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Abstract-In this paper, we address issues related to 

preventing traffic analysis in computer networks used for real-
time mission-critical applications.  We consider an IP-based 
network where headers of packets, including source host 
address and destination host address, are readable by an 
observer (i.e., by a potential enemy).  Although the encryption of 
network packets significantly increases privacy, the density of 
the traffic can still provide useful information to the observer.  
We take an approach by manipulating traffic in the network 
through host-based rerouting and traffic padding so that the 
traffic shows a time-invariant pattern.  Thus, the observer can 
not derive any useful information about the real traffic pattern.  
By evaluating the performance of the algorithms used for this 
problem in terms of acceptance rate and execution time, we 
found that some well-known theoretical optimal and near-
optimal algorithms failed to meet one or the other criteria.  In 
this paper, we present a heuristic method that can effectively 
prevent traffic analysis while at the same time meeting real-time 
requirements.  Our algorithm generates a plan that specifies 
where and when the dummy packets should be transmitted and 
if and how the payload packets should be rerouted and can yield 
high acceptance rate with low execution time.  The success of the 
algorithm stems from the fact that it explicitly takes into 
account of real-time requirements and properly balances the 
traffic over the links.  

I. INTRODUCTION 

In this paper, we address issues related to preventing traffic 
analysis in computer networks used for real-time mission-
critical application.  Prevention of traffic analysis has been 
one key issue in network security, especially for networks in 
the battlefield.  Generally speaking, the traffic pattern within 
the network exhibits different characteristics under different 
situations and at different times.  For example, the pattern of 
the traffic entering into and exiting from a military command 
control center is very different depending on the state of 
alertness at which the center operates.   Although the 
encryption of network packets ensures privacy of the 
payload, the density of the traffic (e.g., the number and size 
of the messages entering into or exiting from a given site or 
region) can still give some useful information to an observer.  
Simply by observing the traffic pattern, the observer may 
deduce some important information and infer the current 
activity or intention of the network users.  Information about 
traffic density can be easily obtained in wireless 
environments by observing the radio frequency sources.  In 
wired networks, this can be done by properly placing packet 
sniffers, by using commercial network management tools, or 
by other means. 

This problem can be simply stated as: “By the act of 
communicating, even if perfect confidentiality of the actual 
information is achieved, one can give indications to 
observing parties of impending actions, capabilities, chains of 
command, and level of readiness.” (from “Research 
Challenges in High Confidence Networking”, DARPA, July 
1, 1998). 

In addition to requiring a high degree of network security, 
many mission-critical applications in the battlefield have the 
real-time requirements as well: messages in the battlefield 
must be delivered within previously defined deadlines in 
order to be of value. 

In this paper, we present a method that can effectively 
prevent traffic analysis while at the same time meeting real-
time requirements of messages in the network. 

We consider an IP-based network where headers of the 
packets, including source host and destination host addresses, 
are readable by an observer.  Thus, the traffic pattern is 
defined as the amount of traffic that is transmitted between 
any two hosts.  To prevent traffic analysis, we manipulate the 
traffic in the network so that the traffic shows a time-
invariant pattern (we call this a stable pattern).  That is, after 
manipulation, the pattern of the traffic in the network will 
appear the same all the time and at any time, regardless of 
how the real (payload) traffic in the network changes under 
different situations.  In this way, the observer can not derive 
any information about the real traffic. 

We achieve prevention of traffic analysis by two means: 
host-based rerouting and traffic padding.  Traffic padding 
means that dummy packets are injected into the network in 
order to make the traffic pattern time-invariant.  With host-
based rerouting, a packet may be sent to some intermediate 
hosts first and then sent to its true destination.  Through host-
based rerouting, the true source and destination of the traffic 
can be hidden using appropriate encryption.  Although the 
observer can obtain the current source host address and the 
current destination host address of the traffic that passes 
through a link, she may or may not be observing the true 
source and destination of the traffic.   This can considerably 
complicate the task of traffic analysis.  Host-based rerouting 
can also reduce the load on some links.  Through host-based 
rerouting and traffic padding, the amount and nature of traffic 
between the source and destination within the network can be 
masked. 

