ma-
chine dominates all other activities. In some circumstances
the DMA must complete before program execution can con-
tinue. For example, if a program issues aGETcommand to
load a local variable from host memory, then uses that vari-
able in a computation, the DMA must finish before compu-
tation proceeds. In other situations, it would be possible to
start the DMA and immediately resume execution of subse-
quent statements not dependent on the data transfer. We are
exploring ways to modify the compiler to detect and gener-
ate code to effectively handle data dependencies.

5 Related Work

As noted, this work is the natural convergence of two distinct
trends in network programming: Dynamic configuration of
protocol stacks and user-level network interface protocols.
Some of the salient work in each field is summarized below:

Researchers concur on the need to remove the OS from
network messaging paths. A recent survey [14] reported
eleven schemes to boost throughput and reduce latency. The
common strategy is moving messages out of the network
and into application memory with minimal OS intervention.
These systems, loosely categorized asUser Level Network
Interface Protocols, report impressive delivery times. VIA,
Virtual Interface Architecture[15], seems destined to be-
come an industry standard.

Researchers also recognize the need to tailor protocol
layers to application demands. Forcing every network mes-
sage through a regimented kernel protocol stack is wasteful.
As process requirements fluctuate, so too should messag-
ing protocols. Advanced protocol design techniques include
application-level framing, in which the protocol buffering is

fully integrated with application-specific processing. Inte-
grated layer processing, in which many protocol layers are
collapsed into an efficient code path, is another alternative.
Work in this area has led todynamic protocol configuration
in such well-known systems as X-Kernel [16], STREAMS
[17], and DaCapo [18].

Historically, I/O interconnects have been much slower
than the attached I/O devices. High-performance network
cards can saturate the bus used for host-card communication.
Evolution of the personal computer from a desktop tool to an
enterprise server is made possible by a standardized,intelli-
gent I/O architecture(I2O) [19]. This architecture delegates
much of the interrupt processing and hardware management
to separate I/O processors (IOP). These IOPs may reside on
the main board or the peripheral device itself. Each IOP
runs its own embedded operating system tailored for the de-
vice. IOP performance is limited only by processor speed
and memory availability. Both these limitations are artificial
and will yield to decreasing hardware cost.

SPINE [20] is touted as aNetwork Operating System.
The SPINE runtime resides in the host kernel while SPINE
extension written in Modula-3 are downloaded to a Myrinet
network interface. As proof that the concept is viable, two
applications - video server and IP router - are implemented
with impressive results. This work demonstrates that net-
work interfaces may indeed perform work heretofore left to
the host.

A more general framework for anintelligent network de-
vice is U-NET/SLE reported by UC-Berkeley [21]. That
work extends the U-Net model by incorporating a scaled-
down JAVA Virtual Machine on a Myrinet network inter-
face. JAVA applets are downloaded to the network inter-
face to serve as Active Message style handlers for incom-
ing/outgoing packets. Much empirical data is provided to
justify the choice of JIVE (Java Implementation for Vertical
Extensions) as the virtual machine on the interface. Aside
from reporting ping times between JAVA applets, the paper
suggests future applications.

Perhaps closest to our PANIC system isActive Messages
[6]. AM and its successor, AM-II [10] , are based on plac-
ing control information in message headers that will invoke
a user level handler routine. The handler will efficiently ex-
tract the message from the network to the sender-specified
address in host memory. The message is detected either by
polling or interrupt. Polling is likely the best choice inas-
much as waking a sleeping thread on Solaris requires nearly
100 microseconds. The key difference is that the PANIC
component is invoked on the NIC rather than host mem-
ory. Another difference is the variety of actions. A PANIC
component may help direct the message to a specific user
memory location, redistribute the message to other NIC’s or
hosts, or invoke another component in the protocol scheme.

VMMC [22] - Virtual Memory-Mapped Communication
- is yet another system for optimizing message delivery. In a
rather complex set-up procedure, receiving processes export

-5-

areas of their address space wherein they agree to accept in-
coming data. Sending processes import these remote buffers
they will use as destinations for transferred data. When a
message arrives at a Myrinet NIC, it is automatically trans-
ferred into the memory of the receiving process. No ”re-
ceive” primitive is defined. Attaching notification to a mes-
sage causes invocation of a user level handler function once
the message is received. Incoming and outgoing page ta-
bles are kept in a specialized NIC control program. That
control program maintains a virtual-to-physical two-way set
associative TLB for each process using VMMC on a given
node. One way latency of 9.8 microseconds is reported. As
previously noted, the major cost is disabling of Myrinet’s
self-mapping ability.

