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Abstract
This paper focuses on connection management for mission critical
real-time applications over ATM networks. Traditional
connection management generally requires Quality-of-Service
(QoS) parameters to be specified as fixed values, and can only
provide a QoS that is constant throughout the lifetime of an
admitted connection. Such simplistic specification and consequent
resource management offer no flexibility to user applications. The
applications cannot receive the best possible QoS, and system
resources are grossly under-utilized. We take an adaptive
approach. With our adaptive connection management, QoS of
connections is specified over a range of values. Resources are
reallocated and redistributed in response to dynamic fluctuations
in resource availability. With our adaptive strategy, we
demonstrate dramatic improvements in both the offered QoS to
applications, and the effective utilization of system resources. Our
approach is practical and compatible with current networking
standards. We have implemented adaptive connection
management in a newer version of our real-time toolkit, NetEx.
NetEx provides delay guaranteed communication services for
mission critical real-time applications over high-speed networks.

1 Introduction
In this paper, we report a new adaptive approach for

providing effective and efficient connection management service
for mission critical real-time applications. These applications
typically consist of a set of tasks executing on different hosts,
exchanging messages to co-operatively accomplish a common
mission critical objective. Examples of such applications include
supervisory command and control of defense systems,
manufacturing plants, etc. In addition to logical correctness in
execution, they also require timing correctness. The success of a
distributed mission critical application thus crucially depends on
the ability of the underlying network to guarantee upper bounds
on message transfer delay. Our study focuses on connection
management for such applications. With our adaptive strategy, we
can demonstrate dramatic improvements in both the offered
Quality of Service (QoS) to the applications, and the effective
utilization of system resources. The results of our study have been
implemented on an experimental test-bed consisting of
workstations interconnected by an ATM network.

1.1 Traditional Connection Management

We focus on enhancing communication support for
mission critical applications through innovative connection
management. A connection can be viewed as a contract between
an application and the connection management system. The
defining characteristic of connection-oriented communication is
the existence of a connection establishment phase preceding the
actual data transfer. Connection management is a network
function that is responsible for setting up, maintaining and tearing
down connections. A real-time connection is additionally
characterized by stringent deadline constraints imposed on its

packet delivery time. A traditional connection management
(TCM) system for real-time connections is shown in Figure 1.

In traditional connection management, an application
that requests a new connection issues a Connection Admission
Request (CAR) with QoS (i.e., deadline and traffic specifications)
needed during the lifetime of the connection. TCM computes the
upper bound on the end-to-end delay suffered by the incoming
connection, and also recalculates delays of the existing
connections. This is because the admission of the new connection
may affect the delays of some of the existing connections. TCM
then checks if the delays of the incoming and existing connections
are less than their respective deadlines. This is to ensure that
admitting the new connection does not violate the guarantees
made to the existing connections. If delays of all the existing
connections and the new connection are less than their respective
deadlines, then the new connection is admitted and connection
management allocates resources (virtual channels, bandwidth
etc.). Data transfer proceeds as a sequence of messages generated
according to traffic parameters presented at connection admission
time. At the end of the lifetime of a connection, an application
sends a Connection Termination Request (CTR) and the TCM
releases all resources allocated at admission time.

Much work has been done on traditional connection
management. TCM generally requires the QoS parameters be
specified as fixed values (e.g., traffic with peak 10 MBPS, and
deadline 30 milliseconds). Once a connection is admitted, TCM
provides a constant QoS to the connection throughout its lifetime.
Such a simplistic specification and consequent resource
management suffer from many shortcomings that directly affect
the applications using it. Specifically, this model is:

• Restrictive: The TCM ignores the fact that for many
applications, QoS requirements do not have to be constant.
The fixed-QoS model is too restrictive especially for
applications that may want to accept admission at a lower
QoS, rather than being rejected. For example, a video-on-
demand application may be willing to accept a lower QoS
(in terms of lesser bandwidth, jitter etc.) to send video
frames of poorer quality rather than send no frame at all.

• Static: The QoS offered to connections does not change
over its lifetime even though the resource availability
changes. This precludes connections from receiving the best
possible QoS. For example, when a connection leaves the
system, existing connections do not benefit from the
resources released during connection termination.