Once payload traffic specification, real-time deadline 
requirements, and stable traffic pattern constraints are given, 
we need to determine if there exists a plan that specifies 
where and when the dummy packets should be transmitted 
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and if and how the payload packets should be rerouted via 
some intermediate hosts.  It is a hard problem to efficiently 
determine if the payload traffic specification is feasible under 
given stable traffic pattern constraints and real-time deadline 
requirements, i.e., if it is possible to find a plan that satisfies 
the payload traffic specification and real-time requirements 
and obeys the stable traffic constraints.  In this paper, we 
report on an approach to address this problem. 

Host 1

Host 2

Host 3

Host 4

 

Figure 1. Fully Connected Directed Network 

The rest of the paper is organized as follows: In Section 2, 
we present a brief survey of related work on prevention of 
traffic analysis, delay analysis and on mathematical methods 
used later in this paper.  Section 3 describes the basic model 
and notation used in this paper.  The definition of the problem 
is presented in Section 4.  The delay analysis is presented in 
Section 5.  The design of our heuristic algorithm used for 
prevention of traffic analysis in real-time communication 
networks is presented in Section 6.  The performance 
evaluation is presented in Section 7.  Section 8 concludes this 
paper with a summary of main results and suggestions for 
future extensions to this work. 

II. RELATED WORK 

A model to prevent traffic analysis by converting a given 
traffic matrix into a neutral traffic matrix is described [1]. 
The performance analysis of this model is given in [2][3].  
This work has a limitation that the rerouted traffic can only 
be transmitted through one hop (one intermediate node 
between the source and destination).  If we relax this 
limitation, we can obtain the same results at less cost.  Some 
work about the delay analysis for real-time communication 
services over ATM and FDDI network had been done by our 
group in [4][5][12], and by many others.  Given the stable 
traffic matrix, we are able to calculate the worst case delay of 
packets.  Whether a real demand traffic matrix is feasible 
under the stable traffic matrix is a multi-commodity 
concurrent flow problem in nature.  Much work on this 
problem is described in [6][7][8][9][10][11].   

III. BASIC MODEL AND NOTATION 

We assume that an underlying routing subsystem 
determines a unique path between any pairs of hosts.  For our 
purposes, we model the network at transport layer and 
assume that every host can communicate with every host.  
The network therefore can be modeled as a fully connected, 
directed graph.  All the edges in the fully connected directed 
graph represent the paths from the source host to destination 
host through some routers in the network.   

 An observer can read/monitor the amount of traffic along 
each edge of the graph.  Thus, this observer can determine the 
traffic pattern between each source-destination pair. Our 
work will be aimed at preventing such information from 
being released to the enemy observer. 
Definition 1: The Real Demand Traffic Matrix A=(aij)nxn 
denotes the actual bandwidth requirement between any two 
hosts. The values aij are constraint so that the row-sum of any 
row i does not exceed the capacity of the output link of Host 
i.  Similarly, the column-sum of any column j does not 
exceed the capacity of the input link of Host j. 

In the following we will use the matrix A represented 
below as example traffic matrix for the system of four nodes 
illustrated in Figure 1.  
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Definition 2: The Stable Traffic Matrix B=(bij)nxn represents 
the bandwidth requirement of the stable traffic pattern 
between any two hosts. This can be monitored or detected by 
the observers. Again, row and column sums are constraint as 
to not to exceed host output or input link capacities. 
Definition 3: Given a network G = (V, E) with vertex set V 
and edge set E, V contains all the source and destination of 
the traffic flow.  Edge uv in E represents the actual traffic 
flow from Node u to Node v, which may contain the direct 
traffic from Node u to Node v or any rerouted traffic that uses 
Node u or Node v as intermediate nodes.  The traffic flow f 
consists of n2 vectors fij, where fij(u,v) represents the amount 
of traffic from Node i to Node j on edge uv.  

Definition 4: The Padding Traffic Matrix C=(cij)nxn 
represents the amount of the padding traffic from any Host i 
to any Host j. The following two constraints hold for C: 

ijij bc !!0                                                                  (11) 

( ) ijijuv bcijf =+!
"" nvu,1

,                                               (12) 

Definition 5: The Worst-Case Delay Matrix D=(dij)nxn 
represents the worst-case message delivery delay for the 
traffic flow from any Host i to any Host j. 

