
As appeared in: Proceedings of the ICCCN 1998, Lafayette, LA, October 1998.

HYDRANET: Network Support for Scaling of Large-Scale Services

Hamesh Chawla Geoff Dillon Riccardo Bettati
Department of Computer Science

Texas A&M University

Abstract
With the explosive growth of demand for services on

the Internet, the networking infrastructure (routers, pro-
tocols, servers) is under considerable stress. Mechanisms
are needed for current and future IP services to scale in a
client-transparent way. We presentHYDRANET, an infras-
tructure that allows to dynamically distribute IP services
by placing service agents (caching agents, mirrors, repli-
cas) that are under the server’s control at strategic points
in the internetwork. HYDRANET is based on replicating
transport-level service access points for transparent distri-
bution or replication of IP services. Measurements on a lo-
cal testbed show that the overhead of our scheme is small.
This replication scheme is widely applicable. We useHY-
DRANET to implementHYDRAWEB, a system for active,
push based, and client-transparent Web caching. Similarly,
HYDRANET can be used to implement highly fault-tolerant
servers or application-level gateways.

1. Introduction

The rapid diffusion of the Internet and the explosive in-
crease of the Web’s popularity have contributed to an as-
tounding growth in the volume of traffic on the Internet. The
consequence has been a massive increase in the load on both
the networking infrastructure (links, routers, protocols) and
the server hosts. Hence the need to design and implement
a network infrastructure that is able to diffuse extreme load
conditions has become increasingly important.

In the domain of Web scaling, for example, caching (typ-
ically client-basedor proxy-based) is widely seen as the so-
lution to handle the exploding user demands. A large infras-
tructure for Web caching has been put in place [6, 20]. Al-
though client-based and proxy-based caching greatly help
in reducing congestion due to Web trafficin general, a va-
riety of factors undercut their effectiveness: First, not all
data is cacheable. Some data may be refreshed at a high
rate, which greatly reduces the benefits of caching. Sec-
ond, caching takes away control. A number of sites are
reluctant to have their data cached, for a variety of rea-
sons. The caching mechanisms can be easily bypassed by

information providers. For example, theExpire field in
the HTTP reply header [5] can be manipulated by the Web
server so that the data is never cached by clients. Such
sites then become effectively ”cache breakers” [16]. The
recent severe and widely publicized congestion of North-
WestNet by the release of Microsoft’s Internet Explorer 3.0
happened in this way. The practice of circumventing the
caching mechanisms puts enough strain on Internet service
providers (ISPs) that some have resorted to ignoring the ex-
piration information from a number of sites. Third, mirror-
ing makes caching expensive. Mirrored data is not easily
detectable as such by cache systems, and greatly increases
the space requirement on caches for them to be effective.

To overcome some of these limitations, a number of
push-basedmethods have been proposed, which give more
control to servers about what is being cached [4, 19]. In
these schemes, servers push data to the caches, effectively
eliminating the problems of cache consistency and the need
for mirroring. With the Internet connectivity becoming
truly global, however, new large-scale services, beyond the
Web, must be expected. Some of these will be transaction
oriented, for which caching is largely ineffective.

In order to support the scaling of the Web and of next-
generation IP services, an infrastructure is needed that al-
lows the servers to diffuse load and break up hot spots
by dynamically placing appropriately programmed compo-
nents onto strategically placed nodes in the internetwork,
typically ”near” large client populations. Such components
could be caching agents, mirrors, entire copies of servers,
or others, and would run under the server’s control. Such a
scheme should be able to support current and future IP ser-
vices, and not rely on a service-specific infrastructure (such
as Squid [20] for the Web). In addition, this scheme should
remain invisible for the clients.

In this paper, we describe an infrastructure that allows to
dynamically replicate IP services to have them adapt to net-
work and server load. This is accomplished by replicating
transport-level service access points (in our case TCP and
UDP ports) across multiple locations in an internetwork. A
distributed server can then be realized by installing multiple
“components” of the server (for example active caches, or

server host

client

services

host server

redirector

Figure 1. Replicating Services in HYDRANET

full-sized copies) at different locations in the internetwork.
These components then bind to the network, each with its
own copy of the same, replicated, transport-level service ac-
cess point. In this way, the server appears monolithic to the
clients, with a single service access point.

