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Abstract

This paper presents a new schedulability analysis
methodology for distributed hard real-time systems with
bursty job arrivals. The schedulability is analyzed by com-
paring worst-case response times of jobs with their timing
constraints. \WWe compute response timeswith a new method,
which uses the amount of received service time to deter-
mine the response time of instances of a job. We illustrate
how this method can be applied to exactly determine worst-
case response times for processors with preemptive static-
priority schedulers, and how it gives a good approxi mation
on the response times for processors with non-preemptive
static-priorityscheduling or first-come-fir st-served schedul -
ing. Our schedulability analysis method is the first to sup-
port systems with arbitrary job arrival patterns. Neverthe-
less, it performs better than other known approaches used
for systems with periodicjob arrivals.

1. Introduction

In a distributed real-time system, jobs have stringent
timing constraints and often require to be executed on a
sequence of processors. Timing constraints are typically
given in form of end-to-end deadlines. A job in such a
system mests itstiming constraint if it completes before its
end-to-end deadline. If one or more jobs miss their dead-
lines, atiming failure occurs. The possibility of such timing
failuresmakesthe system difficult to validate, sincetheir oc-
currence can have unexpected effects. Furthermore, timing
failures can cause the system to behave in an unpredictable
or unstableway, with potentially serious conseguences. Itis
adesign goa to guarantee apriori that timing requirements
are met during the system’s operation. If the job set in the
system is static, design-time analysis validates that no tim-
ing constraints are violated in the system. If thejob set is
dynamic, additional run-time analysis, typically as part of

an admission control system, may be required.

The system workload istypically modeled as a set of job
with end-to-end timing requirements. If dl jobsin the sys-
tem can meet their timing requirements, we call the system
schedulable. The validation step required to test whether
a system is schedulable is called schedulability analysis.
The schedulability analysis can be performed during design
time or as part of the admission control. In addition to
being efficient, a method for schedulability analysis must
satisfy a number of requirements. First, a schedulability
analysis methodology must be correct and robust: it must
never wrongly determine that a system is schedulable if it
is not, and the error should be bounded if the schedula-
bility decision is based on incorrect data. Second, a good
schedulability analysis methodol ogy should make good use
of existing resources in the system, and allow for high re-
source utilization.

The centra component of every schedulability anay-
sis methodol ogy is the computation of worst-case response
times of the jobs under consideration. Once the worst-case
response time has been determined for a particular job, it is
compared against the timing requirementsto check whether
they are met . In this paper, we present a general method-
ology for computing worst-case end-to-end response times
for aperiodic jobsin distributed systems.

Traditionally, work on schedulability analysisfocuses on
periodicjobs, wheretheinter-arrival time of requestsisfixed
to be the period of the job. Non-periodic workload is typi-
caly transformed into a periodic workload by either one of
threeways: (i) treating the non-periodicjobsasperiodicjobs
with the minimum inter-arrival time being the period, or (ii)
having servers, which look like periodic jobs to the rest of

1Some approachesfor schedulability analysisdo not requirethe explicit
computation of responsetimes, but determine the schedulability indirectly,
for exampleby relying on resource utilization [23].



the system, execute the non-periodicjobs(e.g. [16]), or (iii)
splitting the non-periodic jobs each into collections of peri-
odic jobs of different sizes and periods. In all three cases,
well-known schedul ability analysis methodol ogiesfor peri-
odic workloads can be used.

Applying the same methodsfor distributed rea -time sys-
tems, where jobs execute on morethan one processor, shows
poor results, even for periodic workloads. Whilethe arrival
of instances of a periodic job may indeed be periodic at the
first processor, the compl etion of these instances al most cer-
tainlyisnot. If no special actionistaken, and thecompl etion
of aninstanceon thefirst processor indicatesthat the second
processor can go ahead, the "arrival” of instances of the job
at the second processor is not periodic.