Definition 6: The Deadline Matrix DL=(dlij)nxn represents 
the deadline requirements for the traffic flow between any 
two hosts. 
Definition 7: Rerouting Quantity Column vector: R 

According to the rerouting path length (the number of 
hops, i.e., the number of intermediate nodes in the path), we 
have the following rerouting quantity column vectors: R1, R2, 
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... , Rn-2.  For example, if  the rerouting path length is k, Rk 
will be a nk+2 column vector whose elements are all rim(1)...m(k)j 
arranged in lexicographic order.  Here rim(1)...m(k)j represents 
the amount of the rerouting traffic passing along the path i → 
m1 → ...→ mk → j, where the true source is Host i and the true 
destination is Host j.  And  

( ) !
=
"

=

jiP
Puv

Pij rvuf

...

,                                                        (17) 

Definition 8: The Payload Traffic Specification S={Mi} is 
the set of all trafic flow requirements. Each Mi represents the 
bandwidth and real-time deadline requirement of the the ith 
traffic flow in the system. Each Payload Traffic Specification 
corresponds to a real demand traffic matrix A and a deadline 
matrix DL. 

Suppose that we choose the stable traffic matrix to be 
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This means the traffic pattern between any two hosts stays 
constantly at 3 MB/sec, and the observer can only know this 
traffic pattern among the hosts in the network.  Through our 
approach, we can efficiently determine whether a real 
demand traffic matrix can be converted into the stable traffic 
matrix by host-based rerouting and traffic padding.  This 
example is feasible, because we can have the following 
solution: 
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Through this manipulation, the amount (5 MB/sec) of real 
traffic from Host 3 to Host 2 is divided into the following 
three parts: 3 MB/sec of the traffic from Host 3 to Host 2 are 
sent directly.  1 MB/sec of the traffic is rerouted to Host 1 
first and then sent to Host 2, and 1 MB/sec of the traffic is 
rerouted to Host 4 first and then sent to Host 2.  2 MB/sec of 
the padding traffic are injected into the traffic from Host 1 to 
Host 2 such that the stable traffic pattern can be achieved.  
After this manipulation, the traffic between each source-
destination pair remains to be 3 MB/sec all the time.  This is 
the stable traffic pattern that the observers can obtain.  From 
this, the observer can not find any information about the real 
traffic pattern. 

IV. DEFINITION OF THE PROBLEM 

Consider a network with a high degree of security and real-
time requirements.  We model this network as n nodes, which 
form a fully connected directed graph.  The network operates 
at any one of m different modes, which correspond to m 
different known states or situations of this system in the real 
world.  Each mode reflects one state or one situation of the 

system, which contains a set of traffic flows in the network 
system. Thus each mode corresponds to a real demand traffic 
matrix A and a deadline matrix DL. 

We define the value of the total traffic flow on edge uv to 
be ( ) ( )!=

ij

ij uvfuvf .  The real demand traffic matrix A 

is feasible, if (1) f(uv) ≤ buv for all edges uv, where buv is an 
element of the stable traffic matrix B, and (2) dij

WC ≤ DLij  for 
all the traffic flows in the real demand traffic matrix. dij

WC is 
the worst-case message delivery delay for the real traffic flow 
from Host i to Host j. If a real demand traffic matrix is 
feasible, the traffic flow fij(uv) can be generated, which is a 
plan that specifies where and when the dummy packets 
should be transmitted and if and how the payload packets 
should be rerouted. 

In this paper, we will focus on determining if the real 
demand traffic matrix is feasible, i.e., if it can be converted 
into the stable traffic matrix through host-based rerouting and 
traffic padding and the real-time requirement can also be 
satisfied at the same time.  

A correct solution for this problem must satisfy the 
following four sets of constraints: 

A. Stabilization Traffic Constraints: 

We must ensure that the real demand traffic can be sent 
directly or rerouted through some intermediate node(s) and 
the final traffic pattern is stable. Formally,  

( ) ijuv bijf !"
!! nvu,1

. (22) 

B. Link Capacity Constraints (i.e., Bandwidth Constraints) 

Constraints on row- and column-sums of the stable traffic 
matrix make sure that no bandwidth capacities are exceeded, 
that is,  

i.host  fromlink output   theofcapacity   the
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C. Conservation Constraints: 

These ensure that the correct amount of traffic is rerouted 
at each node. If a node is the source or destination of the 
traffic, the aggregate output or input traffic must be equal to 
the outgoing or incomming real demand traffic, respectively. 
Formally, 

( ) ij

Evu

ij avuf =!
"

 for v=i and Host i is source  (26) 

( ) ij

Euv

ij auvf =!
"

 for v=j and Host j is destination  (27) 

If the node is used as intermediate node in some rerouting 
path, the aggregate input rerouting traffic of this node must 
be equal to its aggregate output rerouting traffic. 

