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Abstract— In this paper, we propose and analyze a methodology for
providing absolute differentiated services for real-time applications in net-
works that use static-priority schedulers. We extend previous work on
worst-case delay analysis and develop a method that can be used to derive
delay bounds without specific information on flow population. With this
new method, we are able to successfully employ a utilization-based admis-
sion control approach for flow admission. This approach does not require
explicit delay computation at admission time and hence is scalable to large
systems. We assume the underlying network to use static-priority sched-
ulers. We design and analyze several priority assignment algorithms, and
investigate their ability to achieve higher utilization bounds. Traditionally,
schedulers in differentiated services networks assign priorities on a class-
by-class basis, with the same priority for each class on each router. In this
paper, we show that relaxing this requirement, that is, allowing different
routers to assign different priorities to classes, achieves significantly higher
utilization bounds.
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I. INTRODUCTION

T
HE differentiated service (DiffServ) Internet model is
aimed at supporting service differentiation for aggregated

traffic in a scalable manner. Many approaches have been pro-
posed to realize this model. At one end of the spectrum,
absolute differentiated services [16], [17], [19] seek to pro-
vide IntServ-type end-to-end absolute performance guaran-
tees without per-flow state in the network core. The user re-
ceives an absolute service profile (e.g., guarantees on band-
width, or end-to-end delay). For example, assuming that no
dynamic routing occurs, the premium service can offer the user
a performance level that is similar to that of a leased line, as
long as the user’s traffic is limited to a given bandwidth [16].
At the other end of spectrum, relative differentiated services
seek to provide per-hop, per-class relative services [9]. Con-
sequently, the network cannot provide end-to-end guarantees.
Instead, each router only guarantees that the service invariant is
locally maintained, even though the absolute end-to-end service
might vary with networking conditions.

Many real-time applications, such as, Voice over IP, DoD’s
C4I, or industrial control systems, demand efficient and effec-
tive communication services. In this context, by real-time we
mean that a packet is delivered from its source to the destination
within a predefined end-to-end deadline. Packets delivered be-
yond these end-to-end deadlines are considered useless. Within
a differentiated-services framework, real-time applications must
rely on absolute differentiated services in order to have a guar-
antee on the end-to-end delay. Consequently, in this paper, we
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will focus on a quality-of-service (QoS) architecture that pro-
vides end-to-end absolute differentiated services.

Progress has been made to provide absolute differentiated
services for real-time applications in networks with rate-based
scheduling algorithms [19]. In this paper, we consider networks
that use static-priority schedulers. This type of scheduler is sup-
ported in many current routers, and our approaches can therefore
be easily realized within existing networks.

In order to provide service guarantees, an admission control
mechanism has to be in place, which makes sure that enough
sources are available to satisfy the requirements of both the new
and the existing connections after the new connection has been
admitted. In order to keep steps with the scalability require-
ments for differentiated services networks, any admission con-
trol mechanism must be light-weight so that it can be realized in
a scalable fashion. We show how, through appropriate system
(re-)configuration steps, the delay guarantee test at run time is
reduced to a simple utilization-based test: As long as the utiliza-
tion of links along the path of a flow is not beyond a given bound,
the performance guarantee can be met. The value of the utiliza-
tion bound is verified at system (re-)configuration time. Once
verified, the use of this utilization bound is relatively simple at
flow admission time: Upon the arrival of a flow establishment
request, the admission control admits the flow if the utilization
values of links along the path of the new flow are no more than
the bound. Thus, this approach (called Utilization-Based Ad-
mission Control – UBAC – in the following) eliminates explicit
delay analysis at admission time, and renders the system scal-
able.

Utilization-based admission control is not new to networks.
The fluid-flow model in the IntServ framework, for exam-
ple, allows various forms of utilization based admission control
[18]. Such approaches cannot be used in a DiffServ frame-
work, however, because they rely on guaranteed-rate schedulers,
which need to maintain flow information. The challenge of us-
ing the UBAC method is how to verify the correctness of a uti-
lization bound at the configuration time. Obviously, the verifica-
tion will have to rely on a delay analysis method. We will follow
the approach proposed by Cruz [6] for analyzing delays. Cruz’s
approach must be adapted to be applicable in a flow-unaware
environment. The delay analysis proposed in [6] depends on the
information about flow population, i.e., the number of flows at
input links and the traffic characteristics (e.g., the average rate
and burst size) of flows. In our case the delay analysis is done
at system configuration time when the information about flow
population is not available. We will develop a method that al-
lows us to analyze delays without depending on the dynamic
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information about flows.
Priority Assignment is an inherent issue in the networks with

static priority scheduling. As priority assignment has direct im-
pact on the delay performance of individual packets, it must be
carefully addressed. In the DiffServ domain, applications
are differentiated by their classes. Accordingly, many previ-
ous studies assume that priorities are assigned on a class ba-
sis only, where all the flows in a class are assigned the same
priority [4]. We study more generalized priority assignment al-
gorithms, where the flows in a class may be assigned different
priorities and flows from different classes may share a same pri-
ority. While the proposed algorithms are still relatively simple
and efficient, we find that they are effective in achieving higher
utilization bounds.

The rest of the paper is organized as follows. In Section II
we describe previous related work. The underlying network and
traffic models for this study are introduced in Section III. In Sec-
tion IV, we introduce our proposed architecture for providing
absolute differentiated services in networks with static-priority
scheduling. In Section V, we derive a delay computation for-
mula that is insensitive to the flow population. In Section VI,
we discuss our heuristic algorithms for priority assignment. In
Section VII, we illustrate with extensive experimental data that
the utilization achieved by our new algorithms is much higher
than traditional methods. A summary of this paper and motiva-
tion of future work are given in Section VIII.