• Rigid: TCM also lacks the flexibility of providing users
with control over the connection admission process. Some
applications (e.g., the one that triggers missile deployment),
may demand preferential connection admission based on
criticality. This necessitates connection management to be
able to accept and respond to the directives originating from
user level applications.
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Figure 1: Traditional Connection Management
• Poor Performance: A principal measure of any connection

management system is its effectiveness expressed in terms
of the services provided to applications and utilization of
resources. TCM is very ineffective, as it neither exploits the
dynamism of the system nor the flexibility in QoS suitable
to applications. This also leads to a gross under-utilization
of system resources.

1.2 ACM and Issues in Adaptation

To address the shortcomings of a TCM system, we
propose Adaptive Connection Management (ACM) for mission
critical applications. First, we allow an application to specify QoS
in a range, rather than fixed values. Second and more importantly,
we incorporate QoS adaptation that offers the best possible QoS
to connections contingent on the resources are available.

Our approach has many benefits albeit offering
deterministic performance guarantees on end-to-end message
transfer delay. The probability of a connection being admitted is
increased as ACM has a choice over the level of QoS to offer.
The user has control over the admission process by participating
in adaptation. ACM allows applications to specify directives to
shrink (or expand) QoS of existing connections during admission
(or termination). An adaptive resource allocation cognizant of the
dynamic fluctuations in resource availability leads to a better
utilization of system resources. In addition, at any given time, the
existing connections are offered the best possible QoS allowed by
resources available. The adaptation mechanism is described in
detail in Section 3.

Adaptive connection management is, nevertheless, a
challenging proposition. We identify the following important
issues and address them in ACM:

• Efficiency: To provide delay-guaranteed communication,
various decisions have to be made in connection
management and resource allocation. It is imperative to
make these decisions as fast as possible because mission
critical applications demand a fast response for their
requests. This requires minimizing the overhead in the
decision making while not compromising the quality of
service provided.

• Effectiveness: ACM manages network and host resources to
support real-time connections. The services provided must
be effective in the sense that both the quality-of-service
provided to the individual connections and the utilization of
system resources should be maximized.

• Sensitivity to mission-specific requirements: ACM must
recognize the diverse requirements of the applications it
supports. For a given application, its requirements change
as its mode of operation changes. To provide services that
are consistent with the demands of the application, mission-
specific requirements should be properly propagated to the
host and network resource managers and correctly taken
into account in making decisions on connection admission
and resource allocation.

We address the above issues in the design of ACM. ACM
has been implemented in the newer version of our real-time
toolkit, NetEx, over an ATM network. NetEx is a library of
communication primitives that enables user applications to
participate in delay guaranteed communications [DLSZ97,
SLDZ97]. Our implementation is compatible with several
standards and recommendations on QoS framework such as
[ATM95, IT96].

1.3 Previous Work

The U.S. DoD has laid special emphasis on improving
the responsiveness, security and reliability of communication
services that play a critical role in current and future military
operations [DISA94, ABIS96]. In this context, connection
management for guaranteed performance (delay, jitter, etc) is a
well-researched topic. The communication is based on a simplex
fixed-route connection called real-time channel, variations of the
type defined in [Fer90]. A real-time channel is essentially a
virtual circuit with performance guarantees. Various connection
management approaches for guaranteeing performance of real-
time channels have been suggested in [Par92, AKRS94, KSF94,
MZ95, Cru95, MIS96, Rah96, DLSZ97]. Connection
management is addressed in terms of scheduling policies, traffic
regulation methods, and analysis of delay and buffer constraints.
The aforementioned studies deal with QoS specified as fixed-
values. Dynamism in connection management is discussed in
[PVZ93, PZF94]. More recently, an architectural framework for
adaptive resource management is reported in [HWVC97,
HTG97]. Our study appropriately supplements previous work in
developing communications service for mission critical
applications. We identify and solve the important issues in
adaptive connection management.

2 Overview of Adaptive Connection
Management

In this section, we present a schematic of our adaptive
connection management (ACM). We first discuss connection QoS
specification and classification. We then discuss the functional
blocks of ACM and their inter-relation for adaptation.

2.1 Connections

This sub-section outlines connection QoS specification
and classification.