By appropriately synchronizing the execution of the job
on thefirst processor and the start of the job on the second
processor, the execution of the job on the second proces-
sor may be made to look like a periodic job. In [1], a
number of such synchronization schemes are described and
their relative performance is compared. The advantage of
these synchronization schemes is that they alow the use
of traditional schedulability analysis methods for periodic
workloads.

As was pointed out in [1], appropriate synchronization
reduces the worst-case end-to-end response times as com-
pared to systems with no such synchronization (in[1] thisis
called Direct Synchronization). However, it adds overhead
tothesystem, and increases the average end-to-end response
times for jobs. In addition, it is of limited applicability in
systems with jobs that are inherently aperiodic. The the-
ory presented in this paper is designed to analyze aperiodic
workloads. As such, it can handle periodic and aperiodic
jobs, and combinations thereof, and more accurately de-
termines the schedulability of periodic jobs in distributed
systems with no synchronization than other approaches, for
example [1].

2. Previous Work

The first result on schedulability analysis was presented
in[23]. This schedulability test was performed by giving
a utilization bound if thetotal utilization of the single pro-
cessor is less than 69%, the rate monotonic scheduling will
guarantee that all jobs meet their deadlines.

Since then, the results of [23] have greatly been general-
ized. For example, Lehoczky, Sha, and Ding [12] provide
a sufficient and necessary schedulability test to determine
the worst case response time. Leung and Whitehead [22]
formulate an aternative priority assignment policy, where
the job deadline can be less than the period of a job, and
provide simple a gorithm to determine the schedul ability of
such jobs. Sha, Rajkumar, and Lehoczky [14] discover a
concurrency control protocol to permit jobs to share crit-
ica sections of codes. Auddey, Burns, Richardson, and

Welling [8] permit the addition of guaranteed sporadic tasks
(where there is a minimum time between the re-arrivals
of such jobs). Tindell, Burns, Richardson, Tindell, and
Welling [9] extended the approach further to characterize
the re-arriva pattern, covering 'bursty’ sporadic and peri-
odicjobs, and introduced the concept of release jitter (where
atask is not released into the system immediately upon ar-
rival, but may suffer a bounded deferra time). Bettati [4]
providesamethod for end-to-end schedul ability analysisfor
distributed system. This approach relies on a synchroniza-
tion scheme between processors caled Phase Madification.
Once an instance of a job completes on a processor, the
release of the corresponding instance on the next proces-
sor is delayed so that the arrivals of that job on the second
processor are periodic.

In [1, 2] Sun and Liu compare various synchronization
mechanisms and describe an iterative algorithm to bound
the end-to-end response times of jobs in distributed sys-
tems with Direct Synchronization. Direct synchronization
between two processors means that the completion of an
instance of ajob on thefirst processor signalsthat the corre-
spondent i nstance can beimmediately rel eased on the second
processor. Sun and Liu correct a weskness in the holistic
schedulability analysis proposed in [6]. However the up-
per bounds obtained by using their agorithm are still rather
loose.

Most of the above work relies on one key technique,
busy period analysis, which was first proposed in [13] and
later extended in [6, 7, 9, 10]. A k-leve busy period of a
processor is a continuous time interval during which only
theseinstances of jobswith prioritieshigher than or equal to
k are executed. Thecrucial step of the busy period analysis
can be roughly drafted as following: given a set of periodic
jobs at the processor, for aparticular job 7; with priority £,
the maximum number of instances of job 7;, which arrive
during k-level busy period Dy, can be bounded by (DW
where p; istheperiod of job 7T}, then the upper bound of the
response time of each instance of job 7; can be obtained by
only considering thefirst [ 2] instances of job 7;.

Unfortunately, busy perlod analysis in this form relies
on jobs being periodic, and these schedulability analysis
algorithms based on it are not applicable for job sets with
bursty job arrivals.

3. System M odél

In this section we describe the mode! for distributed real -
time systems used in the foll owing sections.

