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Abstract

When a failure occurs in a real-time system, the
temporary loss of service and the recovery can cause
a transient overload with an increase in the number
of tasks that can not meet their timing constraints.
The imprecise-computation technique allows one to
trade off computation accuracy with computation time
and offers therefore the necessary scheduling flexibil-
ity required during the recovery process after a fail-
ure. In this paper we investigate how the imprecise-
computation approach can be combined with check-
pointing; the result is a technique for fault-tolerance
for real-time system. We define optimality criteria for
the checkpointed imprecise-computation model. In an
earlier work we have described algorithms to statically
schedule imprecise tasks to meet these criteria. These
approaches are conservative for systems with very rare
failures. We take advantage of new results in on-line
scheduling of imprecise computation to design an algo-
rithm that dynamically adapts to failure occurrences.
Simulations are described to evaluate the performance
of this algorithm.

1 Introduction

The imprecise-computation model has been pro-
posed in [1, 2, 3] as a means to provide flexibility in
scheduling time-critical tasks. In this model, tasks are
composed of a mandatory part, where an acceptable
result is made available, and an optional part, where
this initial result is improved monotonically to reach
the desired accuracy. At the end of the optional part
of a task, an exact result is produced. The optional
part can be partially or entirely skipped, with a re-
sulting reduction of accuracy in the result of the task.
This model therefore allows one to tradeoff computa-
tion accuracy against computation-time requirements.

The ability to temporarily lower the amount of re-
quired computation time can be naturally used in re-

covery schemes for time-critical systems. Whenever a
failure occurs in such a system, several actions have
to be taken. The fault has to be identified and iso-
lated. Recovery has to be invoked. Some tasks that
were running at the time when the failure occurred
may have to be restarted. The system experiences
a transient increase in workload. In some cases the
accumulated workload during the failure and succes-
sive recovery may cause a temporary overload in the
system, and an increase of tasks that miss their dead-
line. Means must be found to reduce the effect of this
temporary overload on the ability of the system to
terminate time-critical tasks in time. Imprecise com-
putation offers the flexibility to temporarily settle for
a lower degree of computation accuracy. In this way,
the computation-time requirements are lowered and
the effective workload therefore temporarily reduced.
Hence, an overload condition can be better handled.
Providing imprecise results in the presence of failures
is therefore a viable method to enhance the conven-
tional fault-tolerance techniques such as checkpoint-
ing.

The workload accumulated during a failure is the
set of tasks that were executing at the time when the
failure occurred. If no provisions have been taken,
these tasks have to be repeated after the recovery and
therefore add to the transient overload. One way to
reduce the amount of work to be repeated after a re-
covery is to regularly checkpoint the state of the run-
ning tasks to stable storage. In this way, only those
portions of the tasks must be repeated that have not
been checkpointed. Checkpointing can therefore be
viewed as another method to reduce the temporary
overload caused by failures.

Due to its limited rollback and its predictable re-
covery behavior, checkpointing is – besides various
parallel redundancy and replication schemes [4, 5] –
a widely used technique for fault tolerance in real-
time systems. In [8] we described ways to combine
imprecise computation and traditional checkpointing



to provide fault tolerance in time-critical systems. We
proposed the model of checkpointed imprecise com-
putation to achieve dependability in time-critical sys-
tems. The basic algorithms to schedule checkpointed
imprecise computation guarantee in a conservative
way that the system can recover from a worst-case
number of failures. In systems with very low fail-
ure rates, this either limits the workload that can be
feasibly scheduled, or becomes prohibitively expensive
(in terms of time to generate the schedule) when the
schedule is adapted whenever a failure does not oc-
cur. In Section 2 we review the traditional imprecise
computation model. In Section 3 we describe check-
pointing time-critical tasks. The k̄-tolerance model is
described to design a system for a fixed number of
failures. In Section 4 we propose the checkpointed-
imprecise-computation model. We describe an ap-
proach to schedule checkpointed imprecise tasks on-
line with a given upper bound on the number of fail-
ures from which the system has to recover during the
execution of any given task. In Section 5 we present
simulation results that describe the effect of varying
loads and failure rates on the performance of the ap-
proach. The underlying system is supposed to be a
transaction-processing system that uses checkpointed
imprecise computation. The last section summarizes
the proposed method and points to future work.