In order to test the feasibility of such an approach, we
implemented HYDRANET, a protocol infrastructure for ser-
vice distribution on IP. HYDRANET consists of two compo-
nents: host servers and redirectors.Host Serversare hosts
that act as servers-of-servers. They can host IP services,
each of which may be known to the outside world under
the IP address of another host. Typically, such services
are replicas of the service running on theOrigin Host, for
example mirrors of sites of a Web server. They can also
be scaled-down versions of the service (for example active
caches) that run as agents of the server on the origin host.
In the following discussion we do not distinguish between
full-scale copies of the service on one side and scaled-down
versions on the other, but call them allreplicasof the ser-
vice on the origin host, each running on one host server.

The location of the host servers is known to theRedirec-
tors, specially equipped routers that maintain information
about the host servers and the services installed on them.
Redirectors detect requests for replicated services, and redi-
rect the requests to the “nearest” available host server with
a replica running. A replica-management protocol allows to
dynamically install services or remove them, depending on
the load in the network and on the servers.

The scenario in Figure 1 gives a general idea of how the
components of HYDRANET work together: The two ser-
vices www.northwest.com
and www.northeast.com are accessed by large
groups of users from the three ISPssouthwest.net ,
south.net , andsoutheast.net . Without a replica-
tion scheme, the distance from the clients to the servers
can cause increased access latencies and network load.
In addition, the servers may be overly loaded. In
this example, each of the three ISPs routes its traffic
through a redirector, and has access to a host server.
This allows northeast.com to install a replica for

its Web server on the host servers ofsouth.net and
southwest.net . Similarly, northwest.com installs
replicas onsouth.net andsoutheast.net . In this
way the network traffic is reduced, and the load balanced, by
increasing the service locality. This scenario illustrates how
servers, redirectors, and host servers collaborate to bring
the services ”near” to the clients by conveniently installing
replicas on appropriate host servers. In this way, the load on
servers and network can be controlled, and hot spots pro-
actively diffused.

One immediate concern is the possible overload on redi-
rectors, which are routers after all. By strategically placing
redirectors and host servers at centers with large client pop-
ulations at the boundaries of the Internet (for example at
large ISPs), significant benefits can be achieved without ex-
cessively burdening the routers that now act as redirectors.
In addition, our measurements show that redirection adds
little overhead in the routers.

In this paper, we present HYDRANET, an infrastruc-
ture for dynamic service distribution across an internetwork
based on the replication of transport-level service-access
points. Section 2 discusses related approaches for the repli-
cation of services and of service access points. Section 3
describes the architecture of HYDRANET, and Section 4 its
realization on a local testbed. We also present the results of
a number of performance measurements on HYDRANET.
In Section 5 we describe HYDRAWEB, a distributed Web
server based on active caches, which we realized on HY-
DRANET. Section 6 presents the conclusions and an out-
look for future work.

2. Related Work

A number of schemes have been proposed that address IP
service replication and load balancing of distributed servers.
DNS Based Approaches:The Internet naming server pro-
vides support for load balancing by having a one-to-many
mapping from hostnames to IP addresses [7]. Early on, a
round-robin DNS was used with success for the NCSA Web
server [14]. Replicating services using naming mechanisms
has a number of disadvantages. First, substantial caching
happens in the name resolution hierarchy of DNS. This adds
inertia before the load balancing effect of round-robin res-
olution kicks in. To make DNS based schemes react more
quickly, caching must be limited. This in turn puts sub-
stantial load on the name servers. Second, the replication
happens at hostname level, which makes the selective repli-
cation of services awkward. At the least, services that are
replicated differently from each other would require differ-
ent host names. Third, transparent reconfiguration after a
host failure is not possible. Clients typically do not resort
to repeated name resolution when a server is not reachable.
DNS based approaches to recover from host failures work
rather well for the Web because URLs mostly contain host

names and HTTP requests are largely idempotent.

Intelligent Clients: A simple solution for service scal-
ing is to have the clients know about the protocol used
for service replication. When a new service is deployed,
the load balancing protocol can be hard-wired into the
client programs. A well-known example is the hidden
mirroring in the Netscape browser, which detects requests
to the netscape.com server and maps them to re-
quests to a range of servers (www1.netscape.com to
www32.netscape.com). Similar approaches can be
taken for clients of other services. A more general approach
is to down-load client programs from the server site in form
of applets and to equip them with the appropriate protocol
for load balancing and the contingency plans for server fail-
ures. Such an approach is taken in [23].

