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Abstract
This paper presents a new schedulability analysis

methodology for distributed hard real-time systems with
bursty job arrivals. The schedulability is analyzed by com-
paring worst-case response times of jobs with their timing
constraints. We compute response times with a new method,
which uses the amount of received service time to deter-
mine the response time of instances of a job. We illustrate
how this method can be applied to exactly determine worst-
case response times for processors with preemptive static-
priority schedulers, and how it gives a good approximation
on the response times for processors with non-preemptive
static-priorityscheduling or first-come-first-served schedul-
ing. Our schedulability analysis method is the first to sup-
port systems with arbitrary job arrival patterns. Neverthe-
less, it performs better than other known approaches used
for systems with periodic job arrivals.

1. Introduction

In a distributed real-time system, jobs have stringent
timing constraints and often require to be executed on a
sequence of processors. Timing constraints are typically
given in form of end-to-end deadlines. A job in such a
system meets its timing constraint if it completes before its
end-to-end deadline. If one or more jobs miss their dead-
lines, a timing failure occurs. The possibilityof such timing
failures makes the system difficult to validate, since their oc-
currence can have unexpected effects. Furthermore, timing
failures can cause the system to behave in an unpredictable
or unstable way, with potentially serious consequences. It is
a design goal to guarantee a priori that timing requirements
are met during the system’s operation. If the job set in the
system is static, design-time analysis validates that no tim-
ing constraints are violated in the system. If the job set is
dynamic, additional run-time analysis, typically as part of

an admission control system, may be required.
The system workload is typically modeled as a set of job

with end-to-end timing requirements. If all jobs in the sys-
tem can meet their timing requirements, we call the system
schedulable. The validation step required to test whether
a system is schedulable is called schedulability analysis.
The schedulability analysis can be performed during design
time or as part of the admission control. In addition to
being efficient, a method for schedulability analysis must
satisfy a number of requirements. First, a schedulability
analysis methodology must be correct and robust: it must
never wrongly determine that a system is schedulable if it
is not, and the error should be bounded if the schedula-
bility decision is based on incorrect data. Second, a good
schedulability analysis methodology should make good use
of existing resources in the system, and allow for high re-
source utilization.

The central component of every schedulability analy-
sis methodology is the computation of worst-case response
times of the jobs under consideration. Once the worst-case
response time has been determined for a particular job, it is
compared against the timing requirements to check whether
they are met 1. In this paper, we present a general method-
ology for computing worst-case end-to-end response times
for aperiodic jobs in distributed systems.

Traditionally, work on schedulability analysis focuses on
periodic jobs, where the inter-arrival time of requests is fixed
to be the period of the job. Non-periodic workload is typi-
cally transformed into a periodic workload by either one of
three ways: (i) treating the non-periodic jobs as periodic jobs
with the minimum inter-arrival time being the period, or (ii)
having servers, which look like periodic jobs to the rest of

1Some approaches for schedulability analysis do not require the explicit
computation of response times, but determine the schedulability indirectly,
for example by relying on resource utilization [23].



the system, execute the non-periodic jobs (e.g. [16]), or (iii)
splitting the non-periodic jobs each into collections of peri-
odic jobs of different sizes and periods. In all three cases,
well-known schedulability analysis methodologies for peri-
odic workloads can be used.

Applying the same methods for distributed real-time sys-
tems, where jobs execute on more than one processor, shows
poor results, even for periodic workloads. While the arrival
of instances of a periodic job may indeed be periodic at the
first processor, the completion of these instances almost cer-
tainly is not. If no special action is taken, and the completion
of an instance on the first processor indicates that the second
processor can go ahead, the "arrival" of instances of the job
at the second processor is not periodic.

By appropriately synchronizing the execution of the job
on the first processor and the start of the job on the second
processor, the execution of the job on the second proces-
sor may be made to look like a periodic job. In [1], a
number of such synchronization schemes are described and
their relative performance is compared. The advantage of
these synchronization schemes is that they allow the use
of traditional schedulability analysis methods for periodic
workloads.