II. PREVIOUS WORKS

A good survey on recent work in absolute differentiated ser-
vices and relative differentiated services has been done in [17].
Here, we compare our work with others from the view point of
providing absolute differentiated services. Nichols et. al. [16]
propose the premium service model, which provides the equiv-
alent of a dedicated link between two access routers. It pro-
vides absolute differentiated services in priority-driven schedul-
ing networks with two priorities, in which the high priority is re-
served for premium service. The algorithm in [7] provides both
guaranteed and statistical rate and delay bounds, and addresses
scalability through traffic aggregation and statistical multiplex-
ing. Stoica and Zhang describe an architecture to provide guar-
anteed service without per-flow state management by using a
technique called dynamic packet state (DPS) [19]. Our work is
based on static priority scheduling algorithm, which is relatively
simple and widely supported.

Admission control has been investigated widely [8], [10],
[15]. The various approaches differ from each other in that
they may require different scheduling schemes and so can be of
vastly different complexity. For example, traditional admission
control in networks with static priority scheduling is very com-
plicated. Due to absence of flow separation, for any new flow re-
quest, admission control needs to explicitly compute and verify
delays for the new and existing flows. This procedure is very ex-
pensive with increasing numbers of flows. The utilization-based
admission control adopted dramatically reduces this complexity.

In its basic form, UBAC was first proposed in [14] for pre-
emptive scheduling of periodic tasks on a simple processor. A
number of utilization-based tests are known for centralized sys-
tems (e.g., 69% and 100% utilization bounds for periodic tasks

on a single server using rate-monotonic and earliest-deadline-
first scheduling, respectively[14]), or distributed systems (such
as 33% for synchronous traffic over FDDI networks [23]). In
this paper, we adopt utilization-based tests in providing differ-
entiated services in static priority scheduling networks.

Flow-population-insensitive delay analysis has been recently
studied in [3] for the case of aggregate scheduling. Lower
bounds on the worst-case delay are derived. These bounds are
a function of network utilization, maximum hop count of any
flow, and the shaping parameters at the entrance to the network.
The work in [3] only considers FIFO scheduling. Also, delay
bounds are not tight, although almost independent of the net-
work topology. In this paper, we will derive a better delay bound
in static-priority scheduling networks.

This paper focuses on priority assignment in static priority
scheduling networks for real-time communication applications
within DiffServ domains. In [6], Cruz proposed a two-
priority assignment scheme for a ring network. The work in
[13] described and examined various priority assignment meth-
ods for ATM networks. Our work is the very first on priority
assignment for absolute differentiated services.

III. NETWORK AND TRAFFIC MODELS

In this section, we describe the model and define the termi-
nology that will be used in the rest of this paper.

A. Network Model

The DiffServ architecture distinguishes two types of
routers: Edge routers are located at the boundary of the net-
work, and provide support for traffic policing. Core routers are
inside the network. A router is connected to other routers or
hosts through its input and output links. For the purpose of de-
lay computation, we follow standard practice and model a router
as a set of servers, one for each router component, where packets
can experience delays. Packets are typically queued at the out-
put buffers, where they compete for the output link. We there-
fore model a router as a set of output link servers. All other
servers (input buffers, non-blocking switch fabric, wires, etc.)
can be eliminated from the delay analysis by appropriately sub-
tracting constant delays incurred on them from the deadline re-
quirements of the traffic. We assume there are Lk input links
for Server k, and all output links are of capacity C, in bits per
second. Consequently, the network can be modeled as a graph
with V connected link servers. The link servers in the server
graph are connected through either links in the network or paths
within routers, which both make up the set of edges in the graph.

B. Traffic Model

We call a stream of packets between a sender and receiver
a flow. Packets of a flow are transmitted along a single path,
which we model as a sequence of link servers. Following the
DiffServ architecture, flows are partitioned into classes. QoS
requirements and traffic specifications of flows are defined on a
class-by-class basis. We use M to denote the total number of
classes in a network. We assume that at each link server, a cer-
tain portion of bandwidth is reserved for each traffic class sep-
arately. Let �ik denote the portion of bandwidth reserved for
Class i at Server k. We assume static-priority schedulers with
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support for N distinct priorities in the routers. The bandwidth
assigned to Class i at Server k is further partitioned into por-
tions �ip;k, one for each priority p traffic of Class i at that server.

We note that �ik =
PN

q=1 �
i
q;k (the question of how much band-

width to assign to each priority will be discussed in Section VI.).
We aggregate flows into group of flows. All flows of Class i with
priority p going through Server k from input link j form a group
of flows Gi

p;j;k and all flows of all classes with priority p going
through Server k from input link j form a group of flows G p;j;k.

In order to appropriately characterize traffic both at the
ingress router and within the network, we use a general traffic
descriptor in form of traffic functions and their time independent
counterpart, constraint traffic functions [6].

Definition 1: The traffic function f(t) is defined as the
amount of the traffic in a group of flows during time interval
[0; t). The function F (I) is called the traffic constraint function
of f(t) if

f(t+ I)� f(t) � F (I); (1)

for any t > 0 and I > 0. In this paper, we use F i
p;j;k and

Fp;j;k to express the traffic constraint function for group of flows
Gi
p;j;k and group of flows Gp;j;k respectively.
We assume that the source traffic of a flow in Class i is con-

trolled by a leaky bucket with burst size � i and average rate �i.
Define H i(I) as the source traffic function for any class-i traffic
flow, which is constrained at the entrance to the network by

H i(I) = minfCI; �i + �iIg: (2)

Since the QoS requirements of flows (in our case, end-to-end
delay requirements) are specified on a class-by-class basis as
well, we can, where we define the end-to-end deadline require-
ment of class-i traffic to be Di and use a triple h�i; �i; Dii to
represent class-i traffic. As no distinction is made between flows
belonging to the same class, all flows in the same class are guar-
anteed the same delay. In the following, we use dp;k to denote
the local worst-case delay suffered by flows with priority p at
Server k.

