
Appeared in: Proceedings of the IEEE MILCOM, Atlantic City, NY, Nov. 1999

Preventing Traffic Analysis for Real-Time Communication Networks

Yong Guan, Chengzhi Li, Dong Xuan, Riccardo Bettati, Wei Zhao

Department of Computer Science,
Texas A&M University

College Station, TX 77843-3112
{yguan, chengzhi, dxuan, bettati, zhao}@cs.tamu.edu

Abstract-In this paper, we address issues related to

preventing traffic analysis in computer networks used for real-
time mission-critical applications. We consider an IP-based
network where headers of packets, including source host
address and destination host address, are readable by an
observer (i.e., by a potential enemy). Although the encryption of
network packets significantly increases privacy, the density of
the traffic can still provide useful information to the observer.
We take an approach by manipulating traffic in the network
through host-based rerouting and traffic padding so that the
traffic shows a time-invariant pattern. Thus, the observer can
not derive any useful information about the real traffic pattern.
By evaluating the performance of the algorithms used for this
problem in terms of acceptance rate and execution time, we
found that some well-known theoretical optimal and near-
optimal algorithms failed to meet one or the other criteria. In
this paper, we present a heuristic method that can effectively
prevent traffic analysis while at the same time meeting real-time
requirements. Our algorithm generates a plan that specifies
where and when the dummy packets should be transmitted and
if and how the payload packets should be rerouted and can yield
high acceptance rate with low execution time. The success of the
algorithm stems from the fact that it explicitly takes into
account of real-time requirements and properly balances the
traffic over the links.

I. INTRODUCTION

In this paper, we address issues related to preventing traffic
analysis in computer networks used for real-time mission-
critical application. Prevention of traffic analysis has been
one key issue in network security, especially for networks in
the battlefield. Generally speaking, the traffic pattern within
the network exhibits different characteristics under different
situations and at different times. For example, the pattern of
the traffic entering into and exiting from a military command
control center is very different depending on the state of
alertness at which the center operates. Although the
encryption of network packets ensures privacy of the
payload, the density of the traffic (e.g., the number and size
of the messages entering into or exiting from a given site or
region) can still give some useful information to an observer.
Simply by observing the traffic pattern, the observer may
deduce some important information and infer the current
activity or intention of the network users. Information about
traffic density can be easily obtained in wireless
environments by observing the radio frequency sources. In
wired networks, this can be done by properly placing packet
sniffers, by using commercial network management tools, or
by other means.

This problem can be simply stated as: “By the act of
communicating, even if perfect confidentiality of the actual
information is achieved, one can give indications to
observing parties of impending actions, capabilities, chains of
command, and level of readiness.” (from “Research
Challenges in High Confidence Networking”, DARPA, July
1, 1998).

In addition to requiring a high degree of network security,
many mission-critical applications in the battlefield have the
real-time requirements as well: messages in the battlefield
must be delivered within previously defined deadlines in
order to be of value.

In this paper, we present a method that can effectively
prevent traffic analysis while at the same time meeting real-
time requirements of messages in the network.

We consider an IP-based network where headers of the
packets, including source host and destination host addresses,
are readable by an observer. Thus, the traffic pattern is
defined as the amount of traffic that is transmitted between
any two hosts. To prevent traffic analysis, we manipulate the
traffic in the network so that the traffic shows a time-
invariant pattern (we call this a stable pattern). That is, after
manipulation, the pattern of the traffic in the network will
appear the same all the time and at any time, regardless of
how the real (payload) traffic in the network changes under
different situations. In this way, the observer can not derive
any information about the real traffic.

We achieve prevention of traffic analysis by two means:
host-based rerouting and traffic padding. Traffic padding
means that dummy packets are injected into the network in
order to make the traffic pattern time-invariant. With host-
based rerouting, a packet may be sent to some intermediate
hosts first and then sent to its true destination. Through host-
based rerouting, the true source and destination of the traffic
can be hidden using appropriate encryption. Although the
observer can obtain the current source host address and the
current destination host address of the traffic that passes
through a link, she may or may not be observing the true
source and destination of the traffic. This can considerably
complicate the task of traffic analysis. Host-based rerouting
can also reduce the load on some links. Through host-based
rerouting and traffic padding, the amount and nature of traffic
between the source and destination within the network can be
masked.