Protocol-Specific Replication: A HTTP specific protocol
is used in Cisco’s DistributedDirector to redirect requests to
other servers [9]. It forces the request redirection by issu-
ing a HTTP “302 Temporarily Moved” status code to the
client, along with the URL for the “best” server. A simi-
lar approach is used in the SWEB project [1] for clusters of
servers. This approach is highly application specific.

Locally Distributed IP Addresses: A number of schemes,
mostly based on variations of network address translation
(NAT) [12], have been proposed that have a cluster of
servers be visible under the same IP address. Typically, the
server-side router makes one IP address visible and routes
incoming requests to one of the several servers in the cluster.
The different approaches differ in the details of the transla-
tion: Cisco’sLocalDirector[8] and theMagicrouter[2] ad-
here rather strictly to NAT and have the router perform all
the translations. IBM’sTCP Router[3] does translation on
in-bound packets, and allows reply packets from the clus-
ter to be returned directly to the clients. NAT and similar
schemes modify the source and destination IP addresses in
the packet header. Some higher-level protocols and appli-
cations that use IP addresses in the application (for example
ICMP or FTP) may not work correctly without appropriate
– application-specific – patches of NAT [12].

A different approach is used inOne-IP [10], where in-
coming requests are processed by a dispatcher, which for-
wards them to the cluster nodes. The cluster nodes use the
ifconfig alias option to attach two IP addresses to
the network interface. The primary address uniquely iden-
tifies the node in the cluster and is used by the dispatcher to
forward requests from clients. Only the secondary address ,
thecluster address, is visible to the clients.

All these schemes are limited to localized clusters of
servers, typically on the same subnet. To allow for multiple
routers [11], or for clusters that are distributed over multiple
domains [9], these approaches resort to a combination with
round-robin DNS, which we described above.

3. HYDRANET: Architecture for IP Service
Replication

An architecture for service replication must be able to
selectively and dynamically replicate IPservices(not hosts)
fully transparently to the clients. It must be completely ap-
plication independent, making it a solution for current and
next-generation services. In addition, it should be easy to
incrementally shoe-horn into the existing IP infrastructure
(similar to the MBONE).

With these requirements in mind, we designed and im-
plemented HYDRANET, an infrastructure for service scal-
ing on IP. HYDRANET replicates services byglobally repli-
cating IP addresses. A service is replicated by installing
replicas on one or morehost serversand have them bind
to the same set of TCP or UDP ports as the service on the
origin host.Redirectorsensure that the replicas on the host
servers are accessible under the same IP address as the ori-
gin host. When a redirector receives an IP packet destined to
a replicated service, it determines the location of the “near-
est” replica of the service, which is identified by the pair of
IP address and port number. If the destination of the packet
does not appear to the redirector as a service with replica,
the packet is simply forwarded to its destination. This al-
lows to dynamically, and transparently, install replicas at
strategic locations (for example “near” large client popula-
tions).

We borrow the general idea for the support of replicated
services fromMobile IP [18]. We can think of the processes
running replicated services being software equivalents of
mobile hosts, and the host servers being the equivalent of
foreign agents. In addition to the differences between host
servers and foreign agents, the two main points of difference
are (1) thatmultiplecopies of the replicated servers can be
activesimultaneously, while only one copy of the mobile
node exists at any point in time; (2) the redirectors can be
thought of as adistributedversion of the home agent.
IP-Redirectors. The location of the host servers is known
to the redirectors, which are specially equipped routers.
They maintain information about host servers and the ser-
vices currently installed on them. Each redirector maintains
a redirector table, which lists the transport-level service ac-
cess points (in our case pairs of IP addresses and port num-
bers) for which packets must be redirected, and the host
server to which the packets must go. When a redirector re-
ceives an IP packet, it checks the destination IP address and
port in the header against the entries in the redirector table.
If it finds a match, it forwards the packet to the appropri-
ate server host. If there is no match, the packet is simply
forwarded to the origin host. A packet is redirected to the
appropriate host server bytunneling it using IP-in-IP en-
capsulation. The host server is equipped to detect tunneled
packets and to forward them internally to the service.
Host Servers.Replicas of server processes are dynamically

192.20.225.20

httpd telnetd

80 23

a_httpd

80

192.20.225.20

a_httpd

80

128.32.33.109

128.142.222.80

Redirector
Origin Host

Host Server

Client A
“get object from 192.20.225.20”

Client B
“telnet to 192.20.225.20”

service(ip-addr:port)

...