IV. A QOS ARCHITECTURE FOR ABSOLUTE

DIFFERENTIATED SERVICES

In this section, we propose an architecture to provide ab-
solute differentiated services in static priority scheduling net-
works. This architecture consists of three major modules:
� Utilization bound verification: In order to allow for a
utilization-based admission control to be used at run time, safe
utilization levels on all links must be determined during system
configuration. Using a flow-population-insensitive delay com-
putation method, a delay upper bound is determined for each
priority traffic at each router. This module then verifies whether
the end-to-end delay bound in each feasible path of the network
satisfies the deadline requirement, as long as the bandwidth us-
age on the path is within a pre-defined limit – the utilization
bound. This is also the point when priorities are assigned within
classes and when bandwidth is assigned to classes and to prior-
ities. We will discuss bandwidth and priority assignment algo-
rithm later.
� Utilization-based admission control: Once safe utilization
levels have been verified at configuration time, the admission

control only needs to check if the necessary bandwidth is avail-
able along the path of the new flow.
� Packet forwarding: In a router, packets are transmitted ac-
cording to their priorities, which can be derived from the (pos-
sibly extended) class identifier in the header. Within the same
priority, packets are served in FIFO order.

While utilization-based admission control significantly re-
duces the admission control overhead compared to traditional
approaches that require explicit delay computation, excessive
connection establishment activity can still add substantial strain
to the admission control components. In [5] we describe ways
to distribute the load for admission control by appropriately pre-
allocating resources and give the control to ingress nodes to the
domain.

In the rest of this paper, we will focus on flow-population-
insensitive delay computation analysis and on priority assign-
ment.

V. FLOW-POPULATION-INSENSITIVE DELAY

COMPUTATION

In this section, we will present a new delay computation for-
mula, which is insensitive to flow population. We then discuss
the approach with which this delay formula is derived.

A. Main Result

Since static priority scheduling does not provide flow sepa-
ration, the local delay at a server depends on detailed informa-
tion (number and traffic characteristics) of other flows both at
the server under consideration and at servers upstream. There-
fore, all the flows currently established in the network must be
known in order to compute delays. Delay formulas for this type
of systems have been derived for a variety of scheduling algo-
rithms [13]. While such formulas could be used (at quite some
expense) for flow establishment at system run time, they are not
applicable for delay computation during configuration time, as
they rely on information about flow population.

As this information is not available at configuration time, the
worst-case delays must be determined assuming a worst-case
combination of flows. Fortunately, the following theorem gives
an upper bound on this worst-case delay without having to ex-
haustively enumerate all the flow combinations.

Theorem 1: The worst-case queuing delay dp;k suffered by
traffic with priority p at Server k is bounded by 1

dp;k �
1

k�̂p;kk

pX
q=1

!q;k(�q;k�Zq;k); (3)

1In the following discussion, we will rely heavily on vector notation, which
is written in bold style. If the symbol ai denotes some value specific to
class-i traffic, then the notation a denotes the M � dimensional vector
(a1 ; a2; : : : ; aM ). We will use the operator “�” for the inner product and the
operator “k � k” for the vector norm, i.e.,

a � b =

MX
i=1

aibi; kak =

MX
i=1

jaij:
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where

!q;k =

(
1; q < p
Lk�k�̂p;kk
Lk�k�p;kk

; q = p
; (4)

Zi
q;k =

�i

�i
+ Y i

q;k ; (5)

Y i
q;k = max

R2Si
q;k

X
s2R

dq;s; (6)

for q = 1; : : : ; p , and

k�̂p;kk = 1�

p�1X
q=1

k�q;kk: (7)

Siq;k is the set of all paths passed by the packets of Class i with
priority q before arriving at Server k, then Y i

q;k is the maximum
of the worst-case delays experienced by all flows of Class i with
priority q before arriving at Server k. k�̂p;kk is the available
bandwidth for traffic with priority no higher than p.

Derivation of Inequality (3) will be discussed in Subsection V-
B. At this point we would like to make the following observa-
tions on Theorem 1:
� In a previously derived delay computation formula in [4],
there was an implicit limitation on the relationship of traffic
classes and priorities: One traffic class can only have a sin-
gle priority, and one priority can only be assigned to a single
class traffic. The new delay formula removes this limitation, and
gives more flexibility when differentiating service. Our priority
assignment algorithms will take advantage of this flexibility to
better utilize available resource.
� Usually a delay computation formula for a server would de-
pend on the state of the server, i.e., the number of flows that are
admitted and pass through the server. We note that Inequality (3)
is independent from this kind of information and just depends on
�, �, �q;k, and Lk. The values of these parameters are avail-
able at the time when the system is (re-)configured. Hence, the
delay computation formula is insensitive to the flow population
information.
� We define �i

�i
as the burst delay for class-i traffic, which is the

time for class-i traffic to get to burst size � i at the average rate
�i. The delay formula depends on the burst delay �i

�i
.