2.1.1 Connection QoS Specification

The periodic model is traditionally used to specify the
QoS of a connection. The parameters are specified as the ordered



triplet, (C, P, D), where C is the message size in bits generated
periodically every P seconds, and each message has a deadline D
seconds. The traditional model however specifies parameters with
fixed values. We extend this model to specify parameters over a
range of minimum and maximum values. The j-th connection has
its QoSj given by,

QoSj = [QoSj
worst, QoSj

best] (1)
where

QoSj
worst = (Cj

min, Pj
max, Dj

max) (2)
and, QoSj

best = (Cj
max, Pj

min, Dj
min) (3)

If ACM admits a connection, the connection is offered an
operating QoS, QoSj

op such that,
QoSj

worst ≤ QoSj
op ≤ QoSj

best (4)

Figure 2 shows this feasible QoS region. The objective of ACM is
to offer the best QoS possible to an admitted connection based on
resource availability i.e., ACM keeps QoSj

op as close to QoSj
best as

possible.

2.1.2 Connection Classification

ACM distinguishes connections to be from one of three
classes: critical, essential and non-essential.

• Critical connections are of the highest criticality and are
always admitted by ACM. Reserving resources a priori for
critical connections ensures this. A critical connection, once
admitted, cannot be preempted.

• Essential connections are of a criticality lower than critical
connections but higher than the non-essential ones. An
essential connection may be denied admission if sufficient
resources are not available, but once admitted, it cannot be
preempted.

• Non-essential connections are of the lowest criticality. They
may be denied admission and be preempted in order to
admit other connections of higher criticality.
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Figure 2. Feasible QoS Region
Such a criticality-based classification is appropriate for

mission critical system where tasks inherently are of different
criticality [MZB90, HWC97, IT96]. In the absence of this
classification, a less critical task would use the same amount of
resources as a more critical one. This clearly results in poor
management of resources especially when there is resource
contention. Further, classifying connections helps applications
exploit the adaptation services provided by ACM resulting in
better overall performance.

2.2 Adaptation Strategies

We separate adaptation strategies in ACM (See Figure
3) into two major threads - one for connection admission and
another for connection termination. The ACM schematic builds
on TCM (shown in Figure. 1). The main addition is a QoS
Shrinkage module for connection admission and a QoS Expansion
module for Connection Termination.

2.2.1 Adaptive Connection Admission

A Connection Admission Request (CAR) comes with
the following parameters: {Mj, QoSj, SDSj}, where Mj is the j-th
connection and QoSj is the QoS for Mj as defined in Equation (1).
The connection request specifies an adaptation policy via the
Shrinkage Directive Sequence (SDSj). SDSj directs the ACM as to
which connections’ QoS need to be shrunk in order to admit the
new connection.
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Figure 3. Adaptive Connection Management
We now outline the different steps in adaptive connection

admission.
C1: Initial QoS Assignment. For every incoming connection
request, ACM sets the QoSi

op of the new connection to
QoSi

best so that a new connection may be admitted at the
best QoS requested if sufficient resources are available.

C2: Delay Computation. ACM then computes the upper
bound on the delay d due to the new connection being
admitted at QoSi

best Delay computation is a very important
part of ACM. This problem has been solved for ACM in
[Li98].
C3: Delay Test. The next step is to tests if all the requested
deadlines can be met i.e. d ≤ D (where d and D are
respectively the vectors of delays and deadlines for a set of
connections). The new connection is admitted only if the
deadlines of this and the existing connections can be
guaranteed.
C4: QoS Shrinkage. If the guarantee test fails, the ACM,
based on SDS, proceeds to determine the level to which the
QoS of a selected set of connections needs to be shrunk to
successfully admit the new connection at QoSj

op. If QoS
Shrinkage is successful in admitting a connection by
reducing QoS of some connections, resource allocation
follows. A connection is rejected only when adaptation fails



to free up enough resources to admit the new connection.
This module is discussed in detail in Section 3.1.
C5: Resource allocation. Once a new connection is
admitted, ACM allocates resources for the new connection
such that the connection operates at QoSj

op.