3.1. Jobs

We consider a distributed real-time system that con-
sists of m processors P, Ps, - - -, Py, and n independent
jobs 71,75, ---,T,. Each job T} consists of a chain of
ny subjobs, 1 1, -, Tk n,. Subjobs of a job are exe-
cuted on different processors sequentialy. In particular,



subjob 7} ; is executed for 73 ; time units on processor
P(k,j) € {P1,Ps,---,Pn}. Wecdl 7 ; the execution
time of subjob 77 ;.

Each job consists of a (possibleinfinite) sequence of job
instances. The release time of an instance of a (sub-)jobis
the time when the instance of the (sub-)job is ready to be
executed. Hence, by the definitions of job and subjob, the
release time of an instance of job 7}, isequal to the release
time of the corresponding instance of subjob 7}, 1. We say
that the ¢-th instance of subjob 7}, ; isreleased at timety, ; ;.
Naturally, we have 0 < b1 <tpjo<<- - <dpji<---

Most previousstudiesassumethat jobsareperiodic. That
is, the release time of the i-th instance of 73, follows the
following relations: ¢ 1; = t; 1,1+ (i — 1) * py, where
pr 1S the period of job 7%. In this study, we remove this
assumption. We allow that instances of jobs are released at
any point in time, not necessarily periodically. Examples
for both periodic and aperiodic job arrivals are given in
Figure 1. Each job 7}, is associated with a deadline Dy.
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Figure 1. Arrival functions of the first subjob.

For each instance of job T}, the end-to-end response time
(the time between the release time of the first subjob and
completion time of the last subjob) must be no more than
the deadline.

3.2. Scheduling algorithms

A processor typically executes more than one subjob.
Hence, a scheduler is needed in order to coordinate the ex-
ecutions of subjobs on the processor. Priority scheduling
iswidely used. With priority scheduling, subjobs waiting
for execution on a processor are assigned priorities. Among
all the ready subjobs, the scheduler picks the one with the
highest priority. A priority scheduling algorithmis static if
all instances of a subjob have the same priority. Static prior-
ity scheduling is easy to manage and implement. A priority
scheduling algorithmis preemptiveif it preemptsthe current
subjobin order to run an instance of ahigher-priority subjob
whichjust arrives. Inthispaper, wewill consider both static
priority preemptive (SPP) and static priority non preemptive
(SPNP) scheduling algorithms. Given that SPP or SPNP
scheduling is used, the response time of jobsis sensitive to
how prioritiesare assigned to subjobs. Priority assignment
algorithms have been widely studied in [9, 22, 23], and are
not further discussed in this paper, since our resultsapply to

arbitrary priority assignments. In the following we assume
that subjob is assigned priority ¢ ; on processor P(k, j).
Thesmaller thevaueof ¢, ;, thehigher the priority of 7}, ;.

In additionto static priority scheduling, we anayze first-
come-first-served (FCFS) scheduling, where instances of
subjobsare servedin accordanceto theorder of their arrivals.

As described earlier, we do not enforce a particular syn-
chronization scheme except that dependency constrains be-
tween subsequent subjobsmust be maintained. Wetherefore
assume that the completion of an subjob on one processor
signals that the corresponding instance of the next subjob
is released on the subsequent processor. This assumption
can be enforced with the hel p of the Direct Synchronization
Protocol [1] to signal the completion of a subjob. When
an instance of a subjob completes processing, a synchro-
nization signal is sent to the processor where itsimmediate
successor executes. Conseguently, an instance of its succes-
sorisreleased immediately. Thisprotocol iseasy touseand
implement. We al so assume that the schedul er overhead has
been taken into account in the execution time of the subjob.
The inter-processor communication overhead is assumed to
be constant and, hence, isignored.

4. Response Time Analysis

To determine the worst case end-to-end response times
of jobs, we need to describe job arrivals and departures to
and from processors, the time requested by subjobs from a
particular processor, and the time offered by processors to
a particular job. We define the following notations for this
purpose.

Definition 1 Thearrival function, f ; arr(t), of subjob T, ;
is defined as the number of instances of subjob 7}, ; that are
released during thetimeinterval [0, ¢].

Obvioudly, the value of the arrival function increases at
every release time of a subjob instance. In particular, we
have fk,j,arr(t) =i for tk,j,i <i< tkyij_]_.