Once payload traffic specification, real-time deadline
requirements, and stable traffic pattern constraints are given,
we need to determine if there exists a plan that specifies
where and when the dummy packets should be transmitted

 2

and if and how the payload packets should be rerouted via
some intermediate hosts. It is a hard problem to efficiently
determine if the payload traffic specification is feasible under
given stable traffic pattern constraints and real-time deadline
requirements, i.e., if it is possible to find a plan that satisfies
the payload traffic specification and real-time requirements
and obeys the stable traffic constraints. In this paper, we
report on an approach to address this problem.

Host 1

Host 2

Host 3

Host 4

Figure 1. Fully Connected Directed Network

The rest of the paper is organized as follows: In Section 2,
we present a brief survey of related work on prevention of
traffic analysis, delay analysis and on mathematical methods
used later in this paper. Section 3 describes the basic model
and notation used in this paper. The definition of the problem
is presented in Section 4. The delay analysis is presented in
Section 5. The design of our heuristic algorithm used for
prevention of traffic analysis in real-time communication
networks is presented in Section 6. The performance
evaluation is presented in Section 7. Section 8 concludes this
paper with a summary of main results and suggestions for
future extensions to this work.

II. RELATED WORK

A model to prevent traffic analysis by converting a given
traffic matrix into a neutral traffic matrix is described [1].
The performance analysis of this model is given in [2][3].
This work has a limitation that the rerouted traffic can only
be transmitted through one hop (one intermediate node
between the source and destination). If we relax this
limitation, we can obtain the same results at less cost. Some
work about the delay analysis for real-time communication
services over ATM and FDDI network had been done by our
group in [4][5][12], and by many others. Given the stable
traffic matrix, we are able to calculate the worst case delay of
packets. Whether a real demand traffic matrix is feasible
under the stable traffic matrix is a multi-commodity
concurrent flow problem in nature. Much work on this
problem is described in [6][7][8][9][10][11].

III. BASIC MODEL AND NOTATION

We assume that an underlying routing subsystem
determines a unique path between any pairs of hosts. For our
purposes, we model the network at transport layer and
assume that every host can communicate with every host.
The network therefore can be modeled as a fully connected,
directed graph. All the edges in the fully connected directed
graph represent the paths from the source host to destination
host through some routers in the network.

 An observer can read/monitor the amount of traffic along
each edge of the graph. Thus, this observer can determine the
traffic pattern between each source-destination pair. Our
work will be aimed at preventing such information from
being released to the enemy observer.
Definition 1: The Real Demand Traffic Matrix A=(aij)nxn
denotes the actual bandwidth requirement between any two
hosts. The values aij are constraint so that the row-sum of any
row i does not exceed the capacity of the output link of Host
i. Similarly, the column-sum of any column j does not
exceed the capacity of the input link of Host j.

In the following we will use the matrix A represented
below as example traffic matrix for the system of four nodes
illustrated in Figure 1.

!
!
!
!
!

"

#

$
$
$
$
$

%

&

=

0333

2052

3303

3300

A

 (5)

Definition 2: The Stable Traffic Matrix B=(bij)nxn represents
the bandwidth requirement of the stable traffic pattern
between any two hosts. This can be monitored or detected by
the observers. Again, row and column sums are constraint as
to not to exceed host output or input link capacities.
Definition 3: Given a network G = (V, E) with vertex set V
and edge set E, V contains all the source and destination of
the traffic flow. Edge uv in E represents the actual traffic
flow from Node u to Node v, which may contain the direct
traffic from Node u to Node v or any rerouted traffic that uses
Node u or Node v as intermediate nodes. The traffic flow f
consists of n2 vectors fij, where fij(u,v) represents the amount
of traffic from Node i to Node j on edge uv.

Definition 4: The Padding Traffic Matrix C=(cij)nxn
represents the amount of the padding traffic from any Host i
to any Host j. The following two constraints hold for C:

ijij bc !!0 (11)

() ijijuv bcijf =+!
"" nvu,1

, (12)

Definition 5: The Worst-Case Delay Matrix D=(dij)nxn
represents the worst-case message delivery delay for the
traffic flow from any Host i to any Host j.