6 Conclusion

Our claim is that splitting protocol components across host
and NIC is not only possible but yields performance benefits
superior to those of an entirely host based system. In this
paper we have shown that a virtual-machine based approach,
as realized in PANIC, provides good performance. We are
currently adapting a suite of higher-level protocols to PANIC
to collect data on the performance gain that can be achieved
by moving latency critical components into the NIC. We are
working with protocols in two areas: reliable multicast and
distributed shared memory.

Reliable multicast protocols often rely on token-passing
mechanisms and simple queue management for message or-
dering in the receiver hosts. We can take advantage of mech-
anisms that are particularly well suited for very high-speed,
low error-rate, networks, such as “buffering on the link” by
returning messages to the sender for flow control [12].

To further illustrate the feasibility and the performance
benefits of PANIC-style network-level protocols, we are cur-
rently porting a distributed shared memory libray (in our
case Quarks [13]) to PANIC. Empirical evidence will be col-
lected to compare the PANIC-based DSM system with a tra-
ditional host-based implementation.

References

[1] Anderson, Culler, Patterson, A Case for Networks of
Workstations NOW, I.E.E.E. Micro, February 1995.

[2] Rodrigues, Andi, Culler, High Performance Local-
Area Communication Using Fast Sockets, USENIX 97

[3] Lumetta, Culler, Managing Concurrent Access for
shared Memory Active Messages, IPPS/SPDP 98, Or-
lando, Florida, March 1998

[4] Dusseau, Arpaci, Culler, Effective Distributed
Scheduling of Parallel Workloads, SIGMETRICS ’96
Conference on Measurements and Modeling, 1996

[5] Vogels, W. et al., Scalability of the Microsoft Cluster
Service, Proceedings of the Second Usenix Windows

NT Symposium, USENIX Association, Berkeley, Ca,
1988, pp 11-29

[6] Prylli, L., and Tourancheau, Protocol design for high
performance networking: a Myrinet experience, Tech-
nical Report 97-22, LIP-ENS Lyon, 69364 Lyon,
France, 1997.

[7] Tennenhouse, D., and Wetherall, D., Towards an active
Network Architecture, Computer Communication Re-
view, Vol 26, No. 2, April 1996

[8] Welsh, Basu, and von Eicken, Incorporating Memory
Management into User-Level Network Interfaces, Pro-
ceedings of Hot Interconnects V, August 1997.

[9] Von Eicken et al., U-Net: A User-level Network Inter-
face for Parallel and Distributed Computing, Proc 15th
Symp., Operating System Principles, ACM Press, New
York, 1995, pp. 40-53.

[10] B. Chun, A. Mainwaring, and D. Culler, Virtual Net-
work Transport Protocols for Myrinet, IEEE Micro, Jan
1998, pp 53-63.

[11] C. Dubnicki et al, Myrinet Communication, IEEE Mi-
cro, Jan 1998, pp. 50-52

[12] Verstoep, K., Langendoen, K, and Bal, H., Efficient Re-
liable Multicast on Myrinet,

[13] Copyright 1995, University of Utah and Comuter Sys-
tems Laboratory (CS).

[14] Bhoedjang, Ruhl, and Bal. User-Level Network Inter-
face Protocols, IEEE November 1998, pp. 53-60

[15] von Eicken and Vogels, Evolution of the Virtual In-
terface Architecture, Computer, November 1998, pp
61.68

[16] Hutchison, N., and Peterson, L., The x-kernel: An
Architecture for Implementing Network Protocols,
I.E.E.E. Transactions on Software engineering, vol 17,
pp. 64-76, January 1991.

[17] UNIX Software Operations, UNIX System V Release
4 Programmers Guide, STREAMS, Prentice Hall 1990.

[18] Plagemann, T., A Framework for Dynamic Protocol
Configuration, to be published in European Transac-
tions on Telecommunications (ETT), Special issue on
Architecture, Protocols, and Quality of Service for the
Internet of the Future, 1999.

[19] Wilner, D., I2O’s OS Evolves, Byte Magazine, April
1998, 47-48.

[20] Fiuczynski, M, and Bershad, B, SPINE - A safe pro-
grammable and integrated network environment, SOSP
16 Works in Progress, 1997.

[21] Oppenheimer, D. and Welsh, M., User Customization
of Virtual Network Interfaces with U-Net/SLE, Tech-
nical Report,
http://www.cs.berkeley.edu/ mdw/projects/unet-sle

[22] Dubnicki et al., Design and Implementation of Virtual
Memory-Mapped Communication on Myrinet, Proc.
Int’l Parallel Processing Symp., IEEE CS Press, Los
Alamitos, CA., 1997, pp. 388-396

-6-