As was pointed out in [1], appropriate synchronization
reduces the worst-case end-to-end response times as com-
pared to systems with no such synchronization (in [1] this is
called Direct Synchronization). However, it adds overhead
to the system, and increases the average end-to-end response
times for jobs. In addition, it is of limited applicability in
systems with jobs that are inherently aperiodic. The the-
ory presented in this paper is designed to analyze aperiodic
workloads. As such, it can handle periodic and aperiodic
jobs, and combinations thereof, and more accurately de-
termines the schedulability of periodic jobs in distributed
systems with no synchronization than other approaches, for
example [1].

2. Previous Work
The first result on schedulability analysis was presented

in [23]. This schedulability test was performed by giving
a utilization bound if the total utilization of the single pro-
cessor is less than 69%, the rate monotonic scheduling will
guarantee that all jobs meet their deadlines.

Since then, the results of [23] have greatly been general-
ized. For example, Lehoczky, Sha, and Ding [12] provide
a sufficient and necessary schedulability test to determine
the worst case response time. Leung and Whitehead [22]
formulate an alternative priority assignment policy, where
the job deadline can be less than the period of a job, and
provide simple algorithm to determine the schedulability of
such jobs. Sha, Rajkumar, and Lehoczky [14] discover a
concurrency control protocol to permit jobs to share crit-
ical sections of codes. Audsley, Burns, Richardson, and

Welling [8] permit the addition of guaranteed sporadic tasks
(where there is a minimum time between the re-arrivals
of such jobs). Tindell, Burns, Richardson, Tindell, and
Welling [9] extended the approach further to characterize
the re-arrival pattern, covering ’bursty’ sporadic and peri-
odic jobs, and introduced the concept of release jitter (where
a task is not released into the system immediately upon ar-
rival, but may suffer a bounded deferral time). Bettati [4]
provides a method for end-to-end schedulability analysis for
distributed system. This approach relies on a synchroniza-
tion scheme between processors called Phase Modification.
Once an instance of a job completes on a processor, the
release of the corresponding instance on the next proces-
sor is delayed so that the arrivals of that job on the second
processor are periodic.

In [1, 2] Sun and Liu compare various synchronization
mechanisms and describe an iterative algorithm to bound
the end-to-end response times of jobs in distributed sys-
tems with Direct Synchronization. Direct synchronization
between two processors means that the completion of an
instance of a job on the first processor signals that the corre-
spondent instance can be immediately released on the second
processor. Sun and Liu correct a weakness in the holistic
schedulability analysis proposed in [6]. However the up-
per bounds obtained by using their algorithm are still rather
loose.

Most of the above work relies on one key technique,
busy period analysis, which was first proposed in [13] and
later extended in [6, 7, 9, 10]. A k-level busy period of a
processor is a continuous time interval during which only
these instances of jobs with priorities higher than or equal to
k are executed. The crucial step of the busy period analysis
can be roughly drafted as following: given a set of periodic
jobs at the processor, for a particular job Ti with priority k,
the maximum number of instances of job Ti, which arrive
during k-level busy period Dk, can be bounded by dDk

�i
e,

where �i is the period of job Ti, then the upper bound of the
response time of each instance of job Ti can be obtained by
only considering the first dDk

�i
e instances of job Ti.

Unfortunately, busy period analysis in this form relies
on jobs being periodic, and these schedulability analysis
algorithms based on it are not applicable for job sets with
bursty job arrivals.

3. System Model
In this section we describe the model for distributed real-

time systems used in the following sections.

3.1. Jobs
We consider a distributed real-time system that con-

sists of m processors P1; P2; � � � ; Pm and n independent
jobs T1; T2; � � � ; Tn. Each job Tk consists of a chain of
nk subjobs, Tk;1; � � � ; Tk;nk. Subjobs of a job are exe-
cuted on different processors sequentially. In particular,



subjob Tk;j is executed for �k;j time units on processor
P (k; j) 2 fP1; P2; � � � ; Pmg. We call �k;j the execution
time of subjob Tk;j.