Definition 6: The Deadline Matrix DL=(dlij)nxn represents
the deadline requirements for the traffic flow between any
two hosts.
Definition 7: Rerouting Quantity Column vector: R

According to the rerouting path length (the number of
hops, i.e., the number of intermediate nodes in the path), we
have the following rerouting quantity column vectors: R1, R2,

 3

... , Rn-2. For example, if the rerouting path length is k, Rk
will be a nk+2 column vector whose elements are all rim(1)...m(k)j
arranged in lexicographic order. Here rim(1)...m(k)j represents
the amount of the rerouting traffic passing along the path i →
m1 → ...→ mk → j, where the true source is Host i and the true
destination is Host j. And

() !
=
"

=

jiP
Puv

Pij rvuf

...

, (17)

Definition 8: The Payload Traffic Specification S={Mi} is
the set of all trafic flow requirements. Each Mi represents the
bandwidth and real-time deadline requirement of the the ith
traffic flow in the system. Each Payload Traffic Specification
corresponds to a real demand traffic matrix A and a deadline
matrix DL.

Suppose that we choose the stable traffic matrix to be

!
!
!
!
!

"

#

$
$
$
$
$

%

&

=

0333

3033

3303

3330

B

 (19)

This means the traffic pattern between any two hosts stays
constantly at 3 MB/sec, and the observer can only know this
traffic pattern among the hosts in the network. Through our
approach, we can efficiently determine whether a real
demand traffic matrix can be converted into the stable traffic
matrix by host-based rerouting and traffic padding. This
example is feasible, because we can have the following
solution:

!
!
!
!
!

"

#

$
$
$
$
$

%

&

=

0323

2052

3303

3300

A

=

!
!
!
!
!

"

#

$
$
$
$
$

%

&

+

!
!
!
!
!

"

#

$
$
$
$
$

%

&

0010

1001

0000

0010

0323

2032

3303

3300

=

!
!
!
!
!

"

#

$
$
$
$
$

%

&

0000

0000

0000

0020

 (20)

Through this manipulation, the amount (5 MB/sec) of real
traffic from Host 3 to Host 2 is divided into the following
three parts: 3 MB/sec of the traffic from Host 3 to Host 2 are
sent directly. 1 MB/sec of the traffic is rerouted to Host 1
first and then sent to Host 2, and 1 MB/sec of the traffic is
rerouted to Host 4 first and then sent to Host 2. 2 MB/sec of
the padding traffic are injected into the traffic from Host 1 to
Host 2 such that the stable traffic pattern can be achieved.
After this manipulation, the traffic between each source-
destination pair remains to be 3 MB/sec all the time. This is
the stable traffic pattern that the observers can obtain. From
this, the observer can not find any information about the real
traffic pattern.

IV. DEFINITION OF THE PROBLEM

Consider a network with a high degree of security and real-
time requirements. We model this network as n nodes, which
form a fully connected directed graph. The network operates
at any one of m different modes, which correspond to m
different known states or situations of this system in the real
world. Each mode reflects one state or one situation of the

system, which contains a set of traffic flows in the network
system. Thus each mode corresponds to a real demand traffic
matrix A and a deadline matrix DL.

We define the value of the total traffic flow on edge uv to
be () ()!=

ij

ij uvfuvf . The real demand traffic matrix A

is feasible, if (1) f(uv) ≤ buv for all edges uv, where buv is an
element of the stable traffic matrix B, and (2) dij

WC ≤ DLij for
all the traffic flows in the real demand traffic matrix. dij

WC is
the worst-case message delivery delay for the real traffic flow
from Host i to Host j. If a real demand traffic matrix is
feasible, the traffic flow fij(uv) can be generated, which is a
plan that specifies where and when the dummy packets
should be transmitted and if and how the payload packets
should be rerouted.

In this paper, we will focus on determining if the real
demand traffic matrix is feasible, i.e., if it can be converted
into the stable traffic matrix through host-based rerouting and
traffic padding and the real-time requirement can also be
satisfied at the same time.