Definition 2 The departure function, fk,j,dep(t)' of subjob
Ty, ; isdefined asthe number of instances of subjob 7}, ; that
are completed during timeinterval [0, ¢].

Since jobs become ready on a succeeding processor as
soon as they complete on the current processor, we always
have fk,j,dep(t) = frj+rar(t). In particular, we have
fk,j,dep(t) =i for tk,j+l,i <t< tk,j+1,i+l-

Definition 3 The workload function of subjob 77, ; is de-
fined as
cr,j(t) = frg,arr(t) * 7 5, (1)

where 73, ; is execution time of subjob 75 ;.



Definition 4 The service function, Sy ;(t), of processor
P(k, j) for subjob T}, ; is defined as the time of processor
P(k, j) taken to execute ready instances (if any) of subjob
Ty, j during the timeinterval [0, ¢].

These arrival, departure, workload, and service functions
play akey rolewhen deriving the end-to-end response times
of jobs. Before we formally derive our main results, we
need to introduce a few more mathematical notations.

Definition 5 For a nondecreasing functiong(t), theinverse
function of ¢(¢) is defined as
g73(t) = min{slg(s) > 1}, 2)

For example, the inverse function of the arrival function
fr j,arr(t) can bewritten asfollows: form =12, - --
fk_,;,arr(m) =1k jm- (3)
Thatis, while f;, ; arr(t) denotesthenumbers of instances of
subjob 7} ; released during time interval [0, ¢], f; 7 grr(m)
isthetimewhenthem-thinstance of subjob 7} ; isreleased.

Definition 6 A function ¢(¢) (or g(t)) is called a lower
bound function (or an upper bound function) of function
g(t)iffort >0,

g(t) = g(t) (org(t) <g(t)). (4)

For example, ¢ isan upper bound of S; ;(¢) and O isalower
bound of Sy ;(t). Hence, we have

Sky(t) =t, (5)
and 5, =0. (6)
Of course, these bounds are very loose. As we will see
below, the quantity of the response time bounds directly
depends on whether tight upper and lower boundson service
functionscan be found.

4.1. Exact analysis

411 Mainresults

The following theorem provides afundamental formulafor
computing theexact val ue of worst case end-to-end response
times.

Theorem 1 The worst case end-to-end response time dy, of
job T} isgiven asfollows:
de =max(f! qen(m) = fitare(m).  (7)
Proof: Due to space limitation, al proofsin this paper are
omitted. An interested reader isreferred to [18]. Q.ED
Typicaly for real-time systems we may assume that the
arrival functionsof the first subjobs are known. Hence, we
need to determine the departure function on the last pro-
cessor in order to use Formula (7). The following theorem
establishes a rel ationship between service function and de-
parture function on asingle processor.

Theorem 2 Let S} ;(¢) be the service function for subjob
Ty ; at processor P(k,j). Then, its departure function
fkyjydep(t),isgivm by S (1

s deplt) = 12224 (®)

Tk
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412 Service Functionsfor SPP Scheduling

As described above, we need to derive the service func-
tion in order to use Formula (7) to compute the end-to-end
response time of a job. Service functions depend on the
scheduling algorithm used by processors. In generd, the
derivation of exact service function is difficult. For a num-
ber of scheduling algorithmsit can be derived rather easily,
however. The followingtheorem illustratesthisfor the case
of static priority preemptive (SPP) scheduling.

Theorem 3 The service function Sy, ;(¢) for subjob 75, ; on
processor P(k, j) that uses SPP scheduling is given by

Spi(t) = Orgnigt{Ak,j () = A j(s) tenj(s)t, (9

where t dp; =1
Ap () =t = 2 p(hi) =P ),6n.:< b0y (10)
Shi(t), dr,; > 1

Equations (9) (10) illustrates that the service function of
T} ; depends on two items: (i) service functions of higher-
priority subjobs that are aso executed on processor P(k,j)
and (ii) theworkl oad function of 7}, ;, whichin turndepends
on the arrival function of 7}, ;. Thus, the service function
of 1}, ; can be obtained by first computing all the service
functions of higher priority subjobs and the service func-
tion at predecessor processor. Once the service function is
computed, we can obtain the departure function with the
help of Formula (8). The departure function in turn is the
arrival function on the subsequent processor. Substituting
the departure function on the last processor P(k, ny) into
Formula (7), we have the worst case end-to-end response
timeof T;.