Direct Host-based Rerouting  Padding 
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( ) ( ) 0=! ""
## Evu

ij

Euv

ij vufuvf  for v∉{i,j}.  (25) 

D. Delay Constraints 

In order to guarantee the real-time requirements we must 
ensure that all traffic can be sent to their destination by its 
deadline, Formally, 

ij

WC

ij DLd !  , (28) 
where dij

WC is the worst-case message delay for the traffic 
flow from Host i to Host j. This will be discussed in the 
following section. 

V. DELAY ANALYSIS 

Determining end-to-end delays in communication 
networks has been the subject of a large amount of research.  
The delay computation in this case is somewhat complicated 
by the fact that we do host-based redirection.  

In order to determine the end-to-end delay of trafic flows, 
we distinguish between the direct path of the flow, which is 
the path from the source host to the destination host as 
determined by the underlying routing subsystem (e.g., 
OSPF,) and the rerouted path,which is the path assigned to 
the flow by the rerouting subsystem.  We denote the worst-
case delays of messages along the two paths by dij

WC_direct and, 
respectively.  Once the delay along the direct paths within the 
network are known, the value for dij

WC_reroute is determined by 
taking the maximum of the delays along all the host-based 
rerouting paths used to transmit the traffic between the two 
hosts.  The delay along each rerouting path is computed by 
summing up the delays on the direct paths between host-
based routers on the rerouting path.  The end-to-end worst 
case delay dij

WC of a traffic flow is then formulated as: 
( )rerouteWC

ij

directWC

ij

WC

ij ddd __
,max= ,                      (29) 

The worst case direct delay experienced by a packet of traffic 
flow Mi is computed by summing the local delays at each 
server traversed along the direct path of the connection. 

The scheduling policy at a server determines the order in 
which packets from a traffic flow are transmitted at the output 
of the server.  Hence, the server scheduling policy has a 
direct impact on the delays experienced by a traffic flow’s 
packet at a server as well as on the distortion of the traffic 
flow’s traffic within the network.  

Formulas for the delay at servers for a variety of servers 
exist.  For First-Come-First-Served (FCFS) servers, the worst 
case delay experienced by any packet at the server is the 
same for any traffic flow traversing it.  For an network with 
FCFS-based servers, the maximum delay at Server j is given 
by  
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where ( )IF jk ,

!

 is the maximum number of packets that 
can arrive at Server j over its kth input link during any interval 
of length I, and Lj is the number of input links into Server j.  

Similarly, in [12] we derive a delay formula for networks 
with static priority schedulers with a fixed, globally distinct, 
priority assignment (SFGDP). A priority assignment is fixed 
if the priority of the packets in a traffic flow is the same in 
different routers along the host-to-host path.  And the priority 
assigned to each traffic flow is globally distinct, i.e., none of 
the traffic flow’s priority have the same priority. A wealth of 
other delay formulas for other scheduling policies in the 
servers is available in the literature. 

VI. ALGORITHMS 

A. Overview 

Once the payload traffic specification, the real-time 
deadline requirements and the stable traffic pattern 
constraints are given, we want to determine whether the real 
demand traffic matrix is feasible as described in Section IV 
under the stable traffic matrix. And, if feasible, a schedule 
needs to be generated that specifies where and when the 
dummy packets should be transmitted and if and how the 
payload packets should be rerouted through intermediate 
hosts. 

The design of an algorithm that determines the feasibility 
of real demand traffic matrix under the stable traffic matrix 
must have two primary objectives: 
• High Acceptance Rate: The ratio of the number of sets 

of traffic requirements that can be admitted by the algorithm 
over the total number of sets of traffic requirements must be 
high for the algorithm to be effective. 
• Low Execution Time: The average time that the 

algorithm needs to process one set of payload traffic 
requirements must be low for the algorithm to be efficient. 

Effectiveness and low computation costs must be traded 
off against each other: In order to obtain a higher acceptance 
rate, the algorithm always needs a longer execution time.  On 
the other hand, the algorithm often gets a lower acceptance 
rate if a shorter execution time is required. 