Each job consists of a (possible infinite) sequence of job
instances. The release time of an instance of a (sub-)job is
the time when the instance of the (sub-)job is ready to be
executed. Hence, by the definitions of job and subjob, the
release time of an instance of job Tk is equal to the release
time of the corresponding instance of subjob Tk;1. We say
that the i-th instance of subjob Tk;j is released at time tk;j;i.
Naturally, we have 0 � tk;j;1 < tk;j;2 < � � � < tk;j;i < � � �.

Most previous studies assume that jobs are periodic. That
is, the release time of the i-th instance of Tk follows the
following relations: tk;1;i = tk;1;1 + (i � 1) � �k; where
�k is the period of job Tk. In this study, we remove this
assumption. We allow that instances of jobs are released at
any point in time, not necessarily periodically. Examples
for both periodic and aperiodic job arrivals are given in
Figure 1. Each job Tk is associated with a deadline Dk.

t

(t)

ttttt
k,1,6k,1,5k,1,4k,1,3k,1,2

Number of Instances

f
k,1,arr

1

3

4

5

2

6

Periodic Arrival(a)

t
t
k,1,2 k,1,3

t
k,1,4

t
k,1,5

t
k,1,6

(t)

Number of Instances

f
k,1,arr

1

2

3

4

5

6

tt

Aperiodic Arrival(b)

Figure 1. Arrival functions of the first subjob.
For each instance of job Tk, the end-to-end response time
(the time between the release time of the first subjob and
completion time of the last subjob) must be no more than
the deadline.

3.2. Scheduling algorithms

A processor typically executes more than one subjob.
Hence, a scheduler is needed in order to coordinate the ex-
ecutions of subjobs on the processor. Priority scheduling
is widely used. With priority scheduling, subjobs waiting
for execution on a processor are assigned priorities. Among
all the ready subjobs, the scheduler picks the one with the
highest priority. A priority scheduling algorithm is static if
all instances of a subjob have the same priority. Static prior-
ity scheduling is easy to manage and implement. A priority
scheduling algorithm is preemptive if it preempts the current
subjob in order to run an instance of a higher-priority subjob
which just arrives. In this paper, we will consider both static
priority preemptive (SPP) and static priority non preemptive
(SPNP) scheduling algorithms. Given that SPP or SPNP
scheduling is used, the response time of jobs is sensitive to
how priorities are assigned to subjobs. Priority assignment
algorithms have been widely studied in [9, 22, 23], and are
not further discussed in this paper, since our results apply to

arbitrary priority assignments. In the following we assume
that subjob is assigned priority �k;j on processor P (k; j).
The smaller the value of �k;j, the higher the priority of Tk;j.

In addition to static priority scheduling, we analyze first-
come-first-served (FCFS) scheduling, where instances of
subjobs are served in accordance to the order of their arrivals.

As described earlier, we do not enforce a particular syn-
chronization scheme except that dependency constrains be-
tween subsequent subjobs must be maintained. We therefore
assume that the completion of an subjob on one processor
signals that the corresponding instance of the next subjob
is released on the subsequent processor. This assumption
can be enforced with the help of the Direct Synchronization
Protocol [1] to signal the completion of a subjob. When
an instance of a subjob completes processing, a synchro-
nization signal is sent to the processor where its immediate
successor executes. Consequently, an instance of its succes-
sor is released immediately. This protocol is easy to use and
implement. We also assume that the scheduler overhead has
been taken into account in the execution time of the subjob.
The inter-processor communication overhead is assumed to
be constant and, hence, is ignored.

4. Response Time Analysis

To determine the worst case end-to-end response times
of jobs, we need to describe job arrivals and departures to
and from processors, the time requested by subjobs from a
particular processor, and the time offered by processors to
a particular job. We define the following notations for this
purpose.

Definition 1 The arrival function,fk;j;arr(t), of subjobTk;j
is defined as the number of instances of subjob Tk;j that are
released during the time interval [0; t].

Obviously, the value of the arrival function increases at
every release time of a subjob instance. In particular, we
have fk;j;arr(t) = i for tk;j;i � t < tk;j;i+1.