192.20.225.20:80

128.32.33.109:80

...

host server

...

128.142.222.80

128.142.222.80

...

Client C
“get object from 192.20.225.20”

Redirector Table

Figure 2. Components of HYDRANET

installed on or removed from host servers, which are spe-
cially equipped hosts that act asservers-of-servers. Before
a service replica is installed on a host server, a copy of the
origin host’s environment is established for the server pro-
cess to run. We say that avirtual host is installed. The
protocol software on the host server is informed about the
new virtual host. When a packet destined to a virtual host
is received by the host server, its destination IP address and
port number are compared against currently installed virtual
hosts and the ports applications are bound to. If a match is
found, the data is deposited at the appropriate socket buffer.

Figure 2 shows how the components of HYDRANET

interact. We observe from the figure that Host
128.142.222.80 is a host server. The Web service (re-
alized by thehttpd daemon) on Host192.20.225.20
is replicated on the host server, where it is realized by the
a httpd replica daemon. Whenever the process on the
host server binds to a TCP or UDP port, the host server
and the redirectors are informed, and the redirector tables
updated. The HTTP requests from ClientC are routed to
the origin host. The same requests from ClientA are in-
tercepted by the redirector, which happens to be on their
route, and which was informed earlier that the nearest Web
port for host192.20.225.20 is located on host server
128.142.222.80 . The requests are routed accordingly.
ClientB’s requests for the telnet service continue being for-
warded to the origin host; the redirector does not have an en-
try for the telnet port of host192.20.225.20 . We note
that neither the clients nor the non-participating servers are
affected by this scheme. We will see in Section 5 that even
participating servers need not be directly affected.

4. Implementation

We realized HYDRANET as a set of simple modifica-
tions to the process management and the IP protocol stack
in FreeBSD. In this section we describe the most important
aspects of the design, both on the host server and on the IP
redirector.

4.1. Host Server

On the host server, we provide mechanisms for installa-
tion of virtual hosts, which run the replicated IP services,
and for processing and demultiplexing of packets to the vir-
tual hosts.
Installation of Virtual Hosts: A replicated service runs as
a server program in a virtual host on the host server. Virtual
hosts are identified by the IP address of their origin host,
and are associated each with a process running on the host
server. The kernel of the host server maintains avirtual-host
table, which contains information about the virtual hosts
currently located on the host server. A new virtual host is
created by the system call

int v_host(u_long ip_address);

which associates the currently running process with the
given IP address. Whenever the process (or any of its de-
scendents) thus associated to an IP address binds a socket
to a port, the port belongs to the virtual host associated with
the process. Whenever a socket is created, the kernel checks
against the virtual-host table to see whether the socket be-
longs to a virtual host and marks the socket’s protocol con-
trol block appropriately. A routing protocol is in place to
inform the redirectors about the newly created port on the
host server.
Decapsulation and Transport-Level Demultiplexing:As
mentioned earlier, datagrams are redirected to virtual hosts
by tunneling them to the host server. This is achieved by
encapsulating the datagram using IP-in-IP encapsulation.
Datagrams with encapsulated payload are marked as such
in the protocol identifier of their IP headers. Typically, the
IP-level demultiplexer feeds the incoming datagrams into
the appropriate transport protocol stack according to this
protocol identifier. Decapsulation can be easily realized
by adding a pseudo protocol stack for datagrams that are
marked as IP-in-IP encapsulations. This stack strips the
datagram of the encapsulation header and puts the remain-
ing part back into the IP input queue. The IP header of the
decapsulated packet now has the address and port of the vir-
tual host installed. When the datagram is processed again
by the transport demultiplexer, it is passed to the appropri-
ate transport level protocol, which makes the data available
at the correct socket buffer.