4.2. Approximate Analysis

In order to use Formula (7) directly, one must be able to
accurately compute departure functions a every processor.
For many scheduling algorithms, thisis either too difficult
or computationally very intensive. Inthissituation, we have
to use approximation techniques. We address this problem
in this subsection.

421 Mainresults

According to the following theorem, we see that if the de-
parturefunctionscan belower bounded and thearrival func-
tions can be upper bounded, then the worst case end-to-end
response time can be upper bounded.

Theorem 4 Iffkyjyarr(t) and f, i dep(t) are known for all

the subjobs of job 7%, its worst case end-to-end response
time d;, can be approximated by

dp < dij, (11)
Jj=1

where dy, ; isgiven by

dij = MEX([ % eg(m) = Tijarr(m)). (12



Given the above theorem, in order to compute an upper
bound of the worst case response time, we need to estimate
the lower bound of the departure function and the upper
bound of the arrival function. The following lemmas relate
these bounds to those of service functions.

Lemmal Alower bound functiononthedeparturefunction

fk,j,dep(t) of subjob T}, ; on processor P(k, j) isgiven by
S (1)

ik,j,dep(t) - L?J (13)

Lemma?2 An upper bound on the arrival function

frj+1arr(t) of subjob T} ;11 on processor P(k,j + 1)
isgiven by _ S, it

Fussnarr(t) = 20 (14

Tk ,j
The question is how to obtain the upper and lower bounds
of the service function. We address this problem in the next
section for the special cases of static priority non-preemptive
scheduling (SPNP), and the first-come-first-served schedul -
ing (FCFS).

4.2.2 Boundson Service Functions for SPNP Schedul-
ing

Recall that in a processor that uses non-preemptive static
priority scheduling once asubjob beginsto execute, it cannot
be interrupted, even if higher priority subjobs subsequently
arrive. Lower priority jobs thus can temporarily prevent
higher priority jobsfrom executing. In such a situation, the
higher priority subjob is said to be blocked by the lower
priority subjobs. This blocking complicates the response
time computation.

The maximum blocking time b;, ; of subjob 7} ; isthe
maxi mum execution time of subjobsthat are assigned |ower
priority than subjob T}, ; on processor P(k, j). Formally,
= pam=rlisimsen, 1)
Once the blocking time is known, we can estimate the
bounds on service functions as described in the following
theorems.

by

Theorem 5 Alower bound function on the service function
Sy,;(t) of subjob T} ; on processor P(k,j), which uses
static priority non-preemptive scheduling, is given by

0, t < by
S, () = . 16
(1) MiNo< s<¢—b, ;1 Bk, (1) (16)
=By j(s) +exj(s)t, > by
where 0, t< by,
t—by; t> by =1
Bk,](t) — kg > kg QJ)kJ (17)

U= bk,j = 2 P(hi)=P(k.i),6n,i<bx s
Sy (), t>bpj, opy; > 1

Theorem 6 An upper bound function service function on
the service function S} ;(¢) on processor P(k, j), which
uses static priority non-preemptive scheduling, is given by
Sij(t) = min {By;(1) = Bj(s) + ex ()}, (18)
where 5, ;(t) isdefined in Theorem 5 and
t, orj =1

By j(t) = (19)

U= 2 P(hi)=P k) <.
ﬁh,i(t)a dr; > 1

Thus, with the above theorems, the lower and upper bounds
of service functions can be obtained. These bounds can
be substituted into Equations (13) and (14) to derive lower
and upper bounds on departure and arrival functions, re-
spectively. These are then substituted into Equation (12) to
determine a bound on the local response time for a single
subjob. The bound on the end-to-end response timeis then
determined as the sum of loca response times for all the
subjobs.

