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Abstract

Traffic analysis attacks aim at deriving mission critical
information from the analysis of the traffic transmitted over
a network. Countermeasures for such attacks are usually
realized by properly “padding” the payload traffic so that
the statistics of the overall traffic become significantly dif-
ferent from that of the payload traffic. In this paper, we
propose a analytical framework for traffic analysis attacks
based on statistical pattern recognition techniques. We
study the effectiveness of countermeasures for traffic analy-
sis attacks within our proposed framework. Two basic coun-
termeasure strategies are (a) to pad the traffic with con-
stant interarrival times of packets (CIT) or (b) to pad the
traffic with variable interarrival times (VIT). Our experi-
ments show that CIT countermeasures fail when the adver-
sary uses sample variance or sample entropy of packet in-
terarrival times for statistical analysis. On the other hand,
VIT countermeasures are effective regardless of which sam-
ple statistics are used by the adversary. These observations
are validated by analysis of detection rates based on sample
distributions of packet interarrival times.

Key Words packet interarrival times, traffic analysis at-
tacks, statistical analysis, statistical pattern recognition

1 Introduction

In this paper, we investigate the effectiveness of link
padding against statistical traffic analysis attacks. Com-
puter networks are a critical infrastructure in supporting
important services including telecommunication, banking,
medicine, military, government, transportation, and electri-
cal systems [13]. With the increasing usage of encryption to
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protect traffic content,traffic analysisis one of the common
attacks that threaten privacy, anonymity, and confidentiality
in such computer networks.

Traffic analysis attacks aim at deriving mission critical
information by analyzing the traffic transmitted over a net-
work. It is well known that even if the content of packets has
been encrypted, characteristics of the traffic, such as traffic
rate, pattern, or density, can reveal important mission crit-
ical information about the underlying applications [5, 22].
In this paper, we consider a class of traffic analysis attacks
based on statistical pattern recognition techniques. We will
assume that the information of interest to the adversary is
the rate of payload traffic, but our analysis can be easily
extended to other situations.

To facilitate this discussion, we propose a formal model
for traffic analysis attacks. While traffic analysis attacks
have been studied for decades, this is the first time a formal
model is proposed. We assume that the adversary launch-
ing traffic analysis attack works in the following way: (1)
The adversary first tries to collect information about the tar-
get system, including the system configuration and counter-
measure algorithm used. In order to analyze the worst-case
effectiveness of countermeasures, we assume that such in-
formation is available to the adversary. (2) Using the in-
formation collected, the adversary may simulate the target
system. The challenge for the adversary is how to derive
the payload information from the statistics of the simulating
traffic. This is calledclassificationin pattern recognition.
For this purpose, the adversary is assumed to use pattern
recognition techniques [12] to develop classification rules
by comparing traffic statistics for various underlying traffic
rates. Methods such as Bayesian decision rules can be used
here [7, 8]. (3) At run time, the adversary then taps the net-
work, collects samples of the traffic transmitted, derives the
statistics of the sample, and uses this information to derive
the traffic rate of the true payload traffic. The statistics used
by the adversary include the mean, variance, and entropy of
the interarrival times of the packets.

We believe that the above framework covers a broad



range of traffic analysis attacks and provides a solid founda-
tion to study the security of a communication system under
the scrutiny of an adversary who uses traffic analysis.

Countermeasures for traffic analysis attacks are usually
realized by properly “padding” the payload traffic so that
the statistics of the overall traffic transmitted over the net-
work become significantly different from that of the payload
traffic. In this way, one hopes that analyzing statistics of
the payload traffic will be difficult or even impossible. The
padded traffic (also called covered traffic) can have either
a constant interarrival time of packets (CIT) or a variable
interarrival time (VIT).

The rationale for traffic padding is explained by Shan-
non’s perfect secrecy theory: if we can map any payload
traffic flow to a predefined pattern or a few predefined pat-
terns with equal probability, then the adversary cannot ob-
tain any information on the original payload traffic. While
in theory this technique sounds extremely simple, in reality
a perfect mapping cannot be achieved due to uncontrollable
disturbances in the system. When this happens, the ques-
tion is if the (small) disturbances help leak information and
whether or not we can still establish a perfect secrecy sys-
tem. If not, metrics must be defined to assess the effective-
ness of the particular implementation.