4.2. Redirector

The redirectors are routers that keep track of the location
of host servers and of the virtual hosts installed on them.
For this purpose, they maintain aredirector table, which
is used to detect incoming datagrams that need to be redi-
rected to a host server. The redirector table contains the IP
address of the origin host and the port number for the repli-
cated service, and the IP address of the host server to which

the datagrams must be forwarded. Whenever a datagram
matches a pair of destination IP address and port number
in the redirector table, it is encapsulated and tunneled to
the host server. The redirector tables are maintained on the
redirectors by HYDRANET routing daemons, which are pat-
terned along the traditional IP routing daemons: The com-
munication among redirectors and between redirectors and
host servers happens via well-known UDP ports; each rout-
ing daemon accesses and modifies the redirector table in the
kernel of the local redirector via routing sockets. If a data-
gram needs to be redirected, this is detected when the data-
gram goes through the IP-level processing before it goes out
to the interface. If an entry is located in the redirector table,
an encapsulation header with the host server’s IP address is
wrapped around the datagram before it is passed to appro-
priate interface. This interface can be the local loopback,
which means that the same mechanism can be used to redi-
rect datagrams within the host server.

4.3. Measurements

We measured the performance impact of our BSD im-
plementation of HYDRANET on a small testbed, which, for
measurement purposes, consists of two Pentium/120 PCs
and one 486/33 SX PC.

We did measurements withttcp to determine the over-
head in redirectors and host servers. In our testbed, the
486/33 SX PC is sufficiently slow that it acts as a bottle-
neck. By swapping the hosts in the configuration, we could
have the redirector be the bottleneck, or the receiving host
server. We compared the sustained bandwidth of TCP for
the following three series of measurements. (For the mea-
surements, we turned off buffering of small datagrams at
the TCP sender, preventing it from batching multiple small
datagrams into a datagram of MTU size.)
� Clean: All machines run unmodified system software. No
redirection happens and no services are replicated. These
measurements act as baseline for performance comparison.
� To real host: The routers and the receivers run modi-
fied system software. There is no redirection, however; the
packets are sent to a port on the host server’s IP address.
This series of experiments measures the amount of over-
head in case of no redirections.
� To virtual host: Configuration is same as above. The
packets, however, are destined to a port on a non-existent
host with a replica running on the host server. This line of
experiments illustrates the penalties caused by tunneling in
the redirector, and of lookup, decapsulation, and additional
demultiplexing at the host server.

The above comparisons were made for two configura-
tions of the testbed. In a first set of experiments, the 486/33
SX PC was configured as the redirector, which made the
redirector be the bottleneck. Figure 3a illustrates the per-
formance. The results indicate that the overhead on the

router/redirector is negligible. We can see a small penalty
for redirection when the packet size is close to MTU size
(1500 Byte) or slightly larger. This is due to the additional
datagram fragmentation that is needed in these cases to add
the encapsulation header. For example, a TCP message of
1600 Byte is fragmented at the sender into two datagrams,
one of MTU size, which is typically 1500 Byte including
TCP and IP header, and one with the rest. When the first
datagram reaches a redirector, the latter cannot accommo-
date the encapsulation header within the datagram size lim-
its. It therefore must further fragment the datagram, which
causes overhead in form of additional computation at the
router and bandwidth on the links. This problem is perva-
sive with all approaches based on encapsulation.

In the second set of experiments, the 486/33 SX PC is
configured as the host server, which makes the host server
be the bottleneck. Figure 3b illustrates the performance. We
notice a significant drop in sustained bandwidth for the case
of redirection. Interestingly enough, the fixed per-packet
processing overhead seems to be negligible, as the results
for small packets show. This indicates that the overhead
must be caused by excessive copying of the contents of
datagrams as they are processed by the host server. We are
optimistic that these data copies can be eliminated, with a
beneficial effect on the performance. In addition, the host
server in these experiments was severely overloaded. Run-
ning replicated services on severely anemic servers would
be a bad choice, independent of the replication scheme
used.

Separate measurements of TCP connection-setup latency
indicate that connection setups to replicated TCP ports on
host servers take only marginally longer (less than 0.1msec)
than to traditional ports.

5. Building Applications on HYDRANET

From an application perspective, HYDRANET allows
processes to execute remotely while keeping their “home IP
address”. This is conceptually very simple, but extremely
versatile. We have developed a replica management pro-
tocol, which allows servers to dynamically install replicas
on host servers, and remove them when they are no longer
needed. We are currently developing a suite of applications,
which illustrates the wide variety of benefits that can be
gained from network support for service replication.