4.2.3 Boundson service functionsfor FCFS scheduling
In order to estimate service functions, we need to know how
much time offered to execute subjobsin timeinterval [0, ¢]
by the processor. We derive this with the notation of the
utilization function defined as follows:

Definition 7 The utilizationfunction U; () of processor P;
isdefined asthe time processor P; isbusy executing subjobs
during thetimeinterval [0, ¢].

Obvioudly, U;(t) can not exceed t. If U;(t) =t, t €
[0, 77, processor P; is busy during the entire time interval
[0,77. If U;(t) < t, processor P; must be idle for some
time beforetimet. So U;(t) can be seen as an indicator of
how busy processor 7; is.

Theorem 7 The utilization function U (¢) of processor P;,
for the case of FCFS scheduling, is given by

Uj(t) = min {t = s+ Gi(s)}, (20)
where, Gi(t) = Z er (). (21)
P(k)=P;

While the FCFS agorithm seems to be a smple one, ana-
lyzingitin order to obtain the service functionisnot trivid.
Thisisbecause, with FCFS scheduling, aprocessor arbitrar-
ily picks up asubjob to execute from more than one subjobs
if they arrive at the same time. Thus, it is difficult, if not
impossible, to obtain the exact service function for a subjob
executed on a processor using FCFS scheduling. Neverthe-
less, thefoll owing theorems provide upper and lower bounds
on the service functions when using FCFS scheduling. In
the following, we will have U}, ;(t) denote the utilization
function of processor P(k,j). Similarly, G ;(t) denotes
the total workload of all subjobs on processor P(k, j).



Theorem 8 If P(k, j) usesthe FCFSscheduling algorithm,
theservicefunction Sy ;(¢) for subjob 7} ; islower bounded

b -
d 55, (0) = e (GEI (U5 (1)), (22)
where G, ;(t) and Uy, ;(¢) are defined in Theorem 7.

Theorem 9 If P(k, j) usesthe FCFSscheduling algorithm,
the service function Sy ; (¢) of subjob T}, ; isupper bounded

S0 = e GE ULO) + . (23)

where G ;(t) and Uy, ;(t) are given in (21) and (20), re-
spectively.

Asinthe case of the static priority non-preemptive schedul -
ing (Section 4.2.2), once the lower and upper bounds on
service functionsare obtained, an upper bound on the worst
case end-to-end response time can be computed by using
(13), (14), (12), and (11).

5. Evaluation

We conducted a series of simulationsto study the perfor-
mance of the proposed methodsfor analysisof responsetime
in the distributed real-time systems with various schedul-
ing algorithms. We are going to demonstrate that our new
method generates tighter bounds on response time than ap-
proaches proposed by others [1, 2], for both the case of
periodic and aperiodicjob arrivals.

5.1. Simulation model and assumptions

Processor 1 Processor 3 Processor 5 Processor 7

A — 7\ A— 7\ Xl
b 8 VA 8 O N G

/ I /

Job 4 Job 6
Processor 2 Processor 4 Processor 6 Processor 8
Job 5 b2
7 AY 7 \
e ) [ ) [ ) o
Job7
\—/ 7/ \—/ \—/ Job7

Job 8 Job 8

Figure 2. A System with Four Stages

In our experiments, we simulate the execution of jobsin
ajob shop. The shop consists of a sequence of stages, each
of which contains a number of processors. All jobstraverse
the stages of the shop in the same order, and each job is
assigned to execute on one processor in each stage. Figure?2
shows a shop configuration, which consists of four stages
with two processor in each stage. For example, job 73 is
assigned to execute on Py in the first stage, and on Ps, Ps
and P7 in the second, third and fourth stage, respectively.
Job 75, executes on Py in thefirst stage, and on P4, Ps, and
Pg on the subsequent stages.