� We note that dp;k in Inequality (3) depends on Y i
q;k. The value

of Y i
q;k, in turn, depends on the delays experienced at servers

other than Server k. In general, we have a circular dependency.
Hence, the delay values depend on each other and must be com-
puted simultaneously. We use the (N � V )-dimensional vector
d to denote the upper bounds of the delays suffered by the traffic
with all priorities at all servers:

d = (d1;1; d1;2; � � � ; d1;V ; d2;1; d2;2; � � � ; d2;V ;

� � � ; dN;1; dN;2; � � � ; dN;V ): (8)

Define the right hand side of (3) as �p;k(d), and then define

�(d) = (�1;1(d);�1;2(d); � � � ;�1;V (d);

�2;1(d);�2;2(d); � � � ;�2;V (d);

� � � ;�N;1(d);�N;2(d); � � � ;�N;V (d)): (9)

The queuing delay bound vector d can then be determined by
iteratively solving the following vector equation:

d = �(d): (10)

In some special cases, closed-form solutions for the delay can be
derived. This is the case, for example, in a network with a single
real-time traffic class that is assigned a single priority in a net-
work of identical servers and identical allocations of bandwidth
to the class on all servers (in this case, we simplify the notation
to let � = �1; � = �1; Yk = Y 1

1;k; L = Lk, and � = �11;k). The
following corollary shows how a delay bound can be computed
if we loose the bound on Yk.
Corollary 1: Suppose d is the worst-case delay bound across
any node in the network, and the path of any flow in the network
traverses at most h nodes, then we have Yk � (h � 1)d. If
� < 1

1+(h�2)(1� 1

L
)
, then

d �
1

1
�
L��
L�1 � (h� 1)

�

�
: (11)

Therefore the end-to-end delay de2e can be bounded by

de2e �
h

1
�
L��
L�1 � (h� 1)

�

�
: (12)

This delay formula does not depend on topology of the network
except for the length h of the longest flow path. We note that a
very similar result was derived using a different approach in [3].

B. Deriving the Delay Formula

In this subsection, we discuss how to derive the delay formula
given in (3). We will start with a formula for delay computation
that depends on flow population, which we call the general delay
formula. We will describe how to remove its dependency on
information of flow population.

For Server k, suppose that the group of flows G i
p;j;k, at some

time moment, has nip;j;k traffic flows. The constraint function
F i
p;j;k(I) can be formulated as the summation of the constraint

functions of individual flows, that is,

F i
p;j;k(I) =

X
x2Gi

p;j;k

Fx(I); (13)

where Fx(I) is the constraint function for flow x in Gi
p;j;k . Fur-

ther, the aggregate traffic of group of flows Gp;j;k is constrained
by

Fp;j;k(I) = minfCI;

MX
i=1

F i
p;j;kg: (14)

The worst-case delay dp;k of priority-p flows at Server k can
then easily be formulated in terms of the aggregated traffic con-
straint functions and the service rate C of the server as follows
[13]:

dp;k =
1

C
max
I>0

(

p�1X
q=1

LkX
j=1

Fq;j;k(I + dp;k)+

LkX
j=1

Fp;j;k(I)�CI):

(15)
Substituting (13) and (14) into (15), we observe that the above

delay formula depends on flow population. In fact, (15) depends
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on nip;j;k, the number of flows in Gi
p;j;k, and on the traffic con-

straint functions Fx(I) of the individual flows. This kind of
dependency on the dynamic system status must be removed in
order to perform delay computations at configuration time.

In the following sections, we describe how we first elimi-
nate the dependency on the traffic constraint functions. Then we
eliminate the dependency on the number of flows on each input
link. The result is a delay formula that can be applied without
knowledge about flow population.

B.1 Removing the Dependency on Individual Traffic Constraint
Functions

We now show that the aggregated traffic function F i
p;j;k(I)

can be bounded by replacing the individual traffic constraint
functions Fx(I) by a common upper bound, which is indepen-
dent of input link j.

The delay on each server can now be formulated without re-
lying on traffic constraint functions within the network of indi-
vidual flows. The following theorem in fact states that the delay
for each flow on each server can be computed by using the con-
straint traffic functions at the entrance to the network only.

Theorem 2: The aggregated traffic of the group of flows
Gp;j;k is constrained by

Fp;j;k(I) =

8<:
CI; I � �p;j;k

np;j;k�(�p;k + �I); I > �p;j;k

; (16)

where

�p;j;k =
np;j;k��p;k

C � np;j;k��
; (17)

�ip;k = �i + �iY i
p;k; (18)

and the worst-case delay dp;k of priority-p flows at Server k can
be bounded by

dp;k �
Up;k � Vp;kWp;k

Xp;k

; (19)

where

Up;k =

pX
q=1

nq;k��q;k; (20)

Vp;k = C �

pX
q=1

nq;k��; (21)

Xp;k = C �

p�1X
q=1

nq;k��; (22)

Wp;k =
Lk
max
j=1

f
np;j;k��p;k

C � np;j;k��
g; (23)

and

niq;k =

LkX
j=1

niq;j;k: (24)

The proof of Theorem 2 is given in Appendix A.
The delay computation using Equation (19) still depends on

the number of flows on all input links. In the next section, we
describe how to remove this dependency.

B.2 Removing the Dependency on the Number of Flows on
Each Input Link

As we described earlier, admission control at run-time makes
sure that the utilization of Server k allocated to flows of Class i
with priority p does not exceed �ip;k. In other words, the follow-
ing inequality always holds:

nip;k�
i � �ip;kC: (25)

The number of flows on each input link is, therefore, subject
to the following constraint:

np;k � 
p;kC; (26)

where


ip;k =
�ip;k

�i
: (27)

To maximize the right hand side of (19), we should maximize
Up;k and minimize Vp;k, Xp;k, and Wp;k. Under the constraint
of (26), these parameters can be bounded for all possible distri-
bution nip;j;k of numbers of active flows on all input links, as the
following theorem shows:

Theorem 3: If the worst-case queuing delay is experienced
by the traffic with priority p at Server k, then,

Up;k �

pX
q=1

(�q;k�Zq;k)C; (28)

Vp;k � (1�

pX
q=1

k�q;kk)C; (29)

Xp;k � (1�

p�1X
q=1

k�q;kk)C; (30)

and

Wp;k �
�p;k�Zp;k

Lk � k�p;kk
: (31)

where Up;k, Vp;k, Xp;k, and Wp;k are defined in (20), (21), (22),
and (23).