We have identified three solution approaches, depending 
on whether the resulting algorithm should be optimal, near-
optimal, or heuristic.  We use a Linear Programming 
formulation of the problem to derive an optimal algorithm.  
We then proceed to develop a near-optimal algorithm, which 
is derived from a multi-commodity flow formulation of the 
problem.  

We complete this algorithms suite with a heuristic 
algorithm for this problem that yields high acceptance rate 
and has low execution time at the same time. 

In the following sections, we elaborate on each of the 
proposed three algorithms in turn. 
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B. Optimal Algorithm: Linear Programming 

Linear Programming is a theoretical optimal algorithm for 
this problem. Consider a network with n hosts, for one 

source-destination pair, we have a total of 
( )
( )!

"

= ""

"2

0 !2

!2
n

k kn

n
 

possible host-based rerouting paths.  To formulate an instance 
of this problem defined in Section IV into an instance of the 
linear programming problem, we need to introduce 

( )!
"

= ""

2

0 !2

!
n

k kn

n
 unknown variables fij(p), nji !! ,1 , 

where fij(p) represents the amount of the traffic flow from Host 
i to Host j through the host-based rerouting path p.  The 
constraints can be easily formulated into the following linear 
relations,  

For 1≤i,j≤n, f aij pp P ij( )!" =  ,  (36) 

where P is the set of all the possible host-based rerouting 
paths whose worst-case delay is less than or equal to the 
deadline. aij is the bandwidth of the traffic flow from Host i to 
Host j. 

If uv ∈ p , i.e., p is a host-based rerouting path that 
contains edge uv, we have 

uv

Qp

n

i

n

j

ij bf
p
!! """

# = =1 1

0 ,                                           (37) 

Where Q = {q | uv ∈ q, and q is a host-based rerouting 
path}, and buv is the time-invariant traffic pattern. 

For 1 ≤ i,j ≤ n,    0 ≤ fij(p) ≤ aij .  (38) 
Since we only need to find a solution that satisfies the 

bandwidth requirements, stable traffic pattern constraints and 
real-time deadline requirements, the objective function can be 
zero. Therefore, the instance of this problem has been 
formulated as an instance of the Linear Programming 
Problem. 

However, linear programming is not a practical method. 
The very quickly growing number of variables makes it very 
difficult for current mathematical software, like IMSL [14] 
and NAG [15], to solve non-trivial networks. For a network 
of size 8, for example, the total number of variables in the 
linear programming formula is 109,592. 

C. Near-optimal Algorithm: Multi-commodity Flow 

The concurrent multi-commodity flow problem involves 
simultaneously shipping several different commodities from 
their respective sources to their destinations in a single 
network so that the total amount of flow going through each 
edge is no more than its capacity.  Associated with each 
commodity is a demand, which is the amount of that 
commodity that we wish to ship.  In this paper, we aim to 
prevent traffic analysis by making the traffic pattern time-
invariant.  So the amount of the traffic between any two hosts 
can not exceed the time-invariant traffic pattern constraints 
specified in the given stable traffic matrix.  We can use the 

fully connected directed network to represent this model.  
The element in the given stable traffic matrix is regarded as 
the capacity of the edge in the network.  Each payload traffic 
flow in the real demand traffic matrix is regarded as a 
commodity.  The bandwidth requirement of the traffic flow is 
the demand of the commodity.  The real-time deadline 
requirement of the traffic flow limit the choice of the host-
based rerouting path, i.e., we can only choose those host-
based rerouting path whose worst case delay is less than or 
equal to its deadline.  Therefore, the instance of this problem 
has been formulated as an instance of the concurrent multi-
commodity flow problem. 

Although this problem is NP-complete, it can quite well be 
solved approximately. Algorithm LMPSTT [6], for example, 
is a well-known fast approximation algorithm for this 
problem. It is known to be ε-optimal: given a multi-
commodity flow problem, Algorithm LMPSTT can answer if 
it is feasible, and if feasible, give a feasible flow for the 
problem in which the capacity on every arc is increased by a 
factor (1+ε). 

By taking the real-time requirements of the payload traffic 
into consideration, we obtain Algorithm Revised-LMPSTT 
that can be used to solve our problem and meet the real-time 
deadline requirements. Since the network we consider here is 
a fully connected directed graph, we will use the element in 
the stable traffic matrix as the capacity of the corresponding 
edge in the network, because the amount of the total traffic on 
an edge can not exceed the stable traffic pattern constraints.  
Each payload traffic flow in the real demand traffic matrix is 
regarded as a commodity.  Algorithm Revised-LMPSTT will 
generate a plan that specifies where and when the dummy 
packets should be transmitted and if and how the payload 
packets should be rerouted if the problem is feasible under 
the stable traffic pattern constraints and the real-time deadline 
requirements. 