Definition 2 The departure function, f
k;j;dep(t), of subjob

Tk;j is defined as the number of instances of subjobTk;j that
are completed during time interval [0; t].

Since jobs become ready on a succeeding processor as
soon as they complete on the current processor, we always
have f

k;j;dep(t) = fk;j+1;arr(t). In particular, we have
f
k;j;dep(t) = i for tk;j+1;i � t < tk;j+1;i+1.

Definition 3 The workload function of subjob Tk;j is de-
fined as

ck;j(t) = fk;j;arr(t) � �k;j; (1)

where �k;j is execution time of subjob Tk;j.



Definition 4 The service function, Sk;j(t), of processor
P (k; j) for subjob Tk;j is defined as the time of processor
P (k; j) taken to execute ready instances (if any) of subjob
Tk;j during the time interval [0; t].

These arrival, departure, workload, and service functions
play a key role when deriving the end-to-end response times
of jobs. Before we formally derive our main results, we
need to introduce a few more mathematical notations.

Definition 5 For a nondecreasing function g(t), the inverse
function of g(t) is defined as

g�1(t) = minfsjg(s) � tg: (2)

For example, the inverse function of the arrival function
fk;j;arr(t) can be written as follows: for m = 1; 2; � � �

f�1
k;j;arr(m) = tk;j;m: (3)

That is, whilefk;j;arr(t) denotes the numbers of instances of
subjob Tk;j released during time interval [0; t], f�1

k;j;arr(m)
is the time when them-th instance of subjobTk;j is released.

Definition 6 A function g(t) (or g(t)) is called a lower
bound function (or an upper bound function) of function
g(t) if for t � 0,

g(t) � g(t) (or g(t) � g(t)): (4)

For example, t is an upper bound of Sk;j(t) and 0 is a lower
bound of Sk;j(t). Hence, we have

Sk;j(t) = t; (5)
and

Sk;j(t) = 0: (6)

Of course, these bounds are very loose. As we will see
below, the quantity of the response time bounds directly
depends on whether tight upper and lower bounds on service
functions can be found.

4.1. Exact analysis

4.1.1 Main results
The following theorem provides a fundamental formula for
computing the exact value of worst case end-to-end response
times.

Theorem 1 The worst case end-to-end response time dk of
job Tk is given as follows:

dk = max
m�0

(f�1
k;nk;dep(m) � f�1

k;1;arr(m)): (7)

Proof: Due to space limitation, all proofs in this paper are
omitted. An interested reader is referred to [18]. Q.E.D

Typically for real-time systems we may assume that the
arrival functions of the first subjobs are known. Hence, we
need to determine the departure function on the last pro-
cessor in order to use Formula (7). The following theorem
establishes a relationship between service function and de-
parture function on a single processor.

Theorem 2 Let Sk;j(t) be the service function for subjob
Tk;j at processor P (k; j). Then, its departure function
f
k;j;dep(t), is given by

f
k;j;dep(t) = b

Sk;j(t)

�k;j
c: (8)

4.1.2 Service Functions for SPP Scheduling
As described above, we need to derive the service func-
tion in order to use Formula (7) to compute the end-to-end
response time of a job. Service functions depend on the
scheduling algorithm used by processors. In general, the
derivation of exact service function is difficult. For a num-
ber of scheduling algorithms it can be derived rather easily,
however. The following theorem illustrates this for the case
of static priority preemptive (SPP) scheduling.