2.2.2 Adaptive Connection Termination

A Connection Termination Request comes with following
parameters: {Mj, EDSj}, where Mj is the j-th connection. The
adaptation policy is specified by the Expansion Directive
Sequence (EDSj). EDSj directs the ACM as to which connections
are to get an increased QoS as result of resources released by the
terminating connection.

T1: Resource Release. When a valid CTR arrives, ACM
releases all resources that were reserved for the connection
during admission time.

T2: QoS Expansion. ACM, based on EDS, then determines
the level to which the QoS of a selected set of connections
can be increased using the resources released at connection
termination. This is described in detail in Section 3.2.
T3: Resource Reallocation. ACM then re-allocates
resources needed to support the increased QoS.

3 Adaptation Modules
In the previous section we described an overview of

ACM. As shown in Figure 3, the components of ACM at the core
of the adaptation process are the QoS Shrinkage and QoS
Expansion modules. These two modules, though independent of
each other, work towards a common goal: providing better
performance for ACM. QoS Shrinkage module helps ACM admit
more number of connections by shrinking QoS of connections
specified in the shrinkage directive sequence (SDS). QoS
Expansion module, on the other hand, enables ACM to provide
better offered QoS to existing connections by expanding QoS of
candidate connections identified by the expansion directive
sequence (EDS).

In this section we discuss QoS Shrinkage and QoS
Expansion modules shown in Figure 3. We present formal
definition of various terms used in these modules and then
elucidate their operational details.

3.1 QoS Shrinkage Module

Recall from Figure 3 that a QoS shrinkage module is
invoked by ACM when a new connection cannot be admitted with
its QoSbest. ACM sends a QoS Shrinkage Order to this module to
perform shrink operation. QoS Shrinkage Order carries the
connection id of the new connection and a Shrinkage Directive
Sequence (SDS) as input to this module. When the QoS shrinkage
module finishes its execution of the QoS Shrinkage Order, it
reports a success or failure to ACM. The decision of this module
is then used by ACM to determine whether to accept or reject the
new connection.

3.1.1 Shrinkage Directive Sequence

A Shrinkage Directive Sequence is an ordered list of
shrinkage directives. Let a connection Mj come with a shrinkage
directive sequence SDS. Let the SDS contain n shrinkage
directives SD1, SD2, …., SDn. Then

SDS = <SD1, SD2, …., SDn>. (5)

Further, a shrinkage directive SDl,1≤ l ≤ n  is defined as

SDl = {Gl, QoS
lG

low}, (6)

where Gl is the set of connections that shrinking should be applied
to, and QoS

lG
low

is the ordered list of QoSs for the connections in Gl i.e.

QoS
lG

low = < QoSi
low | Mi ∈ Gl >, (7)

where QoSi
low of connection Mi is given by the ordered triplet

(Ci
low, Pi

low Di
low) and connection Mi may be shrunk down to

QoSi
low while trying to admit the connection Mj.

3.1.2 Shrinkage Operation

Having defined various terms in the previous section,
we will now give a detailed description of the QoS shrinkage
operation of ACM. For this we will refer to Figure 4 that shows
the flow chart of the QoS shrinkage module.
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Figure 4: QoS ShrinkageModule
When a QoS Shrinkage Order arrives, the QoS shrink

module does the following.
1) Checks if the shrinkage directive sequence is empty. If it

is, then it reports a failure.
2) Dequeues the first shrinkage directive from the shrinkage

directive sequence and gets the group of connections G in
the shrinkage directive.

3) Identifies a subgroup Gsub of G such that Gsub consists of
only those connections in the group G which affect the
connection Mj. This makes sure that ACM does not alter
operating QoS of connections that do not share resources
with the connection Mj.

4) Computes delays of all the connections in Gsub.
5) Checks if delays of all the connections in Gsub are less than

their respective deadlines (d ≤ D). If the condition is false,
then enough resources are not available to admit the new
connection Mj. Control then passes to step 1.

6) Otherwise, it tries to upgrade the operating QoS of all the
connections in Gsub. When it comes out of the iteration, it
would have shrunk operating QoS of all the connections in
Gsub to their respective QoSlow. But there may be some
resources available that can upgrade operating QoS of
these connections to a value higher than QoSlow. This is
achieved by performing binary search between QoSl

low



and QoSl
best of all connection Ml∈Gsub while the delay test

is still satisfied. This ensures that ACM gives as high a
QoS as possible to the connections in Gsub with the
available resources. A success is then reported.

