
END-TO-END SCHEDULING TO MEET DEADLINES

IN DISTRIBUTED SYSTEMS

BY

RICCARDO BETTATI

Diploma, Swiss Federal Institute of Technology, Zürich, 1988

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 1994

Urbana, Illinois

c©Copyright by

Riccardo Bettati

1994

1994

2

END-TO-END SCHEDULING TO MEET DEADLINES
IN DISTRIBUTED SYSTEMS

Riccardo Bettati, Ph.D.
Department of Computer Science

University of Illinois at Urbana-Champaign, 1994
Professor Jane W.S. Liu, Advisor

In a distributed real-time system or communication network, tasks may need to be executed

on more than one processor. For time-critical tasks, the timing constraints are typically given

as end-to-end release times and deadlines. This thesis describes algorithms to schedule a class

of systems where all the tasks execute on different processors in turn in the same order. This

end-to-end scheduling problem is known as the flow-shop problem. We present several cases

where the problem is tractable and evaluate two heuristic algorithms for the NP-hard general

case. We generalize the traditional flow-shop model in two directions. First, we present two

algorithms for scheduling flow shops where tasks can be serviced more than once by some

processors. Second, we describe a technique to schedule flow shops that consist of periodic

tasks and to analyze their schedulability. We generalize this technique and describe how it

can be used to schedule distributed systems that can not be modeled by flow shops. We then

describe how to combine local or global resource access protocols and end-to-end scheduling.

Finally, we show that by using end-to-end scheduling we can simplify resource access protocols

and thus increase the utilization of resources.

iii

To my parents, Aldo and Maria-Rosa Bettati

iv

Acknowledgements

My deepest gratitude goes to Prof. Jane Liu, who five years ago took upon her to teach an

intimidated student from overseas the tools of the trade of a researcher. She did this as a great

teacher, a fabulous advisor, and an invaluable role model. Her continuous encouragement was

crucial in helping over the periods of doubt and the occasionally arid portions of the work, and

her enthusiasm and energy are always contagious.

I would like to thank the other members of my committee, Professors Andrew Chien, Kwei-

Jay Lin, Dave Liu, Tony Ng, and Ben Wah, for having agreed to scrutinize and comment on

the contents of my thesis.

A big “Thank you” goes to all the members of the Real-Time Systems Laboratory. This

is a very special group, because joining it not only means acquiring new colleagues, but tying

very dear friendships. First I would like to thank Don Gillies, with whom I had the honor to

share the office. His encyclopedic memory has saved me many hours of literature search. Don

perhaps remembers that I sill owe him the Magic Jacket. The third cohabitant of our office for

many years was Carol Song, the person to ask for many little tools and tricks needed for experi-

mentation, measurement, and writing. My gratitude goes also to the remaining members of the

group: Infan Cheong, Zhong Deng, Wu Feng, Rhan Ha, Changwen Liu, Victor Lopez-Millan,

Pilar Manzano, Joseph Ng, Luis Redondo, Arjun Shankar, Wei-Kuan Shih, Ami Silberman,

Matthew Storch, Too-Seng Tia, Susan Vrbsky, and Xin Wang.

Over the years I learned to appreciate Champaign-Urbana as a very special place to make

friends: I met Maher Hakim the very first day I arrived and cherish our friendship very much.

Marc Najork and Sam Abassi have been very good friends over the years. Sam has always had

a tender hart for starving graduate students. Let me acknowledge Hoichi Cheong, Nany Hasan,

Ran Libeskind-Hadas, Ernst Mücke, Roman Waupotitsch, and many others, with whom I share

many fond memories.

v

I would especially like to thank Bill and Joyce Krahling and their daughter Heidi for having

welcomed me as part of their family. Joyce and Bill have become my American Mom and Dad,

showing me many a precious side of living in America.

No spouse has ever given more support to a graduate student than my wife Andrea gave to

me. She went very far out of her way (five continents, actually) to let me focus on my work, but

managed to never make me miss her warmth and affection. One life time may not be enough

for me to make up for all the hardship Andrea had to endure in these years.