Theorem 3 The service function Sk;j(t) for subjob Tk;j on
processor P (k; j) that uses SPP scheduling is given by

Sk;j(t) = min
0�s�t

fAk;j(t) �Ak;j(s) + ck;j(s)g; (9)

where

Ak;j(t) =

8<
:

t; �k;j = 1
t�
P

P (h;i)=P (k;j);�h;i<�k;j

Sh;i(t); �k;j > 1
(10)

Equations (9) (10) illustrates that the service function of
Tk;j depends on two items: (i) service functions of higher-
priority subjobs that are also executed on processor P(k,j)
and (ii) the workload function of Tk;j, which in turn depends
on the arrival function of Tk;j. Thus, the service function
of Tk;j can be obtained by first computing all the service
functions of higher priority subjobs and the service func-
tion at predecessor processor. Once the service function is
computed, we can obtain the departure function with the
help of Formula (8). The departure function in turn is the
arrival function on the subsequent processor. Substituting
the departure function on the last processor P (k; nk) into
Formula (7), we have the worst case end-to-end response
time of Tk.

4.2. Approximate Analysis

In order to use Formula (7) directly, one must be able to
accurately compute departure functions at every processor.
For many scheduling algorithms, this is either too difficult
or computationally very intensive. In this situation, we have
to use approximation techniques. We address this problem
in this subsection.

4.2.1 Main results
According to the following theorem, we see that if the de-
parture functions can be lower bounded and the arrival func-
tions can be upper bounded, then the worst case end-to-end
response time can be upper bounded.

Theorem 4 If fk;j;arr(t) and f
k;j;dep(t) are known for all

the subjobs of job Tk, its worst case end-to-end response
time dk can be approximated by

dk �

nkX
j=1

dk;j; (11)

where dk;j is given by

dk;j = max
m�0

(f�1
k;j;dep(m) � f

�1
k;j;arr(m)): (12)



Given the above theorem, in order to compute an upper
bound of the worst case response time, we need to estimate
the lower bound of the departure function and the upper
bound of the arrival function. The following lemmas relate
these bounds to those of service functions.

Lemma 1 A lower bound function on the departure function
f
k;j;dep(t) of subjob Tk;j on processor P (k; j) is given by

f
k;j;dep(t) = b

Sk;j(t)

�k;j
c: (13)

Lemma 2 An upper bound on the arrival function
fk;j+1;arr(t) of subjob Tk;j+1 on processor P (k; j + 1)
is given by

fk;j+1;arr(t) = b
Sk;j(t)

�k;j
c: (14)

The question is how to obtain the upper and lower bounds
of the service function. We address this problem in the next
section for the special cases of static prioritynon-preemptive
scheduling (SPNP), and the first-come-first-served schedul-
ing (FCFS).

4.2.2 Bounds on Service Functions for SPNP Schedul-
ing

Recall that in a processor that uses non-preemptive static
priority scheduling once a subjob begins to execute, it cannot
be interrupted, even if higher priority subjobs subsequently
arrive. Lower priority jobs thus can temporarily prevent
higher priority jobs from executing. In such a situation, the
higher priority subjob is said to be blocked by the lower
priority subjobs. This blocking complicates the response
time computation.

The maximum blocking time bk;j of subjob Tk;j is the
maximum execution time of subjobs that are assigned lower
priority than subjob Tk;j on processor P (k; j). Formally,

bk;j = max
P (l;m)=P (k;j);�l;m>�k;j

f�l;mg: (15)

Once the blocking time is known, we can estimate the
bounds on service functions as described in the following
theorems.

Theorem 5 A lower bound function on the service function
Sk;j(t) of subjob Tk;j on processor P (k; j), which uses
static priority non-preemptive scheduling, is given by

Sk;j(t) =

8>><
>>:

0; t � bk;j

min0�s�t�bk;jfBk;j(t)
�Bk;j(s) + ck;j(s)g; t > bk;j

(16)

where

Bk;j(t) =

8>>>>>><
>>>>>>:

0; t � bk;j

t� bk;j; t > bk;j; �k;j = 1

t� bk;j �
P

P (h;i)=P (k;j);�h;i<�k;j

Sh;i(t); t > bk;j; �k;j > 1

(17)

Theorem 6 An upper bound function service function on
the service function Sk;j(t) on processor P (k; j), which
uses static priority non-preemptive scheduling, is given by

Sk;j(t) = min
0�s�t

fBk;j(t)� Bk;j(s) + ck;j(s)g; (18)

where Sh;i(t) is defined in Theorem 5 and

Bk;j(t) =

8>><
>>:

t; �k;j = 1

t�
P

P (h;i)=P (k;j);�h;i<�k;j

Sh;i(t); �k;j > 1

(19)

Thus, with the above theorems, the lower and upper bounds
of service functions can be obtained. These bounds can
be substituted into Equations (13) and (14) to derive lower
and upper bounds on departure and arrival functions, re-
spectively. These are then substituted into Equation (12) to
determine a bound on the local response time for a single
subjob. The bound on the end-to-end response time is then
determined as the sum of local response times for all the
subjobs.