Systems with this kind of countermeasure have been de-
veloped and utilized before. Prior to the work reported in
this paper, there has not been a systematic study on the
effectiveness of countermeasures versus statistical analysis
attacks. We evaluate the performance of these countermea-
sures in terms of detection rate, that is, the probability that
the adversary can correctly detect the traffic rate of payload
traffic for a collected sample.

Our performance evaluation reveals a number of surpris-
ing results.

(a) Many traditional link padding systems have used CIT
techniques. Our experimental data shows that this kind of
system is only effective for attacks that use sample means
for their statistical analysis.

(b) Our experimental data show that CIT-based counter-
measures fail when the adversary uses sample variance and
sample entropy for statistical analysis.

(c) On the other hand, VIT-based countermeasures seem
to be effective regardless of which sample statistics is used
by the adversary - sample mean, sample variance, or sample
entropy.

By analyzing sampling distributions of packet interar-
rival times, design guidelines for VIT-based countermea-
sures can then be developed.

2 Related Work

Shannon in [18] describes hisperfect secrecytheory
that is the foundation for any ideal countermeasure system

against traffic analysis attacks.
The study of traffic analysis and its countermeasures for

computer networks is not new. Baran [1] proposes the use
of heavy unclassified traffic to interfere with the adversary’s
tampering on the links of a security network system for clas-
sified information communication. He also suggests adding
dummy, i.e. fraudulent, traffic between fictitious users of
the system to conceal traffic loading.

To protect the anonymity of email transmission, Chaum
[3] proposed the use of aMix - a computer proxy. One tech-
nique used by a Mix is that it collects a predefined num-
berK of fixed-size message packets from different users,
shuffles the order of those packets, and then sends them
out. The reality is that a mix cannot always getK pack-
ets efficiently from the users. So, it is suggested that users
send dummy messages of random and non-meaningful con-
tent to maintain the Mix’s security and efficiency. Most re-
searchers have suggested CIT padding between the user and
the proxy, e.g., [20]. CIT padding is also used here for pre-
venting packet counting attacks [17].

A survey of the countermeasures for traffic analysis is
given in [24]. To mask the frequency, length, and origin-
destination patterns of end-to-end communication, dummy
messages are suggested to pad the traffic to a predefined
pattern.

The authors in [15, 16, 23] give a mathematical frame-
work to optimize the bandwidth usage while preventing
traffic analysis of the end-to-end traffic intensities. But,
this optimization discloses the overall network link band-
width usage, and the system cannot be said to be totally
secure. Raymond in [17] gives an informal survey of many
ad hoctraffic analysis attacks on systems providing anony-
mous service and possible solutions. One conclusion is that
dummy messages must be carefully used to achieve high
information assurance of the system. The authors of Net-
Camo [11] provide end-to-end prevention of traffic analysis
while guaranteeing QoS (the worst case delay of message
flows).

3 Models

3.1 Network Model

In this work, we assume that the network consists of
protected subnets, which are interconnected byunprotected
links. Traffic within protected subnets is assumed to be
shielded from observers. Unprotected links use either pub-
lic networks, or an easily accessible broadcast medium.
These links are accessible to observation by third-parties,
and are therefore open to traffic analysis. This model cap-
tures a variety of situations, ranging from battleship con-
voys (where the large-scale shipboard networks are pro-
tected and the inter-ship communication is wireless) to



communicating PDAs (where the protected networks con-
sist of single nodes).

A common countermeasure for traffic analysis over un-
protected links islink-level padding: to prevent the adver-
sary from inferring, say, therate of payload traffic over the
unprotected link, additional “dummy” packets are properly
inserted and transmitted over the link. In this way, the over-
all traffic appears to be at a constant rate, regardless of the
true amount of payload traffic. Figure 1 illustrates the sys-
tem configuration for link padding used in this paper.

          Subnet A 

Gateway 1 Gateway 2 

         Subnet B 

Figure 1. System Model

The hosts in the protected subnets (subnet Aand sub-
net B) exchange traffic with each other through the unpro-
tected link. Gateways are placed at the two boundaries of
the unprotected link and provide the link-level padding nec-
essary to prevent traffic analysis. We note that the gateways
can be realized either as stand-alone boxes, or as modules
to routers and switches, or software additions to network
stacks or device drivers at the end hosts. For our experi-
ments, they are realized as stand-alone boxes.

While the gateway at the sender’s side generates and ap-
propriately inserts padding traffic into the traffic flow to the
receiver, the gateway at the receiver’s site is responsible for
detecting and discarding the padding traffic, i.e., converting
the traffic on the link to the original payload traffic.