A correct solution for this problem must satisfy the
following four sets of constraints:

A. Stabilization Traffic Constraints:

We must ensure that the real demand traffic can be sent
directly or rerouted through some intermediate node(s) and
the final traffic pattern is stable. Formally,

() ijuv bijf !"
!! nvu,1

. (22)

B. Link Capacity Constraints (i.e., Bandwidth Constraints)

Constraints on row- and column-sums of the stable traffic
matrix make sure that no bandwidth capacities are exceeded,
that is,

i.host fromlink output theofcapacity the
1

!"
=

n

j

ijb
 (23)

j.host intolink input theofcapacity the
1

!"
=

n

i

ijb
 (24)

C. Conservation Constraints:

These ensure that the correct amount of traffic is rerouted
at each node. If a node is the source or destination of the
traffic, the aggregate output or input traffic must be equal to
the outgoing or incomming real demand traffic, respectively.
Formally,

() ij

Evu

ij avuf =!
"

 for v=i and Host i is source (26)

() ij

Euv

ij auvf =!
"

 for v=j and Host j is destination (27)

If the node is used as intermediate node in some rerouting
path, the aggregate input rerouting traffic of this node must
be equal to its aggregate output rerouting traffic.

Direct Host-based Rerouting Padding

 4

() () 0=! ""
Evu

ij

Euv

ij vufuvf for v∉{i,j}. (25)

D. Delay Constraints

In order to guarantee the real-time requirements we must
ensure that all traffic can be sent to their destination by its
deadline, Formally,

ij

WC

ij DLd ! , (28)
where dij

WC is the worst-case message delay for the traffic
flow from Host i to Host j. This will be discussed in the
following section.

V. DELAY ANALYSIS

Determining end-to-end delays in communication
networks has been the subject of a large amount of research.
The delay computation in this case is somewhat complicated
by the fact that we do host-based redirection.

In order to determine the end-to-end delay of trafic flows,
we distinguish between the direct path of the flow, which is
the path from the source host to the destination host as
determined by the underlying routing subsystem (e.g.,
OSPF,) and the rerouted path,which is the path assigned to
the flow by the rerouting subsystem. We denote the worst-
case delays of messages along the two paths by dij

WC_direct and,
respectively. Once the delay along the direct paths within the
network are known, the value for dij

WC_reroute is determined by
taking the maximum of the delays along all the host-based
rerouting paths used to transmit the traffic between the two
hosts. The delay along each rerouting path is computed by
summing up the delays on the direct paths between host-
based routers on the rerouting path. The end-to-end worst
case delay dij

WC of a traffic flow is then formulated as:
()rerouteWC

ij

directWC

ij

WC

ij ddd __
,max= , (29)

The worst case direct delay experienced by a packet of traffic
flow Mi is computed by summing the local delays at each
server traversed along the direct path of the connection.

The scheduling policy at a server determines the order in
which packets from a traffic flow are transmitted at the output
of the server. Hence, the server scheduling policy has a
direct impact on the delays experienced by a traffic flow’s
packet at a server as well as on the distortion of the traffic
flow’s traffic within the network.

Formulas for the delay at servers for a variety of servers
exist. For First-Come-First-Served (FCFS) servers, the worst
case delay experienced by any packet at the server is the
same for any traffic flow traversing it. For an network with
FCFS-based servers, the maximum delay at Server j is given
by

() !
!
"

#
$
$
%

&
'= (

=

)

>=
IIFd

jL

k

jk
I

j

1

,
0

*, max , (34)

where ()IF jk ,

!

 is the maximum number of packets that
can arrive at Server j over its kth input link during any interval
of length I, and Lj is the number of input links into Server j.

Similarly, in [12] we derive a delay formula for networks
with static priority schedulers with a fixed, globally distinct,
priority assignment (SFGDP). A priority assignment is fixed
if the priority of the packets in a traffic flow is the same in
different routers along the host-to-host path. And the priority
assigned to each traffic flow is globally distinct, i.e., none of
the traffic flow’s priority have the same priority. A wealth of
other delay formulas for other scheduling policies in the
servers is available in the literature.