Preemption of a connection Ml can be specified by setting
QoSl

low to be zero i.e. QoSl
low should be (0, ∞,∞). Critical and

essential connections cannot be preempted, hence for a critical or
essential connection Ml, QoSl

low ≥ QoSl
worst. Non-essential

connections, on the other hand, can be preempted, so QoSl
low ≥ 0

for such class of connections. The QoS shrinkage module can also
be invoked when the user sends absolute shrinkage directives i.e.
there is no new connection that needs to be admitted, but the user
wants to shrink operating QoSs of some of the existing
connections. The flowchart for the absolute shrinkage directive is
very similar and is not shown in this paper.

3.2 QoS Expansion Module
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Figure 5: QoS Expansion Module
Figure 3 shows that QoS expansion module is invoked

by ACM after it releases resources of connection Mj subsequent to
a connection termination request for the connection. ACM sends a
QoS Expansion Order to this module to perform expansion
operation. QoS Expansion Order carries the connection id of the
connection to be torn down and an Expansion Directive Sequence
(EDS) as input to this module.

The expansion operation is very symmetric to the
shrinkage operation. Hence operation of QoS expansion module
and some definitions will very closely resemble those of QoS
shrinkage module. Although repetitious, we will present them for
the sake of completeness.

3.2.1 Expansion Directive Sequence

Expansion Directive Sequence is an ordered list of
expansion directives. Let a connection Mj come with a expansion
directive sequence EDS. Let the EDS contain n expansion
directives ED1, ED2, …., EDn. Then

EDS = <ED1, ED2, …., EDn> . (8)

And expansion directive EDl, 1≤ l ≤ n is defined as

EDl = {Gl, QoS
lG

high}, (9)

where Gl is the set of connections to participate in the expansion
process, and QoS

lG
high is the ordered list of QoSs of connections

in Gl i.e.

QoS
lG

high = < QoSi
high | Mi ∈ Gl >, (10)

where QoSi
high of connection Mi is given by the ordered triplet

(Ci
high, Pi

high Di
high) and connection Mi may be expanded to

QoSi
high during expansion operation.

3.2.2 Expansion Operation

In order to elucidate the expansion operation, we will refer to
Figure 5. When a QoS expansion order arrives, the expansion
module does the following.

1) Checks if the expansion directive sequence is empty, in
which case it returns.

2) Dequeues the first expansion directive ED from the
expansion directive sequence and gets the group of
connection G in the expansion directive.

3) Identifies a subgroup Gsub of G such that Gsub consists of
only those connections in the group G that are affected by
the connection Mj. If this step is not followed, then QoS of
some connections may be expanded even though they do
not share resources with Mj. This may increase delay of
some connections that are not in G. Since delay test is
confined to G, this may cause some of these connections
(that are not in G) to miss their deadlines.

4) Computes delays of all the connections in Gsub.
5) Checks if delays of all the connections in Gsub are less than

their respective deadlines (d ≤ D). If the condition is true,
then it means that there are more resources available in the
system and further expansion is possible. So it goes back
to step 1.

6) Otherwise, tries to downgrade operating QoS of all the
connections in Gsub and then returns. This is achieved by
performing binary search between QoSl

high  and QoSl
worst

of all connection Ml∈Gsub and ensuring that the delay test
is not violated. This operation ensures as high QoS as
possible with the available resources for the connections
in Gsub.

For a connection Mj belonging to any class (critical, essential
or non-essential), QoSi

high≤ QoSi
best. Thus a connection never

operates at QoS higher than the best QoS. Resumption of a
connection can also be achieved by specifying appropriate
QoSi

high. Similar to the QoS shrinkage module, this module can
also be invoked by absolute expansion order.

4 Implementation and Evaluation
In this section we discuss the implementation and

performance evaluation of adaptive connection management.