3.2 The Adversary

The goal of the adversary is to infer a set of character-
istics of the traffic exchanged over the unprotected link. In
this paper we will limit the interest of the adversary to the
payload traffic rate, that is, the rate at which real traffic is
exchanged between protected networks.

We assume that the payload traffic hasn different states,
ω0, . . . , ωn−1, in terms of payload traffic rate. We callω0

the state where there is no payload traffic andω1, . . . , ωn−1

states with increasing payload traffic rates.
The adversary has full access to the traffic on the unpro-

tected link and carries out its traffic analysis. In this paper,
we make the following assumptions about the capabilities
of the adversary.

(1) The adversary’s access to the system is limited to
the unprotected links. The protected subnets and the hosts

within are not accessible. Neither is the link padding in-
frastructure. This means that, in Figure 1, the adversary can
only tap the unsecured link betweenGateway 1andGate-
way 2.

(2) The contents (payload and headers) of packets trans-
mitted between the gateways are perfectly encrypted. The
adversary cannot obtain any useful information from the
content of packets it observes. In particular, she cannot
distinguish between payload packets and “dummy” packets
used for padding based on packet content.

(3) Similarly, we assume that all packets have a constant
size. Extensions to variable packet size will be discussed
later.
(4) The adversary has complete knowledge about the gate-

way machines and the algorithms used in the countermea-
sures to prevent traffic analysis. The adversary may take
advantage for sucha priori knowledge of the system. In
fact, we will assume in Section 4.1, that the adversary will
indeed do so.

(5) The adversary limits itself to passive attacks, i.e., ob-
servations of the traffic. Based on the observed traffic, the
adversary will try to infer the payload traffic rate on the un-
protected link. In this paper we describe an effective method
for how this can be done using statistical pattern recognition
techniques.

Given that packets are non-distinguishable by packet size
or packet content, the most valuable observation data col-
lected by the adversary is limited to packetinterarrival
times. We will show in the following section that this lim-
ited observation space can yield interesting results in con-
junction with appropriate statistical techniques.

4 Traffic Analysis Based on Statistical Pat-
tern Recognition

4.1 Basic Framework

In this section, we describe a class of traffic analysis at-
tacks that are based on statistical pattern recognition. We
proceed by first giving a short overview on statistical pattern
recognition and then describing how this general methodol-
ogy can be applied to the traffic analysis problem described
earlier.

Generally speaking, the goal of any statistical pattern
recognition process is to try toclassifyan unknown pattern
as belonging to one of several existing patternclasseswith
the help of a special feature (or attribute). In many cases,
the classifier is trained from collected data ([6, 7, 12]). Fol-
lowing this common practice, a classifier that utilizes this
strategy will consists of two subsystems: (1) on-line obser-
vation and classification and (2) off-line training.

Figure 2 (a) shows a flowchart for the on-line observa-
tion and classification subsystem, which consists of three
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Figure 2. (a) on-line observation and classifi-
cation (b) off-line training subsystem subsys-
tem

modules:
Data Collection Module is responsible for sampling the
traffic information from the real system. In our case, this
consists of collecting interarrival times of packets for a pre-
specified number of packets, calledsample size. The sample
generated here is called thereal sample.
Data Pre-Processing Modulepre-processes the real sam-
ple collected by the Data Collection Module in order to re-
move noise.
Classification Module performs two functions: First, cal-
culates thesample statistical featureof interest (such as,
mean, variance, or entropy) for a given sample. Second, it
classifies the traffic based on this sample’s statistical fea-
ture. The classification is done by a set of rules that are
derived by the off-line training subsystem. The result of
this module is a classification of the measured traffic (real
sample) into a set of states (classes)ω0, . . . , ωn−1, in our
case levels of payload traffic rate.

Figure 2 (b) shows a flowchart for the off-line training
subsystem. The purpose of the this subsystem is to derive
a set of classification rules to be used by the Classification
Module during run time. Typically, one would expect that
the adversary has access to the hardware and software of
the traffic analysis countermeasure infrastructure (or a copy
thereof) and so can generate training traffic used as the input
for the off-line training subsystem.

This off-line training subsystem consists of the following
modules.

Training Data Collection Module is responsible for gener-
atingtraining samplesfrom the training traffic information.
In contrast to real samples collected on-line, the classifica-
tion of training samples is knowna priori, i.e., supervised
training.
Training Data Pre-Processing Modulepre-processes the
training samples generated by the Training Data Collection
Module in order to remove noise.
Classification Rule Generation Modulefirst calculates the
sample statistical featureof interest (e.g., mean, variance,
entropy) for all training samples. As the training samples
are classifieda priori, the distributions of the sample sta-
tistical feature of interest can be computed for each class
separately. The rules for classification can then be derived
from these distributions.