VI. ALGORITHMS

A. Overview

Once the payload traffic specification, the real-time
deadline requirements and the stable traffic pattern
constraints are given, we want to determine whether the real
demand traffic matrix is feasible as described in Section IV
under the stable traffic matrix. And, if feasible, a schedule
needs to be generated that specifies where and when the
dummy packets should be transmitted and if and how the
payload packets should be rerouted through intermediate
hosts.

The design of an algorithm that determines the feasibility
of real demand traffic matrix under the stable traffic matrix
must have two primary objectives:
• High Acceptance Rate: The ratio of the number of sets

of traffic requirements that can be admitted by the algorithm
over the total number of sets of traffic requirements must be
high for the algorithm to be effective.
• Low Execution Time: The average time that the

algorithm needs to process one set of payload traffic
requirements must be low for the algorithm to be efficient.

Effectiveness and low computation costs must be traded
off against each other: In order to obtain a higher acceptance
rate, the algorithm always needs a longer execution time. On
the other hand, the algorithm often gets a lower acceptance
rate if a shorter execution time is required.

We have identified three solution approaches, depending
on whether the resulting algorithm should be optimal, near-
optimal, or heuristic. We use a Linear Programming
formulation of the problem to derive an optimal algorithm.
We then proceed to develop a near-optimal algorithm, which
is derived from a multi-commodity flow formulation of the
problem.

We complete this algorithms suite with a heuristic
algorithm for this problem that yields high acceptance rate
and has low execution time at the same time.

In the following sections, we elaborate on each of the
proposed three algorithms in turn.

 5

B. Optimal Algorithm: Linear Programming

Linear Programming is a theoretical optimal algorithm for
this problem. Consider a network with n hosts, for one

source-destination pair, we have a total of
()
()!

"

= ""

"2

0 !2

!2
n

k kn

n

possible host-based rerouting paths. To formulate an instance
of this problem defined in Section IV into an instance of the
linear programming problem, we need to introduce

()!
"

= ""

2

0 !2

!
n

k kn

n
 unknown variables fij(p), nji !! ,1 ,

where fij(p) represents the amount of the traffic flow from Host
i to Host j through the host-based rerouting path p. The
constraints can be easily formulated into the following linear
relations,

For 1≤i,j≤n, f aij pp P ij()!" = , (36)

where P is the set of all the possible host-based rerouting
paths whose worst-case delay is less than or equal to the
deadline. aij is the bandwidth of the traffic flow from Host i to
Host j.

If uv ∈ p , i.e., p is a host-based rerouting path that
contains edge uv, we have

uv

Qp

n

i

n

j

ij bf
p
!! """

= =1 1

0 , (37)

Where Q = {q | uv ∈ q, and q is a host-based rerouting
path}, and buv is the time-invariant traffic pattern.

For 1 ≤ i,j ≤ n, 0 ≤ fij(p) ≤ aij . (38)
Since we only need to find a solution that satisfies the

bandwidth requirements, stable traffic pattern constraints and
real-time deadline requirements, the objective function can be
zero. Therefore, the instance of this problem has been
formulated as an instance of the Linear Programming
Problem.

However, linear programming is not a practical method.
The very quickly growing number of variables makes it very
difficult for current mathematical software, like IMSL [14]
and NAG [15], to solve non-trivial networks. For a network
of size 8, for example, the total number of variables in the
linear programming formula is 109,592.

C. Near-optimal Algorithm: Multi-commodity Flow

The concurrent multi-commodity flow problem involves
simultaneously shipping several different commodities from
their respective sources to their destinations in a single
network so that the total amount of flow going through each
edge is no more than its capacity. Associated with each
commodity is a demand, which is the amount of that
commodity that we wish to ship. In this paper, we aim to
prevent traffic analysis by making the traffic pattern time-
invariant. So the amount of the traffic between any two hosts
can not exceed the time-invariant traffic pattern constraints
specified in the given stable traffic matrix. We can use the

fully connected directed network to represent this model.
The element in the given stable traffic matrix is regarded as
the capacity of the edge in the network. Each payload traffic
flow in the real demand traffic matrix is regarded as a
commodity. The bandwidth requirement of the traffic flow is
the demand of the commodity. The real-time deadline
requirement of the traffic flow limit the choice of the host-
based rerouting path, i.e., we can only choose those host-
based rerouting path whose worst case delay is less than or
equal to its deadline. Therefore, the instance of this problem
has been formulated as an instance of the concurrent multi-
commodity flow problem.