4.2.3 Bounds on service functions for FCFS scheduling
In order to estimate service functions, we need to know how
much time offered to execute subjobs in time interval [0; t]
by the processor. We derive this with the notation of the
utilization function defined as follows:

Definition 7 The utilization functionUj(t) of processor Pj
is defined as the time processor Pj is busy executing subjobs
during the time interval [0; t].

Obviously, Uj(t) can not exceed t. If Uj(t) = t; t 2
[0; T ], processor Pj is busy during the entire time interval
[0; T ]. If Uj(t) < t, processor Pj must be idle for some
time before time t. So Uj(t) can be seen as an indicator of
how busy processor Pj is.

Theorem 7 The utilization function Uj(t) of processor Pj,
for the case of FCFS scheduling, is given by

Uj(t) = min
0�s�t

ft� s+ Gj(s)g; (20)

where,
Gj(t) =

X
P (k;l)=Pj

ck;l(t): (21)

While the FCFS algorithm seems to be a simple one, ana-
lyzing it in order to obtain the service function is not trivial.
This is because, with FCFS scheduling, a processor arbitrar-
ily picks up a subjob to execute from more than one subjobs
if they arrive at the same time. Thus, it is difficult, if not
impossible, to obtain the exact service function for a subjob
executed on a processor using FCFS scheduling. Neverthe-
less, the following theorems provide upper and lower bounds
on the service functions when using FCFS scheduling. In
the following, we will have Uk;j(t) denote the utilization
function of processor P (k; j). Similarly, Gk;j(t) denotes
the total workload of all subjobs on processor P (k; j).



Theorem 8 IfP (k; j) uses the FCFS scheduling algorithm,
the service functionSk;j(t) for subjobTk;j is lower bounded
by

Sk;j(t) = ck;j(G
�1
k;j

(Uk;j(t))); (22)

where Gk;j(t) and Uk;j(t) are defined in Theorem 7.

Theorem 9 IfP (k; j) uses the FCFS scheduling algorithm,
the service functionSk;j(t) of subjob Tk;j is upper bounded
by

Sk;j(t) = ck;j(G
�1
k;j

(Uk;j(t))) + �k;j: (23)

where Gk;j(t) and Uk;j(t) are given in (21) and (20), re-
spectively.

As in the case of the static priority non-preemptive schedul-
ing (Section 4.2.2), once the lower and upper bounds on
service functions are obtained, an upper bound on the worst
case end-to-end response time can be computed by using
(13), (14), (12), and (11).

5. Evaluation

We conducted a series of simulations to study the perfor-
mance of the proposed methods for analysis of response time
in the distributed real-time systems with various schedul-
ing algorithms. We are going to demonstrate that our new
method generates tighter bounds on response time than ap-
proaches proposed by others [1, 2], for both the case of
periodic and aperiodic job arrivals.

5.1. Simulation model and assumptions
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Figure 2. A System with Four Stages

In our experiments, we simulate the execution of jobs in
a job shop. The shop consists of a sequence of stages, each
of which contains a number of processors. All jobs traverse
the stages of the shop in the same order, and each job is
assigned to execute on one processor in each stage. Figure 2
shows a shop configuration, which consists of four stages
with two processor in each stage. For example, job T1 is
assigned to execute on P1 in the first stage, and on P3, P5

and P7 in the second, third and fourth stage, respectively.
Job T2 executes on P1 in the first stage, and on P4, P5, and
P8 on the subsequent stages.