Although Algorithm Revised-LMPSTT is a near-optimal 
algorithm and may achieve a high acceptance rate, its 
computation cost is high. This is partly due to the need to 
take into consideration deadline requirements.  Moreover, 
Algorithm Revised-LMPSTT needs a large number of 
iterations for a small value of ε. 

D. Heuristic Algorithms 

 Figure 2 shows a simple framework for heuristic 
algorithms to solve our problem.  The algorithms repeatedly 
select a flow to schedule, find a path for the flow, adjust, the 
available link capacities, and either terminate successfully if 
all flows have been scheduled, or abort if a flow cannot be 
routed.  

Two decision steps affect the performance of the heuristic 
algorithm; and a variety of algorithms can be devised based 
on how these steps are implemented in detail: (1) selection of 
the next traffic flow to be scheduled  in Step 2 and (2) 
selection of the path to be used to transmit the selected traffic 
flow in Step 4. By varying the selection of traffic flows and 
paths, the following heuristic algorithms can be defined: 
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Algorithm Type-1: Picks the next traffic flow at random, 
and picks the next path with the maximum capacity. 

Algorithm Type-2: Picks the next traffic flow at random, 
and picks the next path with the minimum delay. 

Algorithm Type-3: Considers the real-time requirement of 
the traffic flow, and the demand bandwidth of the payload 
traffic and the available bandwidth in the network, and picks 
the path with the maximum capacity.  

Algorithm Type-4: Same as Type-3, but picks the path 
with the minimum delay in the network. 

Dj: Deadline of traffic flow Mj

aj: the bandwidth requirement of the traffic flow Mj;   cappath: capacity of the path

Yes

Success

Heuristic_Algorithm (M)

Fail

5. aj = 0 ?
No

2. Select A traffic flow Mj to be scheduled;

M = M - {Mj};

1. Set M empty ?

3. Available path ?

Yes

No

No

4. Select a path (dpath <=Dj) to transmit the traffic

flow Mj; aj=max(0, aj - cappath);Adjust the

capacity of all the links along this path.

Yes

 
Figure 2. Framework for Heuristic Algorithm 

Although the heuristic algorithm is not optimal, but 
Algorithm Type-4 can yield high acceptance rate at low 
execution time.  We demonstrate this in the performance 
evaluation experiment described below.  

VII. PERFORMANCE EVALUATION 

In this section, we will report performance results of the 
algorithms we discuss in this paper. 

We consider a simple network with 5 nodes, and we 
assume that all nodes communicate with all other nodes. We 
designed a generator to generate 1000 random sets of real 
demand Matrix A, Deadline Matrix DL, Delay Matrix D, and 
Stable traffic Matrix B.  To precisely determine the 
performance of the algorithms, we put some constraints on 
this generator such that each set of generated matrices is 
feasible. In our simulation, we use the value of α to represent 
the system load factor, which represents the system 
utilization.  We also use the value of ε for the approximation 
algorithm to find an ε-optimal solution for this problem. 

In these experiments, we compare the optimal algorithm 
(Algorithm LP), the near-optimal algorithm (Algorithm 
Revised-LMPSTT), and the various heuristic algorithms 
(Algorithm Type-1, Type-2, Type-3, and Type-4).  As 
performance measures for comparison, we are interested in 
the acceptance rate and the execution time of each algorithm. 

In order to obtain the performance data, we explicitly 
programmed Algorithm Revised-LMPSTT, and the four 

heuristic algorithms.  We used a library package [15] for 
Algorithm LP.  All experiments were performed on a 
SGIPower Challenge 10000 XL machine. 

 

1

10

100

1000

10000

100000

1000000

10000000

100000000

1000000000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

!

E
x

e
c

u
ti

o
n

 T
im

e LP

Revised LMPSTT

Type-1

Type-2

Type-3

Type-4

 

Figure 3. Execution Time vs. Accuracy. 