Although this problem is NP-complete, it can quite well be
solved approximately. Algorithm LMPSTT [6], for example,
is a well-known fast approximation algorithm for this
problem. It is known to be ε-optimal: given a multi-
commodity flow problem, Algorithm LMPSTT can answer if
it is feasible, and if feasible, give a feasible flow for the
problem in which the capacity on every arc is increased by a
factor (1+ε).

By taking the real-time requirements of the payload traffic
into consideration, we obtain Algorithm Revised-LMPSTT
that can be used to solve our problem and meet the real-time
deadline requirements. Since the network we consider here is
a fully connected directed graph, we will use the element in
the stable traffic matrix as the capacity of the corresponding
edge in the network, because the amount of the total traffic on
an edge can not exceed the stable traffic pattern constraints.
Each payload traffic flow in the real demand traffic matrix is
regarded as a commodity. Algorithm Revised-LMPSTT will
generate a plan that specifies where and when the dummy
packets should be transmitted and if and how the payload
packets should be rerouted if the problem is feasible under
the stable traffic pattern constraints and the real-time deadline
requirements.

Although Algorithm Revised-LMPSTT is a near-optimal
algorithm and may achieve a high acceptance rate, its
computation cost is high. This is partly due to the need to
take into consideration deadline requirements. Moreover,
Algorithm Revised-LMPSTT needs a large number of
iterations for a small value of ε.

D. Heuristic Algorithms

 Figure 2 shows a simple framework for heuristic
algorithms to solve our problem. The algorithms repeatedly
select a flow to schedule, find a path for the flow, adjust, the
available link capacities, and either terminate successfully if
all flows have been scheduled, or abort if a flow cannot be
routed.

Two decision steps affect the performance of the heuristic
algorithm; and a variety of algorithms can be devised based
on how these steps are implemented in detail: (1) selection of
the next traffic flow to be scheduled in Step 2 and (2)
selection of the path to be used to transmit the selected traffic
flow in Step 4. By varying the selection of traffic flows and
paths, the following heuristic algorithms can be defined:

 6

Algorithm Type-1: Picks the next traffic flow at random,
and picks the next path with the maximum capacity.

Algorithm Type-2: Picks the next traffic flow at random,
and picks the next path with the minimum delay.

Algorithm Type-3: Considers the real-time requirement of
the traffic flow, and the demand bandwidth of the payload
traffic and the available bandwidth in the network, and picks
the path with the maximum capacity.

Algorithm Type-4: Same as Type-3, but picks the path
with the minimum delay in the network.

Dj: Deadline of traffic flow Mj

aj: the bandwidth requirement of the traffic flow Mj; cappath: capacity of the path

Yes

Success

Heuristic_Algorithm (M)

Fail

5. aj = 0 ?
No

2. Select A traffic flow Mj to be scheduled;

M = M - {Mj};

1. Set M empty ?

3. Available path ?

Yes

No

No

4. Select a path (dpath <=Dj) to transmit the traffic

flow Mj; aj=max(0, aj - cappath);Adjust the

capacity of all the links along this path.

Yes

Figure 2. Framework for Heuristic Algorithm

Although the heuristic algorithm is not optimal, but
Algorithm Type-4 can yield high acceptance rate at low
execution time. We demonstrate this in the performance
evaluation experiment described below.

VII. PERFORMANCE EVALUATION

In this section, we will report performance results of the
algorithms we discuss in this paper.

We consider a simple network with 5 nodes, and we
assume that all nodes communicate with all other nodes. We
designed a generator to generate 1000 random sets of real
demand Matrix A, Deadline Matrix DL, Delay Matrix D, and
Stable traffic Matrix B. To precisely determine the
performance of the algorithms, we put some constraints on
this generator such that each set of generated matrices is
feasible. In our simulation, we use the value of α to represent
the system load factor, which represents the system
utilization. We also use the value of ε for the approximation
algorithm to find an ε-optimal solution for this problem.