In the case of static priority scheduling, the priority as-
signment must be determined. We use a relative deadline
monotonic priority assignment algorithm [1], which assigns

priorities to subjobs as follows: First, a sub-deadline of
subjob Ti;j is defined as follows

Di;j =
�i;jPni

k=1 �i;k
Di: (24)

Then, subjobs on a particular processor are assigned prior-
ities in accordance to their sub-deadlines. The smaller the
sub-deadline of a subjob, the higher its priority.

We simulate four different methods for obtaining worst
case end-to-end response times:
� SPP/Exact: The exact analysis method for static prior-

ity preemptive scheduling as proposed in Section 4.1.

� SPNP/App: The approximate method for static prior-
ity non preemptive scheduling (SPNP) as proposed in
Section 4.2.2.

� FCFS/App: The approximate method for FCFS
scheduling as proposed in Section 4.2.3

� SPP/S&L: The method proposed in [1, 2]. This method
is associated with static prioritypreemptive scheduling.

We measure the performance of each scheme in terms of
admission probability. The admission probability is defined
as the probability that a randomly generated job set can meet
its deadline requirements. We are interested in measuring
how the different analysis methods perform with different
scheduling algorithms. In each run of the simulation, 1; 000
sets of jobs are randomly generated. We apply each analysis
method separately to determine how many sets of jobs can
be admitted (i.e., meet their deadline requirements). The
admission probability is estimated by the percentage of job
sets that are admitted. Separate simulation runs are made
to measure the admission probability when job arrivals are
periodic and aperiodic.

5.2. Numerical results

The results of our experiments with periodic and aperi-
odic jobs arrivals are presented in Figure 3 and Figure 4,
respectively.

In Figure 3 we compare the admission probability of the
four analysis methods for the case of periodic job arrival. For
each job Tk, we use following formula to generate release
times of the first subjob Tk;1: for m = 1; 2; � � �;

tk;1;m =
m� 1
xk

; (25)

where xk is a random variable with uniform distribution in
(0; 1). The end-to-end deadline of job Tk is a multiple of
the period 1

xk
. Furthermore, we generate a random variable

wk;j with uniform distribution in (0; 1) for each subjobTk;j
and the execution time �k;j of subjob Tk;j is defined as:

�k;j =
wk;j �

1
xkP

P (l;i)=P (k;j)
wl;i �

1
xl

� Utilization: (26)

Figure 3 shows the effects of increasing the number of
stages in the shop (from top to bottom) and of increasing
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Figure 3. Admission Probability vs. System Utilization for Periodic Arrival Pattern.

the end-to-end deadlines of jobs (from left to right). We
note that both FCFS/App and SPNP/App perform consis-
tently poorer than the other two approaches. This is only
partly due to the approximate analysis. Preemptive static
priority scheduling is inherently superior to non-preemptive
static priority scheduling or to FCFS, independently of the
analysis methodology. More interesting are the results
for SPP/Exact and SPP/S&L, which compare two different
analysis methodologies for identical systems, with identi-
cal scheduling algorithm. When the number of stages of
jobs is one (i.e., Figure 3 (a) and (d)), both systems using
SPP/Exact and SPP/S&L result in the identical performance.
This means that for a single processor system, both methods
predict the same response time. However, when the num-
ber of stages is more than one (i.e., Figure 3 (c) and (f)),
SPP/Exact performs better. This is because our SPP/Exact
is an exact analysis method, which accurately compute the
end-to-end response time, while SPP/S&L implicitly over-
estimates the subjob arrivals and result in a loose bound
on end-to-end response time. As to be expected the per-
formance of all four methods improves significantly as the
end-to-end deadline is doubled.