The proof of Theorem 3 is given in Appendix B.
If we substitute all the bounds in (28), (29), (30), and (31)

into (19), then (3) follows after some algebraic manipulation.

VI. PRIORITY ASSIGNMENT

The delay computation formulas described in the previous
section allow to assign priorities to flows independently of their
classes. With appropriate priority assignment algorithms in
place, network resources can be significantly better utilized.

Ideally, the priority assignment would be done during the ad-
mission control for a new flow, where resource usage can be
taken into consideration. This would, however, render the ad-
mission control procedure significantly more expensive. We
therefore follow the procedure we used earlier for delay veri-
fication, and perform the priority assignment off-line, that is,
during system configuration.

In order to assign priorities to flows off-line, we must clas-
sify and aggregate flows using information (in addition to class
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membership) that is available before run time. For a network
with fixed routers, flows can be classified at each server by their
class identification, the source and the destination identification.

In the following we use class and path (in form of source
and destination identification) information to assign priorities,
where all flows in the same class with the same source and des-
tination have the same priority. This approach has two advan-
tages over more dynamic ones. First, the priority assignment
can be done before run time and thus does not burden the ad-
mission control procedure at establishment time. Second, the
static-priority schedulers need no dynamic information at run
time, as the priority mapping for each packet is fully defined by
its class identification, and its source and destination identifica-
tions. No additional fields in packet headers are needed.

A. Outline of Algorithms

Mapping with increasing complexity can be used to assign
priorities to flows:
� One-to-One Mapping: All the flows in a class are assigned
the same priority. Flows in different classes are mapped into dif-
ferent priorities. A simple deadline-based mapping can be used
to assign priorities to classes with the least deadline getting the
highest priority. The advantage of this method is its simplicity.
Obviously, this does not take into account more detailed infor-
mation such as topology and others. We use this mapping as
baseline for the comparison with others.
� One-to-Many Mapping: Classes may be partitioned into sub-
classes for priority assignment purposes, with flows from a class
assigned different priorities. Flows in different classes, however,
may not share a priority. In Subsection VI-B we present a ver-
sion of this algorithm. This algorithm can recognize the differ-
ent requirements of flows in a class and assign them different
priorities, hence improving the network performance. The algo-
rithm is still relatively simple, but it may use too many priorities
given that it does not allow priorities to be shared by flows from
different classes.
� Many-to-Many Mapping: The priority assignment is not con-
strained by class membership, and flows from different classes
can be assigned the same priority. Given its generality, this map-
ping can achieve better performance than the other two.

B. Details of Algorithms

We will first focus on Algorithm One-to-Many. We will then
show that Algorithms One-to-One and Many-to-Many are a spe-
cial case and generalization of Algorithm One-to-Many, respec-
tively.

Given the limited space, there will be no need to present
the other two algorithms in details. The purpose of the static
priority assignment algorithm is to generate a priority assign-
ment table, which then is used by admission control and is
loaded into routers for scheduling purposes. The priority as-
signment table (see Table I for an example) consists of entries
of type hclass; source; destination; priorityi. The priority as-
signment then maps from the first three fields in the entry to the
priority field.

Figure 1 shows our One-to-Many priority assignment algo-
rithm. The algorithm uses a stack to store subsets of entries to

TABLE I

A EXAMPLE OF PRIORITY ASSIGNMENT TABLE

Class Source Destination Priority

1 node 2 node 3 2
1 node 4 node 7 3
...

...
...

...
3 node 6 node 1 1

input: network server graph, flow traffic and deadline
parameters for all the classes, assigned network
bandwidth �ik for each Class i (i = 1; : : : ;M ).

output: the priority assignment table and bandwidth
allocation �ip;k.

1. initialize the priority assignment table, by filling the proper
class id, source id, and destination id. Initialize the priority
fields to “undefined”.

2. for i from M down to 1 do
combine all entries of type hi; src; dst; pi of Class i into
subset Si and push subset Si onto Stack SS;

3. p = 0; /* highest priority */
4. while Stack SS is not empty

4.1. p = p+ 1;
4.2. if p > N /* no more priorities available */

return “failure”;
4.3. pop a subset S from Stack SS;
4.4. assign p to the priority field of all the entries in S;
4.5. use delay Formula (10) to update the end-to-end

delay of flows represented by entries in S;
4.6. if no flow in S misses its deadline

continue;
4.7. else

4.7.1. if S consists of a single entry
return “failure”;

4.7.2. else
4.7.2.1. call Procedure Bi-Partition(S),

and obtain two subsets: Sx, Sy
4.7.2.2. push Sy and Sx into Stack SS;

5. return the current priority assignment table and � i
p;k.

Fig. 1. Algorithm One-to-Many

which the priority fields are to be assigned. Entries in each sub-
set can potentially assigned to the same priority. The subsets
are ordered in the stack in accordance to their real-time require-
ments. The subset with entries that represent flows with the most
tight deadline and/or laxity is at the top of the stack.

After its initialization, the algorithm works iteratively. At
each iteration, the algorithm first checks whether enough un-
used priorities are available. If not, the program stops and de-
clares “failure” (Step 4.2). Otherwise, a subset is popped from
the stack. The algorithm then assigns the best (highest) avail-
able priority to the entries in the subset if the deadlines of the
flows represented by those entries can be met. However, if some
of the deadline tests cannot be passed, Procedure Bi-Partition is
called to partition the entries in the subset into two subsets based
on their laxity. The idea here is that if we assign a higher pri-
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ority to entries with little laxity, we may pass the deadline tests
for all entries. This is realized by pushing two new subsets into
the stack in the proper order and by letting the future iteration
deal with the priority assignment. Procedure Bi-Partition also
assigns bandwidth to the different priorities in the class, that is,
properly splits �ik to reflect the partitioned subsets.