In order to make this general framework applicable to
our problem, we need to address a number of issues: First,
we need to collect the sample’s statistical feature of inter-
est. Once the values for the sample’s statistical feature are
available for the training set, their distribution must be com-
puted. Finally, the classification rules must be derived based
on the distributions of the sample’s statistical features. We
will elaborate on these issues in the remaining part of this
section.

4.2 Sample Statistical Features

The selection of feature statistics is key to the success
of the adversary. In this paper, our feature vector is one-
dimensional, i.e., we use one feature of the data sample for
the classification. The statistics on packet interarrival times
(PIATs) are chosen as the candidate features since all the
packets have been padded to the same size and the content
is perfectly protected, making PIAT the most valuable in-
formation.

The three most interesting candidate features aresample
mean, sample variance, andsample entropyof PIATs.
Sample Mean: For a sample of sizen, {X1, · · · , Xn}, the
meanm of PIATs is given as follows

m =
n∑
i=1

Xi/n (1)

Sample Variance: The unbiased estimate of the variance
s2 is used. That is,

s2 =
n∑
i=1

(Xi −m)2/n (2)

Sample Entropy: The entropy can be computed based in
the method developed in [14]. First, we create a histogram
of the interarrival times in the sample for a given bin size
(say,∆x). According to [14], the differential entropy esti-
mator of a random variableX ’s continuous distribution is



given by

H̃ = −
∑
i

ki
n

log
ki
n

+ log ∆x (3)

whereW is the number of interarrival times in the sample,
ki is the number of samples in theith bin, and∆x is the
histogram’s bin size. If a constant bin size is used through-
out the experiment, the termlog ∆x in (3) is a constant and
hence does not influence the recognition result. It can there-
fore be discarded, and the entropy estimation formula sim-
plifies to

H̃ = −
∑
i

ki
n

log
ki
n

(4)

4.3 Distributions of Sample Statistical Features

The off-line training subsystem computes estimates of
the distributions, in particular the density functions, of sam-
ple statistical features. Among the many ways that can be
used to estimate density functions [12, 19] we briefly de-
scribe theParzen Windowmethod [7].

The Parzen Window density estimation uses the super-
position of a normalized window function centered on a set
of random samples, such that

p(x) ≈ p̃(x) =
1
N

N∑
i=1

Gψ(x− xi) (5)

where p(x) is the density function of features,̃p(x) is
the estimation of the density function,N the sample size,
{xi : 1 ≤ i ≤ N} the random sample,Gψ(x) the window
function, andψ the window width.N must be big enough
to capture the class (population) characteristics. In this pa-
per, we assumeGψ to be a normalized Gaussian (Normal)
density distribution, that is

Gψ(x− xi) =
1√
2πψ

e
(x−xi)

2

ψ2 (6)

Generally, whenN → ∞ andψ → 0, p̃(x) → p(x). We
need to carefully chooseψ andN to control the smoothness
and bias of the estimated density function.

4.4 Classification Rules

Classification can be done using a classical minimum-
error-rate decision rule i.e., Bayesian decision rule. This
kind of rule can be described as follows: For each state
ωj , j = 0 · · ·n− 1, from Section 4.3, we know the univari-
ate probability density (or distribution) function of a given
sample featurey conditioned onωj , p(y|ωj) and the prob-
ability of occurrences ofωj . The optimal decision rule that
minimizes the average number of wrong decisions is called
the Bayesian decision rule. For an even penalty function

(0, 1), by which a point is lost on a wrong decision and no
points are lost on a correct decision, this rule is as follows:

The sample represented byy belongs to Stateωi if

∀j ∈ {1, · · · ,m}, P (ωi|y) ≥ P (ωj |y). (7)

This rule tells us that the sample represented byx should
be classified as classωi with the biggestpost priori proba-
bility P (ωi|y).
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( ) ( )dyypP
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∫
∞−
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d
∫
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Figure 3. Bayesian Decision’s Error Rate - The
Case of Two Classes

Consider such a case in Figure 3 where we want to clas-
sify two states that have bell-shaped distributions. Note
that, according to (7), the decision rule now becomes

If y ≤ d, y is in state1 else state 2. (8)

4.5 Detection Rate

The classification error is the measure of a classifier’s
performance. It is defined as the probability of error when
the classifier is used to assign an unknown pattern to one of
the pattern classes.