2 Imprecise Computation

Our model of an imprecise-computation system
consists of a set T of n tasks, that is to be executed on
a single processor. Each task Ti in T has a execution
time τi, and consists of a mandatory part of length
mi and an optional part of length oi = τi − mi. The
task Ti is said to have reached an acceptable level of
accuracy after executing for mi units of time. During
the optional part, the result is improved until a precise
result is reached after oi units of execution. Whenever
not enough time is available to execute task Ti to com-
pletion, either the entire optional part, or portions of
it, can be skipped, without affecting the correctness
of the system. By skipping portions of the optional
part of Ti, a cost is incurred in form of the error intro-
duced in the result of Ti. The error ei of the result of
Ti describes the amount of accuracy that is lost if the
task can not execute to the end of its optional part.
The error function ei(σ) describes the error of Ti in
a schedule where σ is the amount of time that the
schedule has assigned to the execution of the optional
part of Ti. The total error e of a schedule is the sum
of the errors ei for all tasks in the schedule.

Each task Ti is subject to timing constraints, which

are given as release time ri and deadline di. They are
the points in time after which Ti can start its execu-
tion and before which Ti must terminate, respectively.
If the deadline of a task is reached, the portion of the
task that has not been executed yet is discarded. If
any portion of the mandatory part has not been exe-
cuted, a timing fault is said to occur.

Shih et al. [6, 7, 9] have developed several schedul-
ing algorithms that address the problem of scheduling
imprecise task sets to minimize the total error. In
[6] they formulate it as a network-flow problem. In
[7] much faster algorithms are found, that are based
on a variation of the traditional earliest-deadline-first
algorithm. Recently Shih and Liu [9] developed an
algorithm to schedule imprecise tasks on-line. The
imprecise-computation model and its applications in
real-time systems are described in detail in [1, 2, 3].

3 Checkpointing Time-Critical Tasks

We assume a fault model where faults are transient.
Tasks do not communicate with each other. Therefore
the effect of a fault is confined to the task that was
executing at the time when the fault occurred.

Each task Ti is checkpointed every si units of ex-
ecution. It takes ci units of execution to generate a
checkpoint. We call si the checkpoint interval and ci

the checkpoint cost. While the checkpoint is gener-
ated, a sanity check of the computation is made and
the status of the computation is written to stable stor-
age. During the sanity check, the state of the compu-
tation is analyzed and checked for correctness. Sanity
checks are assumed to not fail. Whenever a failure
occurs, it is detected by the next sanity check, and
recovery is initiated. During the recovery, the state
of the computation at the time of the last checkpoint
is loaded, and execution is resumed from there. The
task is said to be rolled back to the beginning of the
checkpoint interval.

We assume that a task Ti can fail up to ki times. If
it fails more than ki times, it is considered “erratic”,
and special measures have to be taken. For example,
the Ti could be allowed to continue after it fails more
than ki times if there is no other task waiting to be
executed; otherwise it would be aborted and discarded
from the schedule. For different tasks Ti and Tj , the
values for ki and kj can be different, reflecting such
aspects as the execution times of the tasks and their
importance, and the availabilities of the resources they
access.

In general, the scheduler has to reserve enough time
for a task to recover from its failures. We call a sched-
ule ki-tolerant for task Ti if enough computation time



has been reserved for Ti to recover from ki failures
without any task in T missing its deadline. More gen-
erally, a schedule for the task set T is k̄-tolerant (where
k̄ is the vector (k1, k2, . . . , kn)) if it is k1-tolerant for
T1, k2-tolerant for T2, and so on. In traditional check-
pointing, a schedule that is ki-tolerant for Ti is as-
signed ki additional intervals of length si+ci to the ex-
ecution of Ti. The total time scheduled to execute Ti,
assuming that ki failures occur, is the total execution
time wi of Ti, and wi = τi+bτi/sic(si+ci)+ki(si+ci).

Under the assumption that ki failures occur, a
checkpoint interval s̃i can be determined that mini-
mizes the worst case execution time of Ti. We call
s̃i the optimal checkpoint interval. In [8] we showed
s̃i =

√
τici/ki to be optimal.

The problem of deriving optimal checkpoint inter-
vals has been extensively discussed under a variety of
assumptions. Most previous research assumes stochas-
tic failure occurrences, mostly in form of Poisson pro-
cesses. Our definition of an optimal checkpoint inter-
val, however, assumes a maximum number of failures.
The checkpoint interval si is chosen to minimize the
worst case execution time when there are ki failures
that occur during the execution of the task Ti.

4 Checkpointed Imprecise Computa-
tion

In the traditional checkpointed-computation model,
we want to generate schedules where all tasks and their
recoveries meet the timing constraints to avoid timing
faults. In a k̄-tolerant schedule therefore enough time
must be reserved for both the execution of each task
Ti, the checkpointing overhead, and for the additional
ki recoveries.