The first such application is HYDRAWEB, a distributed
Web server with a traditional server on the origin host and
active caches on host servers. Active caches provide the
means to eliminate most of the problems encountered in
Web caching. First, Servers can dynamically install active
caches and push data to make them hot in order to pro-
actively diffuse expected flash crowds. While the caches
remain installed, the servers can keep them hot by pushing
modified or soon-to-expire data. Second, active caches run

0

200

400

600

800

1000

16 32 64 128 256 512 1024 2048

B
an

dw
id

th
 [i

n
kB

/s
ec

]

Packet Size [in bytes]

ttcp: whiskey to soda (gin is router)

bottleneck

clean
to real host

to virtual host

(a) Redirector is Bottleneck

0

200

400

600

800

1000

16 32 64 128 256 512 1024 2048

B
an

dw
id

th
 [i

n
kB

/s
ec

]

Packet Size [in bytes]

ttcp: whiskey to gin (soda is router)

bottleneck

clean
to real host

to virtual host

(b) Host Server is Bottleneck

Figure 3. Comparison of Protocol Overhead

under the control of the origin’s site. This means that access
control, hit metering, and dynamic page reconfiguration (for
example for dynamic placement of advertising banners) is
done in behalf of and under the control of the original site.
Third, copyright issues for cached data are eliminated, be-
cause the site controls the placement of its data. Fourth,
management of cache sites is simplified, because they are
under centralized control of the original site. The configu-
ration of distributed Web caches is a serious problem. As an
example, [24] describes how fourteen separate Australian
SQUID sites link themselves directly onto the cache tree in
the U.S. Each page is fetched across the Pacific separately
by each of the fourteen sites. Next, the generation of dy-
namically computed pages can be done at the cache sites.
And, finally, Explicit mirroring is eliminated.

Given the above points, this solution can be used for
cache breakers, notoriously problematic Web sites, and
so dramatically improve the performance of already de-
ployed passive Web cache infrastructures. In addition, ac-
tive caches on the host servers can take over control in the
case of failure or excessive congestion of the origin host,
effectively providing a highly fault-tolerant Web service.

HYDRAWEB is a simple Java-based realization of an
active-cache based replicated Web server. It consists of
replicas and replica managers.Replicasare small programs
that can be down-loaded onto hosts servers. They provide
a HTTP interface to clients (i.e. behave like Web servers).
Whenever possible, the client requests are handled locally
by the replica. For this purpose, the replicas maintain a
cache of HTTP objects. Thereplica manageron the ori-
gin host installs and removes replicas and generally man-
ages them. Whenever client requests cannot be handled by
a replica locally, the replica manager is contacted, and the
request is handled on the origin server.

To measure the performance of HYDRAWEB, we in-

stalled a Web server at the International Computer Science
Institute at UC Berkeley. A number of Web clients at the
Computer Science Department of Texas A&M University
requested objects from that location in a controlled fash-
ion. We have a redirector and a host server locally, and
deployed HYDRAWEB by installing a replica manager on
the origin host at Berkeley; that in turn installs a replica lo-
cally at Texas A&M. Figure 4 illustrates the setup. In these
experiments, the replica is preheated at installation by re-
ceiving a predefined set of HTTP objects to cache locally.
After it is installed, it does no caching on its own. Whenever
the cache is missed, the replica forwards the request to the
replica manager, which replies to the replica after having
contacted the local Web server.

Figure 5 compares the Web service latencies with and
without HYDRAWEB deployed. All requests are for pages
of 1200 bytes each. Figure 5(a) shows the service latency
distribution for a client at Texas A&M for accesses to the
Web server at ICSI with no local replica installed. The av-
erage time to get a page from the Web server is 1.5 sec.
The ping trace in Figure 5(a) shows that the round-trip time
for 64 byte ping packets during the experiment averages
390 msec.