For an-state decision problem, the error rateε can be
calculated as follows:

ε =
∫ ∞

−∞
(1− n

max
i=1

P (ωi|y))p(y)dy (9)

For a two-state system shown in Figure 3, the above formula
becomes as follows:

ε = P (ω2)

d∫
−∞

p(y|ω2)dy + P (ω1)

+∞∫
d

p(y|ω1)dy (10)

The detection rateis defined as the probability that a suc-
cessful classification is made. Given an error rateε, the
detection rate,v, is given by

v = 1− ε =
∫ ∞

−∞

n
max
i=1

P (ωi|y)p(y)dy (11)



5 Countermeasures and Evaluation

In this section, we implement a set of countermeasures
to traffic analysis attacks and evaluate them based on the
type of statistical pattern recognition techniques described
in Section 4. The goal of the adversary is to maximize its
detection rate as defined in (11). Consequently, the purpose
of our countermeasures is to minimize this detection rate.
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Figure 4. Experiment Setup

The experimental setup for the evaluation is illustrated
in Figure 4, with two Linux PCs acting as countermeasure
gateways. The PCs have two network interfaces each and
isolate the protected subnet from unprotected link by ap-
propriately inserting “dummy” packets into the unprotected
link. The observations by the adversary are made using a
network analyzer on the link between the two gateways.
Our gateway machines use a real-time Linux operating sys-
tem [21] produced by TimeSys Inc.

Data from other systems (e.g., standard Linux with ker-
nel 2.4) we analyzed confirm the same conclusions made in
this section. Thus, we are not going to show them in this
paper due to space limitations.

5.1 Link padding with Constant Interarrival
Times of Packets

Recall that the basic function of the gateway is to pad
traffic by properly inserting certain dummy packets into the
payload traffic flow so that the rate of real payload (user)
traffic becomes unrecognizable. Let us call the output traffic
from the gatewaycovered traffic. A key question in design
of a countermeasure is how to define the interarrival times
of packets in the covered traffic. Traditionally, constant in-
terarrival times have been used for covered traffic giving rise
to constant rate link padding. The idea behind this choice
is that the covered traffic has constant interarrival time and
thus leaks no information about any payload it covers and
hence provides the best protection for the payload traffic.

We implemented such a gateway and carried out exper-
iments. In our experiments, the payload packets arrive at

the gateway as a Poisson process with different mean rates,
i.e., different states that the adversary tries to differentiate.
For the sake of simplicity in the following discussion, we
will limit ourselves to data from a system where the pay-
load traffic only hastwo states: Stateω0 in which there is
a mean of 10 identical-sized packets per second transmitted
from one subnet to the other, and Stateω1 in which payload
traffic mean rate is 40 packets/second. We further assume
that there is a 50% chance that the payload is inω0 or ω1.
It is clear from (10) that the maximum error rate in such
a system is 50%1 and the detection rate defined in (11) is
lower-bounded by 50%. The covered traffic with the con-
stant interarrival time departs from the gateway at the rate
of 100 packets per second. The timing of covered traffic is
controlled by a constant interval timer, i.e., a periodic timer
with a period of 10 ms. That is, the timer generates an in-
terrupt every 10 ms. The timer interrupt routine sends the
payload packet if available and otherwise sends a dummy
packet.

The adversary uses three sample statistical features,
namely sample mean, sample variance, and sample entropy
as defined in (1), (2), and (4) respectively. Figure 5 shows
the results of these experiments. From this figure the fol-
lowing observations can be made:
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Figure 5. Detection Rate of CIT Link Padding

(a) Success rate is indeed lower-bounded by 50%. This
at least partially validates the correctness of the statistical
approaches we used.

1That is, the error rate for which an adversary that just randomly
guesses would be 50%



(b) When the adversary uses sample mean as sample statis-
tical feature in rate recognition, it can only achieve 50% de-
tection rate. This clearly illustrates the effectiveness of link
padding when used against this kind of adversary strategies.

(c) When the adversary uses sample variance or sample
entropy as sample statistical feature in rate recognition, the
figure becomes interesting: The detection rate increases as
sample size increases and eventually reaches 100%! In this
case, the constant interarrival time link padding completely
fails to cover the rate of real payload traffic.