Figure 3 shows the actual execution time for processing 
one real demand traffic matrix for varying values of ε. As the 
value of ε has no effect on the behavior of Algorithm LP and 
of the four heuristic algorithms, their execution times do not 
change as the value of ε  changes.  The execution time of 
Algorithm Revised-LMPSTT increases greatly as the value of 
ε decreases.  
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Figure 4. Acceptance Rate vs. Accuracy. 

Figure 4 compares the acceptance rate of all algorithms for 
different value of ε. Throughout this experiment, we fix the 
load factor α at 0.98. The acceptance rate of Algorithm 
Revised-LMPSTT increases as the value of ε decreases, and 
almost reaches 90% when the value of ε is 0.2. The 
acceptance rate of Algorithm Type-1 and Algorithm Type-2 
are very low.  The result was to be expected, as the two 
heuristics do not attempt to make an informed selection of the 
next traffic flow. 
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Fig. 7-3 Execution Time vs. !
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Figure 5. Execution Time vs. System Load. 

shows the actual execution time for processing one real 
demand traffic matrix for varying degrees of system load (α). 
Throughout this experiment, we fix the value of the value of ε 
to 0.2. We observe that the execution times of both Algorithm 
Revised-LMPSTT and Algorithm LP increase as the value of 
α increases.  However, the execution time of Algorithm 
Revised-LMPSTT increases much faster than that of 
Algorithm LP. 

Fig 7-4 Acceptance Rate vs. !
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Figure 6. Acceptance Rate vs. System Load. 

Figure 6 illustrates the effect of the system load on the 
acceptance rate of the algorithms. In this experiment, the 
value of ε is 0.2.  We observe that the acceptance rates of 
Algorithm Type-1 and Algorithm Type-2 decrease very fast 
when the value of α is larger than 0.7 and is very low when 
value of α is 1.0. The acceptance rate of Algorithm Type-4 is 
bigger than that of Algorithm Type-3 and Algorithm Revised-
LMPSTT when the value of α is 1.0, due to the large value 
for ε.  

Generally, we observe that, in order to obtain the same 
reasonable acceptance rate, the execution time of Revised 
LMPSTT algorithm is greatly larger than that of all the four 
heuristic algorithms. 

VIII. CONCLUSION AND FUTURE WORK 

In the context of this problem, Algorithm Type-1, 
Algorithm Type-2, Algorithm Type-3 and Algorithm Type-4 

are heuristic, non-optimal, algorithms. Algorithm Revised 
LMPSTT is an approximation algorithm, and Algorithm LP 
is optimal. 

However, Algorithm LP has shown to be impractical due 
to overly complicated constraints and exceedingly many 
variables needed for the mathematical model even for a small 
network with a few nodes.  This makes the approach 
unusable for networks with large numbers of nodes.  
Algorithm Revised-LMPSTT is a polynomial-time 
combinatorial algorithm for approximately solving this 
problem.  However, Algorithm Revised-LMPSTT is still not 
efficient enough, in particular when compared to the 
proposed heuristic algorithms, as it still needs a very long 
time to compute a solution.  Among the proposed heuristic 
algorithms, Algorithm Type-1 and Algorithm Type-2 have a 
disadvantage that the acceptance rate is too low.  Although 
Algorithm Type-3 almost has the same execution time as 
Algorithm Type-4, the acceptance rate of Algorithm Type-4 
is higher than that of Algorithm Type-3.  So we conclude that 
Algorithm Type-4 is a good algorithm for its high acceptance 
rate and low execution time compared to other algorithms. 

The following are several possible extensions of the future 
work related to this problem. 

Optimal stable traffic matrix. Given m modes, an optimal 
stable traffic matrix need to be determined.  A stable traffic 
matrix is optimal if it minimizes the usage of bandwidth and 
the real demand traffic matrices for all operation modes are 
feasible under the optimal stable traffic matrix. 

Restricted set of intermediate nodes. We are assuming a 
simplistic network model that allows direct communication 
between any two nodes in the network.  In reality, this may 
not be the case.  In addition, we assume that all nodes can 
forward (reroute) traffic on behalf of other nodes.  Various 
security or other policy reasons may inhibit the free choice 
intermediate nodes. 

Openness. We are currently addressing how to implement 
the work of prevention of traffic analysis in an open 
environment.  Here openness means that the several private 
networks are connected through some public network, like 
the Internet.  We need to do some in-depth research work on 
how to prevent traffic analysis in this case. 
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