The program iterates until either it exhausts all the subsets in
the stack, in which case a successful priority assignment has
been found and the program returns the assignment table or
it must declare “failure”. The latter happens when either the
program runs out of priorities or it cannot meet the timing re-
quirments for a single entry in a subset.

Because the size of a subset is halved at every iteration step,
the worst-case time complexity of the algorithm is in the order
of O(M logV ) in the number of delay computations. We will
show that this algorithm does perform reasonably well in spite
of its low time complexity.

Algorithm One-to-One is a special case of Algorithm One-
to-Many presented in Figure 1. For Algorithm One-to-One, no
subset partition is allowed (otherwise entries in one class will
be assigned to different priorities — a violation of the One-to-
One principle). Thus, if we modify the code in Figure 1, so that
it returns “failure” whenever a failure on deadline test is found
(Step 4.7), it becomes the code for Algorithm One-to-One.

On the other hand, we can generalize Algorithm One-to-
Many to become Algorithm Many-to-Many. Recall that Algo-
rithm Many-to-Many allows the priorities to be shared by flows
in different classes. Note that sharing a priority is not necessary
unless the priorities have been used up. Following this idea, we
can modify the code in Figure 1 so that it becomes the code for
Algorithm Many-to-Many: At Step 4.2, when it is discovered
that all the available priorities have been used up, do not return
“failure”, but assign the entries with the priority that has just be
used. In the case the deadline test fails, assign these entries with
a higher priority (until the highest priority has been assigned).

VII. EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of the systems
that use our new delay analysis techniques and priority assign-
ment algorithms discussed in the previous sections. Recall that
we use a utilization-based admission control in our study: As
long as the link utilization along the path of a flow does not
exceed a given bound, the end-to-end deadline of the flow is
guaranteed. The value of this bound therefore gives a good in-
dication about how many flows can be admitted by the network.
We define the maximum usable utilization (MUU) to be summa-
tion of the bandwidth portions that can be allocated to real-time
traffic in all classes, and use this metric to measure the perfor-
mance of the systems. For a given network and a given priority
assignment algorithm, the value for the MUU is obtained by
performing a binary search in conjunction with the priority as-
signment algorithm discussed in Section VI.

To illustrate the performance of our algorithms for different
settings, we describe two experiments. In the first experiment,
we use a fixed network topology and compare the performance
of the three algorithms presented in Section VI and measure how
the algorithms perform for traffic with varying burstiness. In
the second experiment, we measure how the three algorithms

behave for networks with different topologies. In the following
we describe the setup for the two experiments and discuss the
results.

A. Experiment 1

The underlying network topology in this experiment in the
classical MCI network topology. All links in the network have a
capacity of 100 Mbps. All link servers in the simulated network
use a static-priority scheduler with 8 priorities.

We assume that there are three classes of traffic: h 640 bits,
32; 000 bps, 50 ms i, h 1; 280 bits, 64; 000 bps, 100 ms i, and
h 1; 920 bits, 96; 000 bps, 150 ms i, where each triple defines
�; �, and the end-to-end delay requirement for the class. Any
pair of nodes in the simulated networks may request a flow in
any class. All the traffic will be routed along shortest paths in
terms of number of hops from source to destination. The results
of these simulations are depicted in the first row of Table II. In
the subsequent rows of the table, the same simulation results are
depicted for higher-burtiness traffic. In each row, the burstiness
parameter � is quadrupled.

As expected, Table II shows that the MUU increases signifi-
cantly with more sophisticated assignment algorithms. The per-
formance improvement of algorithms One-to-Many and Many-
to-Many over One-to-One remains constant for traffic with
widely different burstiness.

TABLE II

THE COMPARISON OF MUU FOR DIFFERENT BURSTY DELAY IN THE MCI

NETWORK

�
�

Maximum Usable Utilization
One-to-One One-to-Many Many-to-Many

0.02 s 0.48 0.63 0.73
0.08 s 0.26 0.38 0.43
0.32 s 0.10 0.14 0.17
1.28 s 0.026 0.039 0.050

From Table II, we also see that the traffic burstiness heavily
impacts on the MUU. In fact, for very bursty traffic the MUU
can get quite low. We would like to point out that, even for
very bursty traffic, sufficient amounts of bandwidth can still be
designated for real-time traffic.

B. Experiment 2

In the second experiment we keep the setup of Experiment 1,
except that we do not vary the burst delay �

�
of the traffic. In-

stead, we vary the network topology. We randomly generate net-
work topologies with GT-ITM [21] using the Waxman 2 method
described there to generate edges. We generate 50 samples for
each kind of networks with different number of nodes ranging
from 10 to 20. We classify the generated topologies according
to their size in number of nodes, and their diameter.

Figure 2 displays the values for MUU for for small networks
(diameter of the networks is less than or equal to 6) and for large
networks. We can make the following observations:
� We found that Algorithm Many-to-Many can always achieve
the highest MUU among the three algorithms, and Algorithm
One-to-Many can achieve higher utilization than Algorithm
One-to-One, in the networks with the same number of nodes.
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Fig. 2. The MUU Values of Randomly Generated Networks

For example, when the number of nodes is 15, for the case of
Diameter � 6, the mean MUU of Algorithm Many-to-Many is
10:6% higher than that of Algorithm One-to-Many, and is 26:7%
higher than that of Algorithm One-to-One. These observations
can be explained by the fact that Algorithm Many-to-Many has
the highest flexibility in assigning priorities among the three al-
gorithms.
� The diameter of the network has an evident impact on the per-
formance of all the priority assignment algorithms. As the size
of the performance decreases. For example, when the the num-
ber of nodes is 15, the MUU of Algorithm One-to-Many in the
case of Diameter � 6, is 7:4% higher than that in the case
of Diameter � 6. The reason is that flows in large networks
(in the sense of diameter) usually suffer larger end-to-end delay
than in small networks.