Figure 4 compares the performance of SPP/Exact,

SPNP/App, and FCFS/App for aperiodic job arrivals. In
these experiments, we do not compare with SPP/S&L, be-
cause their analysis method works for periodic job arrivals
only. For each job Tk, we use following formula to generate
release times of the first subjob Tk;1: for m = 1; 2; � � � ;

tk;1;m =
1
xk

q
x2
k
+ (m� 1)2 � 1; (27)

where xk is a random variable with uniform distribution in
(0; 1). The end-to-end deadline of job Tk is a random vari-
able with exponential distribution. Furthermore, we gen-
erate a random variable wk;j with uniform distribution in
(0; 1) for each subjob Tk;j and the execution time �k;j of
subjob Tk;j is defined as:

�k;j =
wk;j �

1
xkP

P (l;i)=P (k;j)
wl;i �

1
xl

� Utilization: (28)

Figure 4 shows how the performance of the three methods
compare with varying deadline distributions, from top to
bottom the variance of the distribution increases, while the
average value increases from left to right. As expected,
performance improves as the deadlines are larger, as there
are more slack in the systems. The figure shows, however,
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Figure 4. Admission Probability vs. System Utilization for Aperiodic Arrival Pattern.

that changing the variance of deadlines has a little effect on
the admission probability.

The results show here are obtained for a limited number
of parameters. However, we also found that other parameter
values led to similar observations and are not represented
here due to the lack of space.

6. Conclusion

In this paper, we have presented a novel approach to
schedulability analysis of distributed real-time systems that
have arbitrary job arrival patterns, and that consist of proces-
sors that run preemptive and non-preemptive static priority
schedulers and FCFS schedulers. The basis of our new
theory is the development of formulae that use the service
received by the job from the processor and the service re-
quired by the job from the processor to bound the worst case
response time of the job on that processor.

This paper makes a number of contributions. First, it
allows the schedulability analysis for very general aperiodic
workloads. Second, we have shown how this methodology
can be used for systems that have a variety of different sched-
ulers, be they static-priority (preemptive or non-preemptive)
or FCFS. Of course the proposed methodology can handle

heterogeneous systems, where different processors run dif-
ferent schedulers. Third, we have shown that our approach
gives good results for systems with periodic job arrivals as
well, in particular in comparison with recently developed
methods, such as [1, 2].

A number of questions remain open. We are investigating
more general methodology to deal with the "physical loop"
caused by jobs 0Φvisiting the same processor more than
once and the "logical loop" caused by certain jobs disturb-
ing each other on different processors. In these situations,
the arrival functions of some subjobs, which play the key
in computing the worst case response time, depend on each
other and form a closed relationship chain. For example,
the arrival function of subjob Tk;j depends on the arrival
function of subjob Tn;i, because subjob Tk;j�1 and subjob
Tn;i are served by the same processor and the priority of
subjob Tn;i is higher than that of subjob Tk;j�1. Further-
more, the arrival function of subjob Tn;i�1 depends on the
arrival function of subjob Tk;j, because subjob Tn;i�1 and
subjob Tk;j are served by the same processor and the prior-
ity of subjob Tk;j is higher than that of subjob Tn;i�1. In
order to evaluate the worst case response time, we need to
virtually break the closed chain. Observing that an upper



bound of arrival function of each subjob can be obtained
from the arrival function of its precursory subjob and the
worst case response time experienced by the its precursory
subjob. Let the worse case response time of each subjob
be an unknown variable. According to above observation,
we can obtain the upper bounds of arrival functions for each
subjob even though they may contain some unknown param-
eters. From the mathematical point of view, after setting the
worse case response time as unknown variable, we can con-
struct a nonlinear vector function, ~X = F ( ~X), where ~X is
the unknown vector consisting of all unknown worst case re-
sponse time experienced by each subjob. Therefore, we can
find the numerical solution ~X by using the iteration scheme:
~Xn+1 = F ( ~Xn), ~X1 = ~0; n = 1; 2; � � �.

In this paper we restricted ourselves to distributed sys-
tems with no contention for resources, except for the pro-
cessors. Large-scale distributed systems cannot be mod-
eled without taking into account remote resource access and
contention for such resources. We are currently investigat-
ing how to model the access to shared resources (with and
without resource access protocols) with the help of service
functions. This will open the way for a fully integrated
methodology for the schedulability analysis of distributed
real-time systems with both shared processors and shared
resources.
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