This work was supported by the U.S. Navy ONR contract No. N00014-89-J-1181.

vi

Table of Contents

Chapter

1 Introduction . 1
1.1 Problem Statement . 1
1.2 Summary of Results . 3
1.3 Organization . 6

2 The Flow-Shop Model . 8
2.1 The Flow Shop . 8
2.2 The Flow Shop with Recurrence . 10
2.3 The Periodic Flow Shop . 12

3 Related Work . 13
3.1 Classical Machine-Scheduling Theory . 13
3.2 Pipeline Scheduling . 14
3.3 Real-Time Communication . 15
3.4 Task Assignments . 16

4 End-To-End Scheduling of Flow Shops . 17
4.1 Scheduling Identical-Length Task Sets on Flow Shops 17
4.2 Scheduling Homogeneous Task Sets on Flow Shops 19
4.3 Scheduling Arbitrary Task Sets on Flow Shops 21

4.3.1 Suboptimality of Algorithm H . 22
4.3.2 Performance of Algorithm H . 26

4.4 Scheduling Highly Non-Homogeneous Task Sets 38

5 Scheduling Flow Shops with Recurrence . 50
5.1 Identical Release Times . 50
5.2 Non-Identical Release Times . 56

6 End-To-End Scheduling of Periodic Flow Shops 62
6.1 The Phase Modification Approach . 62
6.2 Phase Modification and Rate-Monotonic Scheduling 63
6.3 Phase Modification and General Fixed-Priority Scheduling 66
6.4 Phase Modification and General Distributed Systems 71
6.5 Phase Modification and Loosely Coupled Systems 73

7 Periodic End-to-End Scheduling with Shared Resources 79
7.1 Local Resources . 79
7.2 Global Resources . 81

vii

8 Summary and Conclusion . 87
8.1 Summary . 88

8.1.1 Traditional Flow Shop Scheduling . 88
8.1.2 Flow Shops with Recurrence . 89
8.1.3 Periodic Flow Shops . 90

8.2 End-to-End Schedulability Analysis . 91
8.3 Outlook . 92

Appendix

A Heuristic-Supported Search for Flow-Shop Schedules 94
A.1 Searching for Feasible Schedules . 95

A.1.1 Consistency-Enforcing Rules . 95
A.1.2 Look-Ahead Rules . 100
A.1.3 Look-Back Rules . 102

A.2 Minimizing Total Tardiness . 103
A.2.1 Consistency-Enforcing Rules to Minimize Total Tardiness 104
A.2.2 Conclusion . 106

B Simulation Results for Algorithm H . 108

C Simulation Results for Algorithm HPCC . 139

Bibliography . 146

Vita . 152

viii

List of Tables

4.1 An Example of a Homogeneous Task Set. 21
4.2 Task Set with Arbitrary Processing Times. 25
4.3 Task Set where Step 4 of Algorithm H Fails. 26
4.4 Settings for Simulation Parameters in Experiments. 30
4.5 Settings for Simulation Parameters in Experiments. 48

5.1 Identical-Length Task Set with Identical Release Times. 54
5.2 Identical-Length Task Set with Arbitrary Release Times and Identical Deadlines. 55

6.1 Set of Periodic Jobs on a Two-Processor Flow Shop. 64
6.2 Unschedulable Set of Periodic Jobs on a Two-Processor Flow Shop. 65
6.3 Refined Schedulability Bounds for Rate-Monotonic Scheduling 66
6.4 Unschedulable Job System with Rate-Monotonic Priority Assignment. 66
6.5 Priority Assignment that Guarantees Schedulability. 69

7.1 Schedulability Analysis Using Phase-Modification. 83
7.2 Results of Schedulability Analysis Using MPCP. 85

ix

List of Figures

2.1 Visit Graph for Visit Sequence V = (1, 2, 3, 2, 4). 11
2.2 Visit Graph for Visit Sequence V = (1, 2, 3, 4, 5, 2, 3, 6). 11

4.1 Algorithm A. 20
4.2 Schedule Generated by Algorithm A. 21
4.3 Algorithm H for Scheduling Arbitrary Tasks in Flow Shops. 22
4.4 Algorithm C. 24
4.5 A Schedule Produced by Algorithm H. 25
4.6 Schedules for Two Choices of Bottleneck Processors. 27
4.7 Success Rate of Algorithm H for Small Task Sets. 31
4.8 Success Rate of Algorithm H for Larger Task Sets (µu = 0.2, στ = 0.1). 31
4.9 Preemption not Always Pays Off. 35
4.10 Algorithm PCC for Scheduling Task Sets with Two Classes of Identical-Length

Tasks. 39
4.11 Transforming an Arbitrary Schedule into a PCC Schedule. 41
4.12 Ta(j+1) Starts at Time t. 42
4.13 Effect of Inconsistent Deadlines. 44
4.14 Algorithm HPCC for Scheduling Task Sets with Short and Long Tasks. 46

5.1 Algorithm R to Schedule Flow Shops with Single Simple Loops. 51
5.2 Schedule Generated by Algorithm R. 54
5.3 Applying Algorithm R to Task Set with Arbitrary Release Times and Identical

Deadlines. 55
5.4 Algorithm RR to Schedule Flow Shops with Single Simple Loops. 57
5.5 Network G = (V,E). 59
5.6 Algorithm F Used in Step 1(b) of Algorithm RR. 60