In these experiments, we compare the optimal algorithm
(Algorithm LP), the near-optimal algorithm (Algorithm
Revised-LMPSTT), and the various heuristic algorithms
(Algorithm Type-1, Type-2, Type-3, and Type-4). As
performance measures for comparison, we are interested in
the acceptance rate and the execution time of each algorithm.

In order to obtain the performance data, we explicitly
programmed Algorithm Revised-LMPSTT, and the four

heuristic algorithms. We used a library package [15] for
Algorithm LP. All experiments were performed on a
SGIPower Challenge 10000 XL machine.

1

10

100

1000

10000

100000

1000000

10000000

100000000

1000000000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

!

E
x

e
c

u
ti

o
n

 T
im

e LP

Revised LMPSTT

Type-1

Type-2

Type-3

Type-4

Figure 3. Execution Time vs. Accuracy.

Figure 3 shows the actual execution time for processing
one real demand traffic matrix for varying values of ε. As the
value of ε has no effect on the behavior of Algorithm LP and
of the four heuristic algorithms, their execution times do not
change as the value of ε changes. The execution time of
Algorithm Revised-LMPSTT increases greatly as the value of
ε decreases.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
!

A
c

c
e

p
ta

n
c

e
 R

a
te

LP

Revised LMPSTT

Type-1

Type-2

Type-3

Type-4

Figure 4. Acceptance Rate vs. Accuracy.

Figure 4 compares the acceptance rate of all algorithms for
different value of ε. Throughout this experiment, we fix the
load factor α at 0.98. The acceptance rate of Algorithm
Revised-LMPSTT increases as the value of ε decreases, and
almost reaches 90% when the value of ε is 0.2. The
acceptance rate of Algorithm Type-1 and Algorithm Type-2
are very low. The result was to be expected, as the two
heuristics do not attempt to make an informed selection of the
next traffic flow.

 7

Fig. 7-3 Execution Time vs. !

1

10

100

1000

10000

100000

1000000

10000000

100000000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
!

E
x

e
c

u
ti

o
n

 T
im

e

LP

Revised LMPSTT

Type-1

Type-2

Type-3

Type-4

Figure 5. Execution Time vs. System Load.

shows the actual execution time for processing one real
demand traffic matrix for varying degrees of system load (α).
Throughout this experiment, we fix the value of the value of ε
to 0.2. We observe that the execution times of both Algorithm
Revised-LMPSTT and Algorithm LP increase as the value of
α increases. However, the execution time of Algorithm
Revised-LMPSTT increases much faster than that of
Algorithm LP.

Fig 7-4 Acceptance Rate vs. !

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

!

A
c
c
e
p

ta
n

c
e
 R

a
te

LP

Revised LMPSTT

Type-1

Type-2

Type-3

Type-4

Figure 6. Acceptance Rate vs. System Load.

Figure 6 illustrates the effect of the system load on the
acceptance rate of the algorithms. In this experiment, the
value of ε is 0.2. We observe that the acceptance rates of
Algorithm Type-1 and Algorithm Type-2 decrease very fast
when the value of α is larger than 0.7 and is very low when
value of α is 1.0. The acceptance rate of Algorithm Type-4 is
bigger than that of Algorithm Type-3 and Algorithm Revised-
LMPSTT when the value of α is 1.0, due to the large value
for ε.

Generally, we observe that, in order to obtain the same
reasonable acceptance rate, the execution time of Revised
LMPSTT algorithm is greatly larger than that of all the four
heuristic algorithms.

VIII. CONCLUSION AND FUTURE WORK

In the context of this problem, Algorithm Type-1,
Algorithm Type-2, Algorithm Type-3 and Algorithm Type-4

are heuristic, non-optimal, algorithms. Algorithm Revised
LMPSTT is an approximation algorithm, and Algorithm LP
is optimal.

However, Algorithm LP has shown to be impractical due
to overly complicated constraints and exceedingly many
variables needed for the mathematical model even for a small
network with a few nodes. This makes the approach
unusable for networks with large numbers of nodes.
Algorithm Revised-LMPSTT is a polynomial-time
combinatorial algorithm for approximately solving this
problem. However, Algorithm Revised-LMPSTT is still not
efficient enough, in particular when compared to the
proposed heuristic algorithms, as it still needs a very long
time to compute a solution. Among the proposed heuristic
algorithms, Algorithm Type-1 and Algorithm Type-2 have a
disadvantage that the acceptance rate is too low. Although
Algorithm Type-3 almost has the same execution time as
Algorithm Type-4, the acceptance rate of Algorithm Type-4
is higher than that of Algorithm Type-3. So we conclude that
Algorithm Type-4 is a good algorithm for its high acceptance
rate and low execution time compared to other algorithms.