Figure 5(b) shows the result of the same experiment, but
with a local replica installed. The replica cache registers
1235 hits against 765 misses. The average service latency
for a page in the cache is 120 msec, while for a missed
page it is 2.2 sec. Compared to the experiment without
HYDRAWEB, page misses in this experiment take 700msec
longer to be served. This is in part due to protocol overhead.
When a page miss occurs, the replica contacts that replica
manager, which gets the page from the Web server and re-
turns it to the replica. The latter then sends it to the client.
However, the results of the two experiments should not be
directly compared. As the ping traces indicate, the Internet

httpd

8080

Redirector
soda.cs.tamu.edu

Host Server
whiskey.cs.tamu.edu

Client Host
gin.cs.tamu.edu

Origin Host
tiramisu.icsi.berkeley.edu

replica manager

Texas A&MBerkeley

replica

client

Figure 4. Deployment of HYDRAWEB between
Texas A&M and Berkeley

was more congested during the second experiment. Indeed,
the round-trip for ping packets in the second experiment av-
erages 520 msec.

6. Conclusions

In this paper we have identified a number of problems
with scaling of very-large services. We described how many
of these problems can be eliminated with appropriate net-
work support. In particular, the ability to dynamically in-
stall replicas of the transport service access points in strate-
gically placed locations, for example “near” large client
populations, greatly increases the capability of the network
to balance the load on the servers and to pro-actively diffuse
flash crowds to a service. We have implemented the con-
cept of TSAP replication in HYDRANET, an extension to
the BSD process management and IP stack software, which
allows to dynamically install agent programs on host servers
and have redirector routers load balance the servers by ap-
propriately directing requests to either the origin host or to
locations of replicas.

The versatility of replicating TSAPs extends far beyond
what we described in Section 5. For example, transparent
replication of services is an alternative to the use of multi-
cast approaches for realizing fault-tolerant servers. In the
context of CORBA, for example, current efforts to provide
reliable ORB technology (e.g. [15]) rely mostly on mul-
ticast capabilities at protocol level, and typically require
clients to use these capabilities as well. HYDRANET would
allow to replicate ORBs over several host servers. When a
particular ORB becomes inaccessible (because of network
partitioning, congestion, or host failure,) we rely on the re-
configuration capability of routers and redirectors to redi-
rect requests to the remaining replicas of the ORB.

A number of issues need to be addressed further. First
of all, we need to find ways to guarantee safe execution to
replicas. We envision host servers to be managed by a vari-
ety of operators: ISPs, network services, or third-party op-
erators (“service hosting for hire”, similarly to the WebOS’s
“Rent-A-Server” concept [22]). Host servers will therefore

often be outside the control of the entity controlling the ori-
gin host, but host services from potentially large numbers
of different sources. Mechanisms must be in place that en-
force safe coexistence of multiple third-party processes on
host servers. We plan to set up a transparent run-time envi-
ronment that provides a replicated server a “sandbox”, the
“size” of which is negotiated when the replica is installed.

The fact that programs run “under your name” on
multiple hosts across the Internet poses serious security
risks. Appropriate mechanisms must be in place in the
host servers (e.g. digital signatures of down-loaded server
replica code) and redirectors (e.g. authentication of host
servers) to prevent unauthorized execution of replica code
under a wrong identity.

References
[1] D. Andresen, T. Yang and O.H. Ibarra. SWEB: To-

wards a Scalable World Wide Web Server on Multi-
computers.Proceedings of the IPPS’96, April 1996.

[2] E. An-
derson, D. Patterson and E. Brewer. The Magicrouter,
an Application of Fast Packet Interposing. URLhttp:-
//http.cs.berkeley.edu/ ˜eanders/projects/magicrouter.

[3] C.R. Attanasio, S.E. Smith. A Virtual Multiprocessor
Implemented By an Encapsulated Cluster of Loosely
Coupled Computers.IBM Research Report, Advanced
RISC Systems, RC18442, April 1992.

[4] M. Baentsch, L. Baum, G. Molter, S. Rothkugel and
P. Sturm, Enhancing the Web’s Infrastructure: From
Caching to Replication,IEEE Internet Computing,
March 1997.

[5] T. Berners-Lee, R. Fielding and H. Frystyk. Hypertext
Transfer Protocol – HTTP/1.0.RFC 1945

[6] C.M. Bowman, P.B. Danzig, D.R.Hardy, U.Manber
and Michael Schwartz, The Harvest Information Dis-
covery and Access System,Computer Networks and
ISDN Systems, 28 (1995), pp. 119-125

[7] T. Brisco. DNS Support for Load Balancing.RFC
1794

[8] Cisco Systems, LocalDirector, URL http:
//www.cisco.com/warp/public/751/lodir/index.html.