4.1 Implementation in NetEx

ACM has been implemented in the newer version of our
real-time toolkit, NetEx [SLDZ97]. NetEx is a communication
software package developed in the Department of Computer
Science at Texas A&M University. NetEx is a library of
communication primitives that enables user applications to
participate in delay guaranteed communications. NetEx consists
of three main components: user library, Host Traffic Manager
(HTM) and Network Traffic Manager (NTM). User library is the
interface of NetEx to the end users. HTM is the module



responsible for managing and policing traffic at the host. NTM is
primarily responsible for connection management of the entire
system. For a detailed description of NetEx architecture please
refer to [SLDZ97].

The design of a software architecture like NetEx that
provides delay guarantees to adaptive real-time connections is
influenced by many potentially conflicting requirements. In the
previous version of NetEx, we used TCM for connection
management. In the new version we have replaced TCM with
ACM described in this paper. We have used this new version of
NetEx to evaluate the performance of our ACM. While
supporting adaptive connection management, NetEx is designed
to be compatible with existing operating systems and network
technologies. Some other solutions call for changes to the OS
kernel or network protocols, which may not be cost-effective.
NetEx strives to provide delay guarantees on existing OS
platforms and networks. Such compatibility makes it easy for
NetEx to support many legacy applications. Furthermore, the
technology we develop accommodates the evolution of existing
platforms with the addition of new devices. NetEx can thus
continue to be effective and efficient while the underlying
systems grow in size and extend to heterogeneous domains.

4.2 Experimental Setup

For our experiments, we have three Sun Sparc 4
workstations running Solaris 2.5 connected to an ATM switch
(Fore Systems’ ForeRunner) with link speed of 155 Mbps. One of
the workstations runs as an NTM host (with the new ACM) and
the other two are run as HTM hosts. User applications run on
these two HTM hosts. An application on one HTM host generates
a request to connect to another application on the other HTM
host. Connection requests have Poisson arrivals. All admitted
connections have an exponentially distributed lifetime. QoS is
specified as a range with (Cmin, Pmax, Dmax) as the lower limit
(QoSworst) and (Cmax, Pmin, Dmin) as the upper limit (QoSbest).
Average C is generated from a uniform distribution and Cmin is set
to 5% lower and Cmax is set to 5% higher than this average value.
Pmin

 and Pmax
 are calculated according to the required utilization of

the system. Deadline ranges are made equal to the corresponding
periods i.e. Dmin= Pmin and Dmax= Pmax. 10% of the connections
generated are critical, 30% are essential and the rest are non-
essential connections. When a connection is accepted, its
operating QoS QoSop is given by (Cop, Pop, Dop).

We used two configurations of Adaptive Connection
Management:

• Configuration S: In this configuration, only QoS shrinkage is
allowed, QoS expansion module is turned off. The shrinkage
directive sequences are such that the QoS of connections are
shrunk in the increasing order of their criticality i.e. non-
essential connections are shrunk first, followed by essential
and then critical. Preemption of any connection is not
allowed.

• Configuration S&E: This is same as the Configuration S
except that QoS expansion is also allowed when a
connection leaves the system. The Expansion directive
sequences are such that the QoS of connections are expanded
in the decreasing order of their criticality i.e. critical
connections are expanded first, followed by essential and
non-essential connections.
To compare performance of ACM with TCM we also set up

the following two baseline configurations.

• Configuration B: In this configuration, no adaptation is
performed and connections are admitted based on their
QoSbest. This configuration corresponds to TCM with
applications sending connection admission request with a
single-valued QoS that corresponds to QoSbest of ACM.

• Configuration W: This configuration is the same as
Configuration B except that connections are admitted based
on their QoSworst.

4.3 Performance Metrics

We will use the following performance metrics to evaluate our
ACM :

• Admission Probability (AP): Admission Probability of a
connection management system indicates the likelihood of a
connection being admitted. We define admission probability
as

AP
Number of connectionsadmitted

Total number of connectionsrequested for admission
=

• QoS Effectiveness (QOSE): The QoS effectiveness of a
connection is a measure of how close the operating QoS of
the connection is to the maximum QoS asked by the
connection. It is defined as

QOSE
C C P P D D

C C P P D D

op op op

= − + − + −
− + − + −

( ) ( ) ( )

( ) ( ) ( )

min max max

max min min max min max

2 2 2

2 2 2

• Average Execution Time (AET): Execution time is the
amount of time an application has to wait to get a reply from
ACM after submitting a connection admission request.
Average Execution Time of N connections is defined as

AET
Sum of execution time of N connections

N
=

4.4 Experimental Results

Figures 6, 7, and 8 show variation of AP, QOSE and AET
respectively as utilization of the system increases from 0% to
100%.