The following are several possible extensions of the future
work related to this problem.

Optimal stable traffic matrix. Given m modes, an optimal
stable traffic matrix need to be determined. A stable traffic
matrix is optimal if it minimizes the usage of bandwidth and
the real demand traffic matrices for all operation modes are
feasible under the optimal stable traffic matrix.

Restricted set of intermediate nodes. We are assuming a
simplistic network model that allows direct communication
between any two nodes in the network. In reality, this may
not be the case. In addition, we assume that all nodes can
forward (reroute) traffic on behalf of other nodes. Various
security or other policy reasons may inhibit the free choice
intermediate nodes.

Openness. We are currently addressing how to implement
the work of prevention of traffic analysis in an open
environment. Here openness means that the several private
networks are connected through some public network, like
the Internet. We need to do some in-depth research work on
how to prevent traffic analysis in this case.

REFERENCES

[1] R. E. Newman-Wolfe, B. R. Venkatraman, “High Level
Prevention of Traffic Analysis,” Seventh Annual Computer
Security and Applications Conference, San Antonio, Texas,
Dec 2-6, 1991
[2] R. E. Newman-Wolfe, B. R. Venkatraman, “Performance
Analysis of a Method for High Level Prevention of Traffic
Analysis,” Eighth Annual Computer Security and
Applications Conference, San Antonio, Texas, Nov 30-Dec 4,
1992
[3] B. R. Venkatraman, R. E. Newman-Wolfe, “Performance
Analysis of a Method for High Level Prevention of Traffic
Analysis Using Measurements from a Campus Network,”

 8

Tenth Annual Computer Security and Applications
Conference, Orlando, Florida, Dec 5-9, 1994
[4] A. Raha, S. Kamat, W. Zhao, “Guaranteeing End-to-End
Deadlines in ATM Networks,” Proc. Of International
Conference on Distributed Computing System, 1995
[5] B. Devalla, A. Sahoo, Y. Guan, C. Li, R. Bettati and W.
Zhao, “Adaptive Connection Admission Control for Mission
Critical Real-Time Communication Networks,” Proceedings
of MilCom’98
[6] T. Leighton, F. Makedon, S. Plotkin, C. Stein, E. Tardos,
and S. Tragoudas, “Fast approximation algorithms for
multicommodity flow problems,” Journal of Computer and
System Sciences, 50(2): 228-243, April 1995
[7] C. Stein, “Approximation Algorithms for
Multicommodity Flow and Scheduling Problems,” Ph.D.
thesis, MIT, Cambridge, MA, August 1992
[8] A. V. Goldberg and R. E. Tarjan, “Finding minimum-cost
circulations by successive approximation,” Mathematics of
Operations Research, Vol. 15, No. 3, August 1990
[9] R. K. Ahuj, A. V. Goldberg, J. B. Orlin, and R. E. Tarjan,
“Finding minimum cost flows by double scaling,” Math.
Programming, vol. 53, 1992
[10] S. Kapoor and P. M. Vaidya, “Fast algorithms for
convex quadratic programming and multicommodity flows,”
Proceedings of 18th Annual ACM Symposium on Theory of
Computing, 1986
[11] F. Shahrokhi and D. W. Matula, “The maximum
concurrent flow problem,” J. Assoc. Comput. Mach. 37, 1990
[12] C. Li, A. Raha and W. Zhao, “Stability in ATM
Networks,” Proceedings of IEEE INFOCOM, 1997.
[13] D. J. White, “Operational Research,” John Wiley & Sons
Ltd., 1985
[14] IMSL, “IMSL MATH/LIBRARY Fortran Subroutines
for Mathematical Applications User’s Manual,” IMSL Inc.,
1989
[15] NAG, “The NAG Fortran Library Introductory Guide,
Mark 16,” NAG Ltd., 1993