VIII. CONCLUSIONS

In this paper, we have proposed a methodology for provid-
ing absolute differentiated services for real-time applications in
networks that uses static priority schedulers. Given that static-
priority schedulers are widely supported in current routers, we
believe that this approach is a practical and effective to support
real-time applications in the existing network.

We use a configuration-time verification step to determine
safe utilization levels of servers, and so reduce the admission.
Admission control at run time then is reduced to a sequence of
simple utilization tests on the servers along the path of the new
flow. Hence, the approach is scalable.

The configuration-time verification step relies on a flow-
population-insensitive delay computation. We have extended
Cruz’s approach and developed a method that allows us to an-
alyze the delays without depending on dynamic information
about flow population. Furthermore, we have designed several
priority assignment algorithms, which are shown to be effective
in achieving high utilization bounds.

Extensive performance evaluation is made to the systems that
used our new delay analysis techniques and priority assignment
algorithms. We found that Algorithm Many-to-Many could
achieve very high network utilization both in a well-known net-
work and randomly generated networks.

Our methodology presented in this paper can be easily ex-
tended to deal with statistical delay guarantees. Much progress

has been made in derivation of statistical delay bounds [11], [2],
[12], [20]. However, all these previous results require informa-
tion on flow population to obtain the statistical delay bounds.
For example, in [11] statistical delay bounds are obtained by us-
ing approximated normal distribution, of which the parameters,
in turn, depend on the flow population. Our method on elim-
inating flow-population dependency in delay computation can
be applied in this situation to make delay derivation insensitive
to flow population. This should help to provide absolute dif-
ferentiated services to applications that require statistical delay
guarantees.
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APPENDIX A: PROOF OF THEOREM 2

Theorem 2: The aggregated traffic of the group of flows
Gp;j;k is constrained by

Fp;j;k(I) =

8<:
CI; I � �p;j;k

np;j;k�(�p;k + �I); I > �q;j;k

; (32)

where

�p;j;k =
np;j;k��p;k

C � np;j;k��
; (33)

�ip;k = �i + �iY i
p;k; (34)

and the worst-case delay dp;k of priority-p flows at Server k can
be bounded by

dp;k �
Up;k � Vp;kWp;k

Xp;k

; (35)

where

Up;k =

pX
q=1

nq;k��q;k; (36)

Vp;k = C �

pX
q=1

nq;k��; (37)

Xp;k = C �

p�1X
q=1

nq;k��; (38)

Wp;k =
Lk
max
j=1

f
np;j;k��p;k

C � np;j;k��
g; (39)

and

niq;k =

LkX
j=1

niq;j;k: (40)

In order to prove Theorem 2, we need following lemmas:
Lemma 1: The aggregated traffic of the group of flows G i

p;j;k

is constrained by

F i
p;j;k(I) =

8<:
CI; I � � ip;j;k

nip;j;k(�
i
p;k + �iI); I > � ip;j;k

; (41)

where

� ip;j;k =
nip;j;k�

i
p;k

C � nip;j;k�
i
: (42)

Proof: For any flow x in the group of flows G i
p;j;k, let

Yx be the total worst-case queuing delay experienced by flow x

before arriving at Server k. Suppose that Y i
p;k is the maximum

of the worst-case queueing delays:

Yx � Y i
p;k: (43)

Since H i(I) is the source traffic function of flow x, according
to Theorem 2.1 in [6], we have

Fx(I) � H i(I + Yx) � H i(I + Y i
p;k): (44)

We can, therefore, bound F i
p;j;k as follows:

F i
p;j;k(I) �

X
x2Gi

p;j;k

Fx(I) (45)

�
X

x2Gi
p;j;k

H i(I + Y i
p;k): (46)

Substituting (2) into (46), we have

F i
p;j;k(I) � minfnip;j;kC; n

i
p;j;k(�

i
p;k + �iI)g: (47)

On the other hand, the total amount of traffic that can be trans-
mitted over input link j of Server k during any time interval I is
constrained by the link capacity C, i.e.,

F i
p;j;k(I) � CI: (48)

Synthesizing (47) and (48), we verify the values of F i
p;j;k(I) and

� ip;j;k(I) as claimed.
Similarly, bounds can be defined for the aggregated traffic of

group of flows Gp;j;k as follows:

Fp;j;k(I) = minfCI;
XM

i=1
F i
p;j;kg: (49)

Now we are ready to prove Theorem 2.
Proof: Note that each F i

p;j;k(I) is a two-piecewise lin-

ear continuous function, and
PM

i=1 F
i
p;j;k(I) is still a piecewise

linear continuous function. The value � ip;j;k identifies the inter-
section of the two linear segments, and is called the flex point of
F i
p;j;k(I). All � ip;j;k’s are also flex points of

PM

i=1 F
i
p;j;k(I).

Notice that �p;j;k � � ip;j;k for all classes i, thus, (32) and (33)
hold 2.