In the case of static priority scheduling, the priority as-
signment must be determined. We use a relative deadline
monotonic priority assignment algorithm[1], which assigns

priorities to subjobs as follows: First, a sub-deadline of
subjob 7; ; is defined as follows
_ Ti,j
Dis Dbt Tik
Then, subjobs on a particular processor are assigned prior-
ities in accordance to their sub-deadlines. The smaller the
sub-deadline of a subjob, the higher its priority.
We simulate four different methods for obtaining worst
case end-to-end response times:
e SPP/Exact: The exact analysis method for static prior-
ity preemptive scheduling as proposed in Section 4.1.

D;. (24)

e SPNP/App: The approximate method for static prior-
ity non preemptive scheduling (SPNP) as proposed in
Section 4.2.2.

e FCFS/App: The approximate method for FCFS
scheduling as proposed in Section 4.2.3

e SPP/S&L: Themethod proposedin[1, 2]. Thismethod
isassociated with static priority preemptive scheduling.

We mesasure the performance of each scheme in terms of
admission probability. The admission probabilityis defined
asthe probability that arandomly generated job set can meet
its deadline requirements. We are interested in measuring
how the different analysis methods perform with different
scheduling algorithms. 1n each run of the simulation, 1, 000
setsof jobsare randomly generated. We apply each analysis
method separately to determine how many sets of jobs can
be admitted (i.e., meet their deadline requirements). The
admission probability is estimated by the percentage of job
sets that are admitted. Separate simulation runs are made
to measure the admission probability when job arrivals are
periodic and aperiodic.

5.2. Numerical results

The results of our experiments with periodic and aperi-
odic jobs arrivals are presented in Figure 3 and Figure 4,
respectively.

In Figure 3 we compare the admission probability of the
four analysismethodsfor the case of periodicjobarrival. For
each job T, we use following formula to generate release
times of thefirst subjob 7}, 1: form =1,2,-- -,

m-—1
teim = o (25)
where z, isarandom variable with uniform distributionin
(0,1). The end-to-end deadline of job 7}, is a multiple of
the period % . Furthermore, we generate arandom variable
wy, ; Withuniform distributionin (0, 1) for each subjob T}, ;
and the execution time 7, ; of subjob 7}, ; is defined as:

Wg,j * :ci . .

k T+ Utilization.  (26)
ZP(Z,i):P(k,j) Wi * o7
Figure 3 shows the effects of increasing the number of
stages in the shop (from top to bottom) and of increasing

Thj =
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Figure 3. Admission Probability vs. System Utilization for Periodic Arrival Pattern.

the end-to-end deadlines of jobs (from left to right). We
note that both FCFS/App and SPNP/App perform consis-
tently poorer than the other two approaches. Thisisonly
partly due to the approximate analysis. Preemptive static
priority scheduling isinherently superior to non-preemptive
gtatic priority scheduling or to FCFS, independently of the
analysis methodology. More interesting are the results
for SPP/Exact and SPP/S&L, which compare two different
analysis methodologies for identical systems, with identi-
ca scheduling agorithm. When the number of stages of
jobsis one (i.e, Figure 3 (&) and (d)), both systems using
SPP/Exact and SPP/S& L resultintheidentical performance.
Thismeans that for asingle processor system, both methods
predict the same response time. However, when the num-
ber of stages is more than one (i.e., Figure 3 (c) and (f)),
SPP/Exact performs better. This is because our SPP/Exact
isan exact analysis method, which accurately compute the
end-to-end response time, while SPP/S&L implicitly over-
estimates the subjob arrivals and result in a loose bound
on end-to-end response time. As to be expected the per-
formance of al four methods improves significantly as the
end-to-end deadlineis doubled.