[9] Cisco Systems, K. Delgadillo, Cisco DistributedDi-
rector, URLhttp: //www.cisco.com/warp/public/751/-
distdir/dd wp.html.

[10] O.P. Damani, P.E. Chung, Y. Huang, C. Kintala, Y.-M.
Wang. ONE-IP: Techniques for Hosting a Server on
a Cluster of Machines.Hyperproceedings of the Sixth
International World Wide Web Conference, URL http:
//www.nttlabs.com/HyperNews/get/PAPER196.html

[11] D.M. Dias, W. Kish, R. Mukherjee and R. Tewari. A
Scalable and Highly Available Web Server.Proceed-
ings of COMPCON’96, Santa Clara, CA, 1996.

gin 2 tiramisu (direct) (98/05/29 11:50am)

1

10

100

1000

1 201 401 601 801 1001 1201 1401 1601 1801 2001 2201 2401 2601 2801

latency (msec)

fre
qu

en
cy

gin 2 tiramisu (direct) (98/05/29 11:50am) Ping Trace

0

200

400

600

800

1000

1200

1400

1 69 137 205 273 341 409 477 545 613 681 749 817 885 953 1021 1089 1157

icmp seq # (5 sec intervals)

ro
un

d-
tr

ip
 d

el
ay

 (
m

se
c)

gin 2 tiramisu (half cache) (98/05/28 4:20pm)

1

10

100

1000

1 201 401 601 801 1001 1201 1401 1601 1801 2001 2201 2401 2601 2801

latency (msec)

fre
qu

en
cy

gin 2 tiramisu (half cache) (98/05/28 4:20pm) Ping Trace

0

200

400

600

800

1000

1200

1400

1 21 41 61 81 101 121 141 161 181 201 221 241 261 281 301 321 341 361

icmp seq # (5 sec intervals)

ro
un

d-
tr

ip
 d

el
ay

 (
m

se
c)

Figure 5. Web Access Delays from Texas A&M to Berkeley

(a) Delay Distribution without Replication

(b) Delay Distribution using HYDRANET

[12] K. Egevang and P. Francis. The IP Network Address
Translator (NAT).RFC 1631, May 1994.

[13] J. Gwertzman, M.Seltzer. The Case for Geograhical
Push Caching,Fifth Workshop on Hot Topics in Oper-
ating Systems, 1995.

[14] T. Kwan, R. McGrath and D. Reed, NCSA’s World
Wide Web Server: Design and Performance,Com-
puter, Vol. 28, No. 11, Nov. 1995.

[15] S. Landis and S. Maffeis, Building Reliable Dis-
tributed Systems with CORBA,Theory and Practice
of Object Systems, John Wiley, New York. (to appear)

[16] Cache Breakers. URLhttp: //www.iphil.net/˜map/-
cache/breakers.html.

[17] National Laboratory for Applied Network Research.
Insight into Current Web Caching Issues: Research
Questions. URL http: //ircache.nlanr.net/Cache/-
Learn/learn-2.html

[18] C. Perkins. IP Mobility Support. Internet Draft of the
IETF, January 1995.

[19] M. Seltzer, The World Wide Web: Issues and Chal-
lenges, URL http:// www.eecs.harvard.edu/margo/-
slides/www.html.

[20] Squid Internet Object Cache, URL http:
//squid.nlanr.net/Squid.

[21] D.L. Tennenhouse, J.M. Smith, W.D. Sincoskie, D.J.
Wetherall, G.J. Minden. A Survey of Active Network
Research.IEEE Communications, January 1997.

[22] A. Vahdat, E. Belani, P. Eastham, C. Yoshikawa, T.E.
Anderson, D.E. Culler, and M. Dahlin. WebOS: Op-
erating System Services For Wide Area Applications.
Seventh Symposium on High Performance Distributed
Computing.July 1998.

[23] C. Yoshikawa, B. Chun, P. Eastham, A. Vahdat, T. An-
derson, D. Culler. Using Smart Clients to Build Scal-
able Services.USENIX 97, January 1997.

[24] L. Zhang, S. Floyd, and V. Jacobson, Adaptive Web
Caching,NLANR Web Cache Workshop’97, Boulder,
CO, June, 1997.