We make the following observations from these figures:

• For all configurations, AP decreases as utilization increases.
As system utilization increases, the availability of system
resources decreases. Hence, more connections get rejected.

• AP for Configuration S, S&E and W are same for all
utilization values. This is so because a connection is always
admitted with QoSworst in Configuration W and the same
connection can also be admitted in S and S&E with
QoSop≥QoSworst. But AP for Configuration B is much lower
than the other three. In this case, connections are admitted
with QoSbest. Hence the system allocates more resources to
each admitted connection than it does in other
configurations. As a result, the AP is lower than the other
three configurations.

• QOSE for Configuration B is always 1.0 and that for
Configuration W is always 0.0. This is what is expected
because ACM admits connections with operating QoS equal
to QoSbest and QoSworst respectively in those two
configurations.
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Figure 8: Average Execution Time vs System Utilization
•  QOSE for Configuration S and S&E are lower than that
for Configuration B. This is due to the fact that at higher
utilization, for Configuration S and S&E, the shrinkage
module has to shrink the QoS of a larger number of existing
connections to admit a new connection. This brings the
QOSE down. Although Configuration B performs better than
S and S&E in terms of QOSE, recall that the AP for
Configuration B is much lower than both S and S&E.

• QOSE of Configuration S&E is always higher than that for
Configuration S. In Configuration S&E, ACM expands

operating QoS of existing connections, when a connection
leaves, which boosts its QOSE. This expansion operation
does not happen in Configuration S.

•  For all the configurations, AET increases as system
utilization increases. This is because at higher utilization, the
system has more active connections to deal with which
makes the execution time longer. AET for Configuration SE
is the highest, since in this case ACM does the largest
amount of work (in terms of shrinkage and expansion
operation). The overall AET of Configuration S&E is very
low (less than 1 millisecond), which is very good for systems
in practice.

5 Conclusion and Future Work
In this paper we have introduced adaptive connection

management that addresses the shortcomings in traditional
connection management. We have demonstrated that by taking an
adaptive approach to connection management, we can enhance
communication support for mission critical applications.

The main contributions of this paper are:

1. An enhanced QoS model: We have extended the
traditional fixed-value QoS model to one that accepts QoS
specified over a range. This gives the applications and the
management flexibility in resource allocation.

2. QoS support for connection classes: This is particularly
suitable to mission critical applications that need
criticality-based connection management.

3. Efficient and effective QoS adaptation modules: With
QoS Shrinkage and QoS Expansion modules, the
resources are dynamically re-allocated in order to meet the
need of mission critical real time connections. Our
performance data shows that the additional cost (in terms
of execution time) of adaptation is low while the benefits
are high.

4. Specially designed adaptation directives: By this
mechanism, mission-specific requirements can be properly
propagated to our adaptive connection management
system and correctly taken into account in making
decisions on connection admission and resource
allocation.

5. Connection-level flexibility: ACM provides dynamic
connection-level flexibility via user supplied directives. A
connection request can carry directives to shrink or
expand the QoS of existing connections in favor of the
incoming connection. This connection-level flexibility
enhances services to be consistent with the demands of
mission critical applications.

6. A successful implementation in NetEx: The proposed
adaptive connection management scheme has been
implemented in NetEx. NetEx is a toolkit of
communication primitives for delay-guaranteed
communications. Data collected from our experiments
with the implementation confirms our thesis that the
overall performance of the system is improved when
connection management responds to dynamic fluctuations
in resource availability.

7. Practical and compatible technology: Our proposed
scheme is compatible with existing network standards and
industrial practices. NetEx is realized with network



products which are currently commercially available and
does not require any changes to them.

Several extensions to adaptive connection management are
possible. We are currently adding fault-tolerant techniques so that
the overall system will adaptively meet the real-time and fault-
tolerance requirements of mission critical applications.
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