Following [13], assuming that a static priority scheduling dis-
cipline at the server, we have the following formula, which indi-
cates how long an newly arrival packet of Class i with priority p
can be delayed at Server k:

dp;k =
1

C
max
I>0

(

p�1X
q=1

LkX
j=1

Fq;j;k(I + dp;k)+

LkX
j=1

Fp;j;k(I)�CI):

(50)
The worst-case queuing delay dp;k suffered by the traffic with

priority p at Server k will happen at 3

I =
Lk
max
j=1

f�p;j;kg: (52)

2If I � �p;j;k , then
PM

i=1
F i
p;j;k

(I) � CI; if I > �p;j;k , thenPM

i=1
F i
p;j;k

(I) = np;j;k�(�p;k + �I).
3Let �p�;j;k and �p;j;k be the flex points of traffic constraint function for

traffic coming from the input link j of Server k with priority higher than p and
with priority p, respectively. Further, let Tp�;j;k be the maximum busy interval
of the traffic constraint function for traffic coming from input link j of Server
k with priority higher than p, and �max is the maximum flex point for the total
aggregate traffic in (50). Define

~� =
Lk
max
j=1

f�p�;j;kg; �̂ =
Lk
max
j=1

f�p;j;kg: (51)

We know that �max = max(~� � dp;k ; �̂). Here ~� � dp;k � 0 since dp;k �
Tp�;j;k � ~� . So �max = �̂ . Let s be the slope of the aggregate traffic function.
We find that s � C if I � �max; s � C if I � �max.
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We can, therefore, eliminate the max operator from (50). By
substituting (32), (33) and (52) into (50), with some algebraic
manipulation we have

dp;k =
Up;k � Vp;kWp;k

Xp;k

; (53)

where Up;k, Vp;k, Wp;k, and Xp;k are defined in (36), (37), (38)
and (39), respectively.

APPENDIX B: PROOF OF THEOREM 3

Theorem 3: If the worst-case queuing delay is experienced
by the traffic with priority p at Server k, then,

Up;k �

pX
q=1

(�q;k�Zq;k)C; (54)

Vp;k � (1�

pX
q=1

k�q;kk)C; ; (55)

Xp;k � (1�

p�1X
q=1

k�q;kk)C; (56)

and

Wp;k �
�p;k�Zp;k

Lk � k�p;kk
: (57)

where Up;k, Vp;k, Xp;k, and Wp;k are defined in (36), (37), (38)
and (39).

In order to prove Theorem 3, we need the following lemma:
Lemma 2: The worst-case queuing delay at Server k by traf-

fic of Class i with priority p is experienced when the number of
flows nip;k is maximized, i.e. 4

np;k = 
p;kC: (58)
Proof: By (50), we know that the larger Fq;j;k(I), for

q = 1; : : : ; p, the larger dp;k. Furthermore, since Fq;j;k(I) is
the aggregated traffic of Class i with priority q at Server k, we
know that the larger niq;k, the larger Fq;j;k(I). Therefore, when
the number of flows on each link is maximized, then the traffic
of Class i with priority p will experience the worst-case queuing
delay at the server.

Now we are ready to prove Theorem 3.
Proof: Substituting (58) into (36), (37) and (38), we have

Up;k � (

pX
q=1


q;k��q;k)C; (59)

Vp;k � C � (

pX
q=1


q;k��)C; (60)

and

Xp;k � C � (

p�1X
q=1


q;k��)C: (61)

4In general, 
i
p;k

C is not necessarily an integer. However, in a modern practi-

cal system it is very large, we can assume that b
i
p;k

Cc � 
i
p;k

C . For example,

if we consider a Gigabit router, C = 1�109 bps, for voice traffic �i = 32; 000
bps, if �i

p;k
= 15%, then 
i

p;k
C = 4; 687:5.

since 
q;k��q;k = �q;k�Zq;k and 
q;k�� = k�q;kk,
Up;k; Vp;k ; Xp;k can be verified as claimed.

We can bound Wp;k by fW 0
p;k, where fW 0

p;k is the solution
to the following optimization problem if we treat all variables
nip;j;k as real numbers.

Minimize fWp;k =
Lk
max
j=1

f�p;j;kg (62)

=
Lk
max
j=1

f
np;j;k��p;k

C � np;j;k��
g; (63)

Subject to np;j;k � 0; j = 1; : : : ; Lk; (64)

np;k = 
p;kC: (65)

Without loss of generality, we assume that the input links are
ordered according to the size of the flex points:

fW 0
p;k = �p;1;k � �p;2;k � : : : � �p;Lk;k: (66)

� First, We can show that, when fWp;k reaches its optimal valuefW 0
p;k, all inequalities in (66) will become equalities, i.e.,

fW 0
p;k = �p;1;k = �p;2;k = : : : = �p;Lk;k: (67)

Otherwise, there exists some inequality �p;j0;k > �p;j0+1;k. It’s
easy to show that �p;j;k is an increasing continuous function with
respect to any nip;j;k. There must exist a nonzero ni0p;j0;k, then

by choosing sufficiently small �, decreasingn i0p;j0;k by �, increas-

ing ni0p;j0+1;k by �, and also keeping them nonnegative, we have
�p;j0;k � �p;j0+1;k. We notice that (66) is still true, but �p;j0;k is
decreased, thus �p;j0�1;k > �p;j0;k. Following this way, eventu-
ally we can decrease �p;1;k. This contradicts to the assumption
that �p;1;k is an optimal value.
� Second, applying the formula

x1

y1
=

x2

y2
= : : : =

xLk

yLk

=
x1 + x2 + : : :+ xLk

y1 + y2 + : : :+ yLk

(68)

in (67), we have

fW 0
p;k =

PLk

j=1 np;j;k��p;kPLk

j=1(C � np;j;k��)
=

�p;k�Zp;k

Lk � k�p;kk
: (69)

As the values for the nip;j;k’s in (39) are restricted to integers,
Wp;k is bounded as follows:

Wp;k � fW 0
p;k =

�p;k�Zp;k

Lk � k�p;kk
: (70)