Figure 4 compares the performance of SPP/Exact,

SPNP/App, and FCFS/App for aperiodic job arrivals. In
these experiments, we do not compare with SPP/S&L, be-
cause their analysis method works for periodic job arrivals
only. For eachjob 7}, we usefollowing formulato generate
release times of thefirst subjob 73, 1: form =1,2,- - -,

1
tk,l,m = l‘_ l‘% + (m — 1)2 -1 (27)
k

where z;, is arandom variable with uniform distributionin
(0,1). The end-to-end deadline of job 7}, is arandom vari-
able with exponential distribution. Furthermore, we gen-
erate a random variable wy, ; with uniform distribution in
(0, 1) for each subjob 7} ; and the execution time 7, ; of
subjob 7}, ; isdefined as:

. 1
Wk 4 * r

T * Utilization. (28)

Tk =
Zp(l,i)zp(k,j) Wi * o

Figure4 showshow the performance of thethreemethods
compare with varying deadline distributions, from top to
bottom the variance of the distribution increases, while the
average value increases from left to right. As expected,
performance improves as the deadlines are larger, as there
are more slack in the systems. The figure shows, however,
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Figure 4. Admission Probability vs. System Utilization for Aperiodic Arrival Pattern.

that changing the variance of deadlines has alittle effect on
the admission probability.

The results show here are obtained for a limited number
of parameters. However, we also found that other parameter
values led to similar observations and are not represented
here dueto the lack of space.

6. Conclusion

In this paper, we have presented a novel approach to
schedulability anaysis of distributed real-time systems that
have arbitrary job arrival patterns, and that consist of proces-
sors that run preemptive and non-preemptive static priority
schedulers and FCFS schedulers. The basis of our new
theory is the development of formulae that use the service
received by the job from the processor and the service re-
quired by thejob from the processor to bound the worst case
response time of the job on that processor.

This paper makes a number of contributions. Firgt, it
allowsthe schedul ability analysisfor very general aperiodic
workloads. Second, we have shown how this methodol ogy
can beused for systemsthat have avariety of different sched-
ulers, bethey static-priority (preemptive or non-preemptive)
or FCFS. Of course the proposed methodology can handle

heterogeneous systems, where different processors run dif-
ferent schedulers. Third, we have shown that our approach
gives good results for systems with periodic job arrivals as
well, in particular in comparison with recently developed
methods, such as[1, 2].

A number of questionsremain open. Weareinvestigating
more general methodol ogy to deal with the "physical 1oop"”
caused by jobs Odvisiting the same processor more than
once and the "logica loop" caused by certain jobs disturb-
ing each other on different processors. In these situations,
the arrival functions of some subjobs, which play the key
in computing the worst case response time, depend on each
other and form a closed relationship chain. For example,
the arrival function of subjob 7} ; depends on the arrival
function of subjob 7, ;, because subjob 7}, ;1 and subjob
T, ; are served by the same processor and the priority of
subjob 7, ; is higher than that of subjob 7} ;_1. Further-
more, the arrival function of subjob 77, ;1 depends on the
arrival function of subjob 77} ;, because subjob 73, ;1 and
subjob 7}, ; are served by the same processor and the prior-
ity of subjob 7} ; is higher than that of subjob 7, ;_1. In
order to evaluate the worst case response time, we need to
virtually break the closed chain. Observing that an upper



bound of arrival function of each subjob can be obtained
from the arrival function of its precursory subjob and the
worst case response time experienced by the its precursory
subjob. Let the worse case response time of each subjob
be an unknown variable. According to above observation,
we can obtainthe upper bounds of arrival functionsfor each
subjob even thoughthey may contain some unknown param-
eters. From the mathematica point of view, after setting the
worse case response time as unknown variable, we can con-
struct a nonlinear vector function, X = F(X), where X is
theunknown vector consisting of all unknownworst casere-
sponse time experienced by each subjob. Therefore, we can
find the numerical solution X by using theiteration scheme:
Xrtl= p(Xn), X1=0n=1,2-.

In this paper we restricted ourselves to distributed sys-
tems with no contention for resources, except for the pro-
cessors. Large-scale distributed systems cannot be mod-
€led without taking into account remote resource access and
contention for such resources. We are currently investigat-
ing how to model the access to shared resources (with and
without resource access protocols) with the help of service
functions. This will open the way for a fully integrated
methodology for the schedulability analysis of distributed
real-time systems with both shared processors and shared
resources.
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