6.1 Higher-Priority Subjobs Interfering with Jij . 67
6.2 The FPA Problem. 70
6.3 Collection of Flow-Shops. 72
6.4 A System That Can Not Be Modeled as a Collection of Flow-Shops. 73
6.5 The Deferred Execution Problem in Flow Shops. 75
6.6 Comparison of Synchronous and Asynchronous Method. 78

7.1 A System with One Local Resource. 80
7.2 A System with One Global Resource. 82

8.1 Different Algorithms for Different Flow Shops. 89

A.1 Procedure S, Describing the Basic Search Algorithm. 96
A.2 Procedure ST to Minimize Total Tardiness. 103

B.1 Relative Performance: 4 Tasks, 4 Processors. 109
B.2 Relative Performance: 4 Tasks, 14 Processors. 110

x

B.3 Relative Performance: 4 Tasks, 22 Processors. 111
B.4 Relative Performance: 14 Tasks, 4 Processors. 112
B.5 Relative Performance: 14 Tasks, 14 Processors. 113
B.6 Relative Performance: 14 Tasks, 22 Processors. 114
B.7 Relative Performance: 22 Tasks, 4 Processors. 115
B.8 Relative Performance: 22 Tasks, 14 Processors. 116
B.9 Relative Performance: 22 Tasks, 22 Processors. 117
B.10 Success Rate: 4 Tasks, 4 Processors. 118
B.11 Success Rate: 4 Tasks, 14 Processors. 119
B.12 Success Rate: 4 Tasks, 22 Processors. 120
B.13 Success Rate: 14 Tasks, 4 Processors. 121
B.14 Success Rate: 14 Tasks, 14 Processors. 122
B.15 Success Rate: 14 Tasks, 22 Processors. 123
B.16 Success Rate: 22 Tasks, 4 Processors. 124
B.17 Success Rate: 22 Tasks, 14 Processors. 125
B.18 Success Rate: 22 Tasks, 22 Processors. 126
B.19 Relative Performance: στ = 0.05, µu = 0.2. 127
B.20 Relative Performance: στ = 0.5, µu = 0.2. 128
B.21 Relative Performance: στ = 0.05, µu = 0.4. 129
B.22 Relative Performance: στ = 0.5, µu = 0.4. 130
B.23 Relative Performance: στ = 0.05, µu = 0.7. 131
B.24 Relative Performance: στ = 0.5, µu = 0.7. 132
B.25 Success Rate: στ = 0.05, µu = 0.2. 133
B.26 Success Rate: στ = 0.5, µu = 0.2. 134
B.27 Success Rate: στ = 0.05, µu = 0.4. 135
B.28 Success Rate: στ = 0.5, µu = 0.4. 136
B.29 Success Rate: στ = 0.05, µu = 0.7. 137
B.30 Success Rate: στ = 0.5, µu = 0.7. 138

C.1 Relative Performance: 4 Tasks, 12 Processors. 140
C.2 Relative Performance: 12 Tasks, 12 Processors. 141
C.3 Relative Performance: 20 Tasks, 12 Processors. 142
C.4 Success Rate: 4 Tasks, 12 Processors. 143
C.5 Success Rate: 12 Tasks, 12 Processors. 144
C.6 Success Rate: 20 Tasks, 12 Processors. 145

xi

Chapter 1

Introduction

In distributed real-time systems, tasks often are decomposed into chains of subtasks. In order to

execute, each subtask requires the exclusive use of some resource, referred to here as a processor.

We use the terms task and subtask to mean individual units of work that are allocated resources

and then processed, that is, executed. For example, a subtask may be a granule of computation,

a disk access, or a data transmission. Its execution may require a computer, a disk controller,

or a data link, all modeled as processors. A task typically consists of many subtasks, which do

some computations, access files, and transmit messages in turn. If such a task is time-critical,

its timing constraints, derived naturally from its timing requirements, are typically given by its

end-to-end release time and deadline. The end-to-end release time of a task is the time instant

after which its first subtask can begin execution. Its end-to-end deadline is the time instant

by which its last subtask must be completed. As long as these end-to-end constraints are met,

when the individual subtasks are executed is not important.

1.1 Problem Statement

This thesis is concerned with scheduling tasks that execute in turn on different processors and

have end-to-end release-time and deadline constraints. It focuses on the case where the system

of tasks to be scheduled can be characterized as a flow shop or a variation of a flow shop. A flow

shop models a distributed system or communication network in which tasks execute on different

processors, devices, and communication links (all modeled as processors) in turn, following the

same order.

An example of the type of systems studies here is a distributed multimedia system. This

system consists of a video server that accesses and delivers video data, one or more hosts that

receive and display the data, and a communication network that connects the display hosts to

the video server. The video data consists of streams of frames. We model the access, delivery,

and display of each stream of data frames as a task, which consists of three subtasks. The first

1

subtask is the access and delivery of the data frame on the video server; the second subtask

is the transmission of the data on the network from the video server to the requesting host;

the third subtask is the acquisition and display on the host. These subtasks must be scheduled

on the corresponding processors. The timing constraints of the task as whole are given by the

maximum end-to-end delay between the request for and the display of a single frame of data.

We study here how to schedule such a task to meet its deadline in the presence of similar tasks.

We note that each subtask in above example may need to be further decomposed into

subtasks and, hence it is itself a task with end-to-end timing constraints. The task running

on the video server for instance may consist of a subtask running on the disk controller and

a second subtask that acquires buffer space and delivers the data to the underlying network.

The communication network that delivers the data frames to the display hosts may be a multi-

hop (generally a packet-switched) network. The tasks, modeling the transmission of real-time

messages along a virtual circuit in such a network, consist of chains of subtasks, each subtask

forwarding the message through one hop. The timing constraints for the transmission of the

messages are end-to-end.

In a similar example, we consider a distributed system containing an input computer, an

input link, a computation server, an output link, and an output computer. The input computer

reads all sensors and preprocesses the sensor data. The processed sensor data is transmitted over

the input link that connects the input computer to the computation server. The computation

server computes the control law and generates commands. The commands are transmitted

over its output link to the output computer, which performs D/A conversion and delivers the

commands to the actuators. In our model, each tracker and controller is a task. Its release

time and deadline arise from its required response. Each task consists of five subtasks: the first

subtask is the processing of the sensor data on the input computer; the second subtask is the

transmission of sensor data on the input link; and so on. These subtasks must be scheduled on

the corresponding processors to meet the overall deadline. Again, how the individual subtasks

are scheduled is not important as long as this overall deadline is met.

End-to-end timing constraints are not necessarily limited to distributed systems. In many

instances we can think of a task accessing a non-sharable resource as temporarily executing on

that resource. After the task releases the resource, it returns to execute on the processor. Such

a task can be modeled as a chain of three subtasks with end-to-end timing constraints. This

2

example shows how variations of flow shops can be used to model certain forms of resource

access, such as the integrated processor and I/O scheduling described in Sha et al. [46] or the

access to global resources in a multiprocessor described by Rajkumar et al. [42].

A system may contain many classes of tasks. Tasks in each class execute on different

processors in the same order, but tasks in different classes execute on different processors in

different orders. (In queuing modeling terms, the system contains many task-routing chains.)

One straightforward way to schedule multiple classes of tasks is to partition the system resources

and assign them statically to task classes. This allows the tasks in each class to be scheduled

according to a scheduling algorithm suited for the class. The effect of this partitioning is that

we now have as many virtual processors as there are classes of tasks sharing each processor. A

distributed system that contains N classes of tasks and uses such a static resource partition and

allocation strategy can be modeled as a system containing N flow shops. Static partitioning

of resources may lead to low utilization. Unfortunately, traditional techniques to increase

utilization, such as statistical multiplexing or dynamic allocation of the resources, are not

suited in hard real-time systems, because the effect of conflicts between subtasks of different

classes is often unpredictable.

1.2 Summary of Results

In this thesis we first focus on the problem of scheduling tasks in traditional flow shops to meet

their end-to-end timing constraints. The problem of scheduling tasks in a flow shop to meet

deadlines is NP-hard, except for a few special cases [11, 25]. We have developed optimal efficient

algorithms for scheduling sets of tasks that have identical processing times on all processors,

called identical-length task sets, and sets of tasks that have identical processing times on each of

the processors but have different processing times on different processors, called homogeneous

task sets. An algorithm is optimal if it always finds a feasible schedule, that is, a schedule in

which all tasks meet their deadlines whenever such a schedule exists. These optimal algorithms

are used as the basis for a heuristic algorithm, called Algorithm H, for scheduling tasks with

arbitrary processing times. The results of our evaluation show that Algorithm H performs well

for tasks that have similar processing times. When the difference between processing times of

3

tasks becomes large (for instance when there are long tasks and short tasks), the performance

of this heuristic degrades.

In order to complement Algorithm H, we developed an algorithm for scheduling tasks be-

longing to two different task classes; tasks in each class form an identical-length task set. The

processing times of tasks in the sets are τ and pτ , where p is a positive integer. This algo-

rithm is optimal when the release times are integer multiples of τ . We extended this optimal

algorithm into a second heuristic algorithm, called Algorithm HPCC, to schedule tasks with

arbitrary processing times. As our evaluations show, Algorithm HPCC performs much better

than Algorithm H when tasks have widely different processing times.

We also consider two variations of the traditional flow-shop model, called flow shop with

recurrence and periodic flow-shop. In a flow shop with recurrence each task executes more than

once on one or more processors. A flow shop with recurrence models a system that has limited

resources and, hence, does not have a dedicated processor for every function. As an example,

suppose that the three computers in the control system mentioned earlier are connected by

a bus, not by two dedicated links. The system can no longer be modeled as a traditional

flow shop. However, we can model the bus as a processor and the system as a flow shop with

recurrence. Each task executes first on the input computer, then on the bus, on the computation

server, on the bus again, and finally on the output computer. Similarly, a task that accesses a

serially reusable resource can be thought of as first executing on a processor, then temporarily

executing on the resource, and eventually migrating back to the processor. A system containing

such tasks can also be modeled as a flow shop with recurrence.

In analyzing flow shops with recurrence, we focused our attention on a simple recurrence

pattern, namely where one processor, or one sequence of processors, is visited more than once.

We developed a O(n log n) algorithm to schedule tasks in flow shops with such recurrence

patterns (where n is the number of tasks in the flow shop). When tasks have identical processing

times and release times, this algorithm is optimal. We also developed a O(n3) algorithm to

schedule tasks with individual release times in flow shops with simple recurrence patterns. The

O(n3) algorithm is optimal as long as the release times and deadlines are multiples of qτ , where

τ is the processing time of the subtasks and q is the number of subtasks between the first and

the second visit of tasks to a revisited processor.

4

In a periodic flow shop each task is a periodic sequence of requests for the same computation.

Hence, a sequence of requests for a periodic computation in a traditional flow shop is represented

as a single task in a periodic flow shop. Several analytical techniques exist to determine whether

given algorithms can feasibly schedule periodic tasks on a single processor [27, 31]. Schedulability

analysis is the process of determining whether a given algorithm always generates a feasible

schedule for a given system of tasks under all conditions. We extended the techniques for

single-processor schedulability analysis to end-to-end schedulability analysis of systems where

tasks execute on more than one processor. We developed a technique that makes use of results

in single-processor schedulability analysis to determine whether end-to-end timing constraints

are met while the dependencies between periodic subtasks are preserved. This technique, called

phase modification, proved to be very flexible. We show how it can be used in combination with

arbitrary fixed-priority scheduling algorithms, even algorithms that assign different priorities to

different subtasks of the same task. Moreover, phase modification is not restricted to systems

that can be modeled by flow shops. We showed how this technique can be applied to collections

of flow shops that share one or more processors, or even to systems with arbitrary dependencies

between periodic subtasks on different processors. Although phase modification in its basic

form is based on the assumption that the executions of the tasks on the different processors are

synchronized according to a common clock, we showed that this assumption can be relaxed.

We present two techniques to account for the lack of a common clock. In the first technique we

simply separate the executions of subtasks so that clock drift can not cause dependencies to be

violated. In the second technique we use results in the scheduling of aperiodic tasks to allow

for asynchronous execution of the subtasks.

One area that has attracted a lot of attention in the schedulability analysis for single-

processor systems are real-time resource access protocols [3, 42, 47]. We could show that these

protocols can be naturally included in the phase modification technique to analyze systems

with end-to-end timing constraints and access to resources, both local and global. Models of

access to global resources typically assume that tasks temporarily execute on a special processor

when they are holding a global resource. In such systems, each access to a global resource can

be viewed as a sequence of three subtasks with end-to-end timing constraints. The task first

executes on its processor until it accesses the global resource. When it is granted the resource,

it executes on another processor, and returns to the first processor after it releases the resource.

5

This decomposition allows us to replace the expensive global-resource access protocols with

access protocols to local resources in combination with end-to-end schedulability analysis. We

could show that this typically allows for higher resource utilizations with the tasks still meeting

the timing constraints.

1.3 Organization

The rest of this thesis is organized as follows: Chapter 2 describes the underlying model of

systems with end-to-end timing constraints. We describe the traditional flow-shop model, as

well as the flow shop with recurrence and periodic flow-shop models. Chapter 3 summarizes

existing work in end-to-end scheduling and related areas.

In Chapter 4 we present algorithms for scheduling in traditional flow shops to meet end-to-

end release times and deadlines. In particular, we describe Algorithm H and Algorithm HPCC,

the two heuristic algorithms for scheduling arbitrary task sets in traditional flow shops, and

evaluate their performance.

In Chapter 5 we present two algorithms, Algorithm R and Algorithm RR, to schedule

identical-length task sets on flow shops with recurrence. Both algorithms work for recurrence

patterns in which one processor, or a sequence of processors, is visited more than once. We

show that Algorithm R is optimal for such task sets with identical release times and arbitrary

deadlines. Algorithm RR is optimal for task sets in which the release times and the deadlines

are integer multiples of the distance between the first and the second visit of tasks to the

revisited processor.

In Chapter 6 we return to the periodic flow-shop model. We present the phase modification

technique to assign intermediate deadlines to subtasks in periodic flow shops and to deter-

mine their schedulability. We introduce the technique in combination with the rate-monotonic

scheduling algorithm, but show that it can be used in conjunction with arbitrary fixed-priority

scheduling algorithms. We describe how the techniques developed in this chapter can be ex-

tended to handle systems without a common clock or systems that are more general than

ordinary flow shops. We show in fact how the phase-modification method can be used to

schedule of a wide class of end-to-end systems.

6

Chapter 7 describes how to incorporate resource access protocols for local and global re-

sources into the phase-modification scheme. We describe how the phase modification technique

can be combined with local-resource access protocols to handle systems with global resources

and compare this approach against the multiprocessor priority-ceiling protocol [42], a well

known real-time multiprocessor-synchronization protocol.

Chapter 8 gives a summary and an overview of open questions, and concludes the thesis.

7

Chapter 2

The Flow-Shop Model

In this chapter we describe a general model of distributed systems with end-to-end constraints:

the flow shop. This model is used throughout this thesis. The notation and the terminology

used in the successive chapters are introduced here.

2.1 The Flow Shop

In a traditional flow shop, there are m different processors P1, P2, · · · , Pm. We are given a set

T of n tasks T1, T2, · · · , Tn that execute on the m processors. Specifically, each task Ti consists

of m subtasks Ti1, Ti2, · · · , Tim. These subtasks execute in order; first Ti1 on processor P1, then

Ti2 on processor P2, and so on. In other words, every task passes through the processors in

the same order. Let τij denote the time required for the subtask Tij to complete its execution

on processor Pj ; τij is the processing time of the subtask Tij. Let τi denote the sum of the

processing times of all the subtasks of the task Ti. We refer to τi as the total processing time

of the task Ti. Each task Ti is ready for execution at or after its release time ri and must be

completed by its deadline di. For sake of simplicity, we will occasionally refer to the totality of

release times, deadlines, and processing times as the task parameters.

In the following we will make use of the effective deadlines of subtasks. The effective deadline

dij of the subtask Tij is the point in time by which the execution of the subtask Tij must be

completed to allow the later subtasks, and the task Ti, as a whole, to complete by the deadline

di. dij is computed as follows:

dij = di −
m

∑

k=j+1

τik. (2.1)

Similarly, we define the effective release time rij of a subtask Tij to be the earliest point in time

at which the subtask can be scheduled. Since Tij cannot be scheduled until earlier subtasks are

completed, rij is given by

rij = ri +
j−1
∑

k=1

τik. (2.2)

8

For scheduling purposes we distinguish two classes of tasks, depending on whether or not

the tasks can be temporarily interrupted during their execution. A task is preemptable if

its execution can be interrupted and, at a later point in time, resumed from where it was

interrupted. On the other hand, a non-preemptable task cannot be interrupted. Schedulers that

make use of the fact that tasks are preemptable are called preemptive schedulers. For many

scheduling problems, there are no polynomial-time optimal schedulers when tasks are non-

preemptable. But efficient optimal preemptive schedulers are possible (e.g. see McNaughton’s

rule [36]). Unfortunately, with arbitrary task parameters, the traditional flow-shop problem is

NP-hard, even where the subtasks are preemptable, as the following theorem shows:

Theorem 1. The flow-shop problem on m > 2 processors with arbitrary task parameters is

NP-complete.

Proof. We consider two cases: when preemption is not allowed and when preemption is

allowed. To show that this problem is NP-complete when preemption is not allowed, we

restrict it to the case of one processor with arbitrary job parameters by letting the processing

times of subtasks on all but one processor be zero. The problem of scheduling non-preemptable

tasks with arbitrary job parameters to meet individual deadlines is known to be NP-complete

[9, 10]. Similarly, when preemption is allowed, we restrict the flow-shop problem to the case of

identical deadlines. The preemptive flow-shop problem to meet an overall deadline is known to

be NP-complete [14]. 2

Two special cases of the flow-shop scheduling problem are tractable, however. The first is the

case of identical-length task sets, where the processing times τij of all subtasks on all processors

are equal to τ . In the second case the processing times τij of all subtasks are identical for any

one processor, but may vary between different processors. In other words, all the subtasks Tip

on any processor Pp have the same processing time τp, but subtasks Tip and Tiq on processors

Pp and Pq may have different processing times, that is, τp 6= τq when p 6= q. We call task sets of

this sort homogeneous task sets. In Chapter 4 we will describe algorithms to optimally schedule

identical-length and homogeneous task sets. We will also describe a heuristic, Algorithm H,

built on these algorithms to schedule task sets with arbitrary task parameters.

9

2.2 The Flow Shop with Recurrence

In the more general flow-shop-with-recurrence model, each task Ti has k subtasks, and k > m.

Without loss of generality, we let the subtasks be executed in the order Ti1, Ti2, · · · , Tik for all

tasks Ti, that is, Ti1 followed by Ti2, followed by Ti3, and so on. We specify the processors

on which the subtasks execute by a sequence V = (v1, v2, · · · , vk) of integers, where vj is one

of the integers in the set {1, 2, · · · ,m}. vj being l means that the subtasks Tij (for all i) are

executed on processor Pl. For example, suppose that we have a set of tasks each of which has 5

subtasks, and they are to be executed on 4 processors. The sequence V = (1, 2, 3, 2, 4) means

that all tasks first execute on P1, then on P2, P3, again on P2, and then P4, in this order. We

call this sequence the visit sequence of the tasks. If an integer l appears more than once in

the visit sequence, the corresponding processor Pl is a reused processor. In this example P2 is

reused, and each task visits it twice. This flow shop with recurrence models the distributed

control system described in Chapter 1: P2 models the bus that is used as both the input link

and the output link. The traditional flow-shop model is therefore a special case of the flow-

shop-with-recurrence model in which the visit sequence is (1, 2, · · · ,m), and every processors is

visited only once.

Any visit sequence can be represented by a graph, called a visit graph. A visit graph G is a di-

rected graph whose vertices Pi’s represent the processors in the system. There is a directed edge

eij from Pi to Pj with label a if and only if in the visit sequence V = (v1, v2, · · · , va, va+1, · · · , vk)

va = i and va+1 = j. A visit sequence can therefore be represented by a path with increasing

edge labels in the visit graph. The visit graph for the distributed control system with visit

sequence V = (1, 2, 3, 2, 4) is shown in Figure 2.1.

We confine our attention here to a class of visit sequences that contain simple recurrence

patterns: the recurrence pattern in the visit sequence is a loop. The notion of loops becomes

intuitively clear when we look at the representation of such a loop in the visit graph. In the

example shown in Figure 2.2, the labeled path that represents the visit sequence contains a loop.

The sub-sequence (2, 3) in (1, 2, 3, 4, 5, 2, 3, 6) occurs twice and therefore makes the sequence

(4, 5, 2, 3) following the first occurrence of (2, 3) a loop. P2 and P3 are the reused processors

in this example. Loops can be simple or compound. A simple loop contains no subloop. The

visit sequence in Figure 2.2 contains a simple loop. A compound loop contains other loops as

10

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

..
..
.
..
..
..
..
..
..
..
...
...
...
...
...

..

..
..
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
..
..
..
...
...

....
...
...
..
..
..
..
..
..
..
..
.
..
.
..
.
..
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

..
..
.
..
..
..
..
..
..
..
...
...
...
...
...

..

..
..
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
..
..
..
...
...

....
...
...
..
..
..
..
..
..
..
..
.
..
.
..
.
..
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

..
..
.
..
..
..
..
..
..
..
...
...
...
...
...

..

..
..
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
..
..
..
...
...

....
...
...
..
..
..
..
..
..
..
..
.
..
.
..
.
..
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

..
..
.
..
..
..
..
..
..
..
...
...
...
...
...

..

..
..
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
..
..
..
...
...

....
...
...
..
..
..
..
..
..
..
..
.
..
.
..
.
..
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

P1 P2 P4

P3

...

.....
....
...
...
..
..
.

...

.....
....
...
...
..
..
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

1

23

4

Figure 2.1: Visit Graph for Visit Sequence V = (1, 2, 3, 2, 4).

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

..

.

..
..
..
..
..
..
..
..
..
..
..
...
...
...
........

.................................
....
..
..
..
.
..
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
..
.
..
..
....
...

....
...
..
...
..
..
..
..
..
..
..
..
..
..
..
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

..

.

..
..
..
..
..
..
..
..
..
..
..
...
...
...
........

.................................
....
..
..
..
.
..
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
..
.
..
..
....
...

....
...
..
...
..
..
..
..
..
..
..
..
..
..
..
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

..

.

..
..
..
..
..
..
..
..
..
..
..
...
...
...
........

.................................
....
..
..
..
.
..
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
..
.
..
..
....
...

....
...
..
...
..
..
..
..
..
..
..
..
..
..
..
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

..

.

..
..
..
..
..
..
..
..
..
..
..
...
...
...
........

.................................
....
..
..
..
.
..
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
..
.
..
..
....
...

....
...
..
...
..
..
..
..
..
..
..
..
..
..
..
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

..

.

..
..
..
..
..
..
..
..
..
..
..
...
...
...
........

.................................
....
..
..
..
.
..
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
..
.
..
..
....
...

....
...
..
...
..
..
..
..
..
..
..
..
..
..
..
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

..

.

..
..
..
..
..
..
..
..
..
..
..
...
...
...
........

.................................
....
..
..
..
.
..
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
..
.
..
..
....
...

....
...
..
...
..
..
..
..
..
..
..
..
..
..
..
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

P1 P2 P3

P4P5

P6
...

.....
....
...
...
..
..
.

...

.....
....
...
...
..
..
.

..

......
....
..
..
...
..
.

..

......
....
..
...
..
..
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...
....
..
...
..
..
.

....................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

1
2

3

4

5

6

7

Figure 2.2: Visit Graph for Visit Sequence V = (1, 2, 3, 4, 5, 2, 3, 6).

parts of the path forming the loop. The length of a loop is the number of vertices in the visit

graph that are on the loop. The loop in Figure 2.2 therefore has length 4. Loops can be used

to model systems where a specific processor (or a sequence of processors) is used before and

after a certain service is attained. An example is a database that is queried before and updated

after a specific operation.

The flow-shop-with-recurrence problem on m > 2 processors with arbitrary task parameters

is NP-hard. This follows as a corollary from Theorem 1 since the traditional flow shop is a

special case of the flow shop with recurrence.

11

2.3 The Periodic Flow Shop

The periodic flow-shop model is a generalization of both the traditional flow-shop model and

the traditional periodic-job model [26, 31, 41]. As in the traditional periodic-job model, the

periodic job system J to be scheduled in a flow shop consists of n periodic jobs. Each job

consists of a periodic sequence of requests for the same computation. In our previous terms,

each request is a task. In an m-processor flow shop, each task consists of m subtasks that are

to be executed on the m processors in turn following the same order. The processing time of

the subtask on processor Pj of each task in the job Ji is τij. The period pi of a job Ji in J

is the length of the time interval between the ready times of two consecutive tasks in the job.

The ready time of the task in every period is the beginning of the period. The deadline of a

task is some time Di after its ready time, for some constant Di ≤ mpi. The utilization factor

uij of subjob Jij on processor Pj is uij = τij/pi, the fraction of time Jij keeps processor Pj

busy. The total utilization factor uj on processor Pj is the sum of the utilization factors of the

subjobs running on that processor, that is, uj =
∑n

i=1 τij/pi.

In the following, by flow shop we mean specifically non-periodic flow shop without recur-

rence. By the flow-shop (or the flow-shop-with-recurrence) problem we mean the problem of

scheduling in a flow shop (or a flow shop with recurrence) to meet deadlines.

12

Chapter 3

Related Work

The end-to-end scheduling problems addressed in this thesis are closely related to problems of

machine-scheduling, pipeline scheduling, and real-time communication. Here, we summarize

the similarities and differences in the approaches and objectives of our work and earlier work

on the related problems.

3.1 Classical Machine-Scheduling Theory

Past efforts in flow-shop scheduling have focused on the minimization of completion time, that

is, the total time required to complete a given set of tasks [9, 12, 25, 53]. Johnson [9] showed that

tasks in a two-processor flow shop can be scheduled to minimize completion time in O(n log n)

time. Beyond the two-processor flow shop, however, almost every flow-shop scheduling problem

is NP-complete. For example, the general problem of scheduling to minimize completion time

on three processors is strictly NP-hard [12]. Consequently, most studies of flow-shop problems

were concerned with restrictions of the problem that make it tractable.

Other efforts focused on heuristic algorithms and enumerative methods that yield optimal

and suboptimal schedules in reasonable amounts of time. Hoitomt et al. [21] use integer-

programming techniques and Lagrangian relaxation to schedule tasks with deadlines to minimize

the weighted tardiness of tasks in job shops where precedence constraints are simple. (In a job

shop, tasks execute on different processors in arbitrary orders.)

Much research has focused on enumerative methods for permutation flow shops [18, 35]. In

a permutation flow shop the tasks execute in the same order on all the processors. In other

words, if the execution of a task Ti precedes the execution of another task Tj on one processor,

Ti must precede Tj on all the processors. A schedule for which this condition holds is called a

permutation schedule. In contrast, in a non-permutation schedule the sequence of tasks executed

on different processors may vary.

13

Grabowski et al. [17] extend