In the checkpointed-imprecise-computation model,
only the mandatory part of each task must be guar-
anteed to complete before the deadline. In generating
k̄-tolerant schedules for such a system, we have to con-
sider one additional goal; the total error of the sched-
ule must be minimized. Moreover, the total error of
a schedule varies, depending on whether any specific
failure does or does not occur. In the following dis-
cussion, by total error we mean the total error of a
schedule, assuming that all K = k1 + k2 + . . . + kn

failures do occur. We call a k̄-tolerant schedule of T
that minimizes the total error an optimal k̄-tolerant
schedule of T .

In [8] we described an algorithm (Algorithm C) to
generate optimal k̄-tolerant schedules in an imprecise-
computation-system. The general idea is to increase
the mandatory part mi of each task Ti by the time

1. For as long as no event occurs, execute the task at the
head of the task queue QT . If no such task is present,
execute the task at the head of the optional queue QO.

2. When an event occurs:

Event 1: the current task completes or is terminated at
its deadline:

• remove the current task from the task queue
QT ;

• cancel the reservation of the current task; goto
step 1.

Event 2: the beginning of the first reserved interval is
reached:

• if there is time reserved for the current task,
cancel the reservation for the current task; else
terminate the current task and remove it from
the task queue;

• if any part of the task remains to be executed,
insert it into the queue QO; goto step 1.

Event 3: a new on-line task Ti arrives:

• update the reservation of the current task;

• make reservation for Ti (wi units of time);

• insert this task into the task queue QT ; goto
step 1.

Figure 1: Algorithm COL.

necessary for the checkpointing overhead and for the
necessary recoveries in a k̄-tolerant schedule. An al-
gorithm (such as described in [6, 7]) to schedule this
modified imprecise task set is applied to generate an
optimal k̄-tolerant schedule.

The assumption that all K failures do occur is con-
servative. Under normal circumstances, very few fail-
ures occur, if any at all. If task Ti terminates suc-
cessfully after experiencing qi ≤ ki failures, the recov-
ery time for the remaining ki − qi failures could be
made available to the unfinished tasks for their exe-
cution. In its basic form, Algorithm C does not make
use of this additional time. The low complexity of Al-
gorithm C would allow the scheduler to generate dy-
namically adjusted schedules when less than ki failures
occur during the execution of any task Ti. Whenever
the mandatory part of a task Ti terminates after less
than ki failures, Algorithm C is executed to generate
an optimal (k1, . . . , ki, ki+1, . . . , kn)-tolerant schedule
for the remaining tasks.

We introduce a much more efficient approach based
on Shih and Liu’s recent results on on-line schedul-
ing of imprecise computation [9]. Shih and Liu de-
scribe various algorithms to schedule imprecise task
systems with tasks whose parameters are only known



after the processor starts executing some tasks. We
describe here how their algorithm NORA can be ex-
tended to generate optimal k̄-tolerant schedules. Al-
gorithm NORA has been proved in [9] to minimize
the total error for imprecise task systems with no off-
line tasks and on-line tasks that are ready upon ar-
rival. This algorithm maintains a reservation list for
all tasks that have arrived but are not yet completed.
The reservation list is derived from a feasible schedule
of the unfinished portions of the mandatory parts of
the tasks. It can be generated by backward schedul-
ing according to the latest-ready-time-first rule. This
reservation list is updated each time a new task ar-
rives. The scheduling is done according to an earliest-
deadline-first (EDF) policy. When a new task arrives,
the reservation list is updated, the new task is put
into the EDF-ordered task queue QT , and the first
task is scheduled for execution. Figure 1 gives the
pseudo code of Algorithm COL, an extension to Algo-
rithm NORA, that allows to optimally schedule check-
pointed imprecise task sets in a k̄-tolerant way. When
a new task Ti arrives, enough time must be reserved
on the processor for the total execution time wi (as-
suming ki failures) of Ti. Since, during the execution
of Ti, less than ki failures can occur, some previously
reserved time may not be used by Ti. The elegance
of this algorithm in combination with a checkpoint-
ing scheme is, that any unused recovery time is au-
tomatically made available for the execution of other
tasks. Since the reservation is deleted at the moment
when Ti terminates, any unused recovery time can di-
rectly be used for the execution of the optional part
of the tasks or for the next task in the task queue
QT . Algorithm NORA generates k̄-tolerant schedules
if enough time is reserved for the execution, check-
point overhead, and recovery of the arriving task. The
addition of the FIFO queue QO for the unfinished op-
tional parts in Algorithm COL is enough to guarantee
optimal k̄-tolerance. The queue QO contains any un-
finished optional part of previous tasks. It allows the
execution of those portions of tasks in the case that no
executing or waiting task can use any unneeded recov-
ery time that becomes available when planned failures
do not occur. We note that the queue QO acts as an
EDF queue by virtue of how the optional parts are
entered into the queue.

5 Evaluation

In this section we describe the evaluation of the on-
line scheduling approach as realized in Algorithm COL

with a series of simulations. The underlying model
is supposed to be a transaction-processing system.

In on-line transaction-processing systems, bounded-
response-time and high-availability requirements team
up to request for both fault-tolerance and real-time
techniques to be applied. In our simulations the sys-
tem contains a single processor that executes transac-
tions modeled as tasks. The task arrival is a Poisson
process with rate λ. The processing time τ is nor-
mally distributed and consists of a mandatory part
m = µτ and an optional part o = (1 − µ)τ , where µ
denotes the fraction of mandatory computation. All
tasks have the same checkpoint cost c, checkpoint in-
terval s, and number of planned failures k. The timing
constraints are defined as the limit D on the response
time of tasks. If the mandatory part of task Ti is not
finished by D time units after its arrival, Ti missed
its deadline and causes a timing fault. The processor
is subject to intermittent failures, which are modeled
by a Poisson process with rate ρ. Whenever a failure
occurs, it is detected at the next sanity check of the
currently running task, which is rolled back to its last
checkpoint.

Algorithm COL is used to schedule the arriving
tasks. Whenever a task experiences more than k fail-
ures, it is declared optional and enqueued in the queue
of optional portions QO. In the following, the pro-
cessing times are normally distributed with mean 1.0
and standard deviation 0.3. The average error is de-
fined as the unweighted sum of the lengths of the op-
tional parts that were discarded, divided by the to-
tal length of the optional parts of all tasks that were
accepted by the scheduler (i.e. without counting the
tasks that were rejected at arrival time.) The following
parameters are constant throughout the simulations:
D = 10.0, c = 0.01, s = 0.1, and k = 1.

Figure 2 shows the average error for different frac-
tions µ of mandatory computation. The failure rate is
ρ = 0.1. Figure 3a and Figure 3b show the miss rate
and the average error for different failure rates. The
miss rate represents the fraction of both tasks that
have been rejected by the scheduler upon arrival, and
tasks whose mandatory part could not be completed
by the deadline. The fraction µ of mandatory compu-
tation is 70%. In Figure 4 the same data is plotted
against the processor utilization as measured during
the simulation. We see that – given the same proces-
sor utilization – the results are significantly worse for
the higher failure rate. Increasing the processor uti-
lization by adding workload and by increasing the re-
covery activity has not the same effect on the amount
of tasks that miss their deadlines and on the average
error. We plan to further investigate this matter. In
all simulations the 90% confidence intervals are below
1.0% for both the miss rates and the average error.



6 Summary

In this paper we described the model of check-
pointed imprecise computation. It uses the imprecise-
computation model as a technique to increase the flex-
ibility required when scheduling recoveries in a check-
pointed real-time system. This is especially suitable
in systems with very low failure rates, where most of
the time reserved for recovery could be used to per-
form optional computation. In addition, checkpoint-
ing is an natural part of the imprecise computation
model. Whenever a new, more accurate result has
been calculated, either at the end of the mandatory
part, or during the optional part, the system may
store it to stable storage. We may think of it as a
checkpoint being generated. We envision the check-
pointed imprecise-computation model being an inte-
gral part of an imprecise system architecture such as
[10], where system-directed checkpointing guarantees
fault-tolerance with a minimum amount of error. The
number k of planned failures would then be a param-
eter that is determined at service-negotiation time.

In [8] we presented two algorithms to optimally
schedule checkpointed imprecise task sets. These al-
gorithms are not suitable for systems with very low
failure rates, however. In this paper, we present an
on-line algorithm to schedule checkpointed imprecise
task sets. This algorithm guarantees that the task
set is schedulable with a specific number of failures
and generates a schedule that minimizes the average
error. Moreover, it automatically adapts to failure
occurrences. We are currently evaluating the perfor-
mance of the checkpointed imprecise-computation ap-
proach in general, and of this algorithm in specific for
a transaction-based model through simulation. The
performance evaluation does not consider several im-
portant aspects at this stage. We want to evaluate
the performance of the algorithms for systems with
very small failure rates. We are currently looking into
general techniques to evaluate systems with very rare
event occurrences. We also want to analyze if – and
how – fluctuations in the failure rate affect the perfor-
mance of our approach differently than fluctuations in
the basic workload (in terms of arrival rate.)
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Figure 2: Varying the amount of mandatory part.
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Figure 3: Varying the failure rate.
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Figure 4: Varying failure rate: comparison against processor utilization.