(d) Moreover, sample entropy provides a better detection
rate than sample variance. This is because sample entropy is
not sensitive to noise since it’s a probability weighted sum
and noise (big outliers) have a very small probability to oc-
cur. As we know, sample variance is very sensitive to big
outliers.

Why does CIT link padding fail under traffic analysis
attacks using sample variance and sample entropy? One
can explain this phenomenon by investigating the operation
of the gateway. The network interface card of the gate-
way captures an incoming packet of the payload traffic. It
then generates an interrupt request, which can preempt all
the processes including the scheduled timer. For TimeSys
Linux/RT, this request proceeds before the incoming packet
reaches the IP layer (more precisely, halfway in the network
device driver) [10]. From that instant on, the network sub-
system in the kernel becomes preemptive. Other tasks (e.g.,
timer) can then proceed as scheduled. Thus, incoming pack-
ets may subtly delay the timer’s interrupt routine because of
hardware interrupt and process scheduling latencies. Pay-
load traffic with a higher rate has more chance to delay the
timer. Thus, the degree by which the timer is delayed has a
correlation with the state (rate) of the real payload traffic.

To further validate our observations and develop better
countermeasures, we carry out an analytical analysis that
reveals how sample size and variance of covered traffic im-
pact detection rates. The details of the analysis are reported
in [9]. The particular result that are relevant to this paper is
as follows. Let

r = σ2
ω1
/σ2

ω0
(12)

whereσ2
ω0

andσ2
ω1

are the variances of packet interarrival
times of covered traffic for stateω0 andω1, respectively.

Theorem 1. When sample variance or sample entropy is
used as statistical feature, the detection rate approaches to
50% whenr approaches to 1.

5.2 Link Padding with Variable Interarrival
Times of Packets

Following the discussion made in Section 5.1, we now
develop better countermeasures. Note that by its definition,
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Figure 6. Detection Rate of VIT Link Padding

r can be approximately presented as follows:

r = (σ2
t + σ2

ω1
)/(σ2

t + σ2
ω0

) (13)

whereσ2
t is the variance of time interval between interrupts

andσ2
ω0

andσ2
ω1

are the additional variance due to distur-
bances for states 0 and 1, respectively. We have no con-
trol onσ2

ω0
andσ2

ω1
, but if we makeσ2

t sufficiently large,r
will be approximately 1. This implies that we should make
the covered traffic with variable interarrival time. We car-
ried out the experiments in this way. We set the interval
of interrupt timer with a truncated normal distribution of
N(10ms, σ2

t ). The truncation results in time outs between
1 ms and 19 ms.

The results in Figure 6 clearly show the effectiveness of
this new link padding scheme. The detection rate is very
close to 50% for all the three sample statistical features
whereσt = 2ms. This confirms our prediction stated in
Theorem 1.

6 Final Remarks

This paper introduced a formal framework for analyzing
the security of a communication system that is subject to
traffic analysis attacks. The framework is based on statisti-
cal pattern recognition techniques and covers a broad range
of traffic analysis attacks.

Based on this framework, we have made interesting dis-
coveries. We found that traditional CIT link padding tech-
nique may fail in preventing traffic analysis from determin-



ing the rate of real payload traffic. CIT link padding is
theoreticallysound. However, its implementation gener-
ally needs a timer as a mechanism to control the transmis-
sion of dummy and payload packets and for most of the
modern operating systems, the payload traffic that goes into
the padding machine (i.e., gateway) will interfere with the
timer’s behavior. Heavier load incurs more interference, so
packet interarrival times of the covered traffic will have a
correlation with the rate of the payload traffic. As such,
CIT link padding fails completely when the adversary uses
sample entropy or sample variance for statistical analysis to
explore this correlation.

Our theoretical investigation reveals the impact of cov-
ered traffic variance on detection rate, indicating that the
ideal covered traffic should have sufficient large variance.
Following this idea, VIT countermeasure was developed
and evaluated. Our experimental data confirms that the
VIT scheme indeed minimizes the detection rate and hence
achieves high resistance to traffic analysis attacks.

The results of this paper are preliminary. Many exten-
sions are possible. We focused on the case where there are
only two classes of payload traffic. Our technique can be
easily extended to the case of multiple classes. The ma-
jor difference is that the adversary needs to perform more
training for her system. This paper also assumes that the
payload traffic has constant packet size. Recent measure-
ments ([4, 2]) indeed indicate that the size of packets on
the Internet follows certain distributions. Extensions can be
made to take this factor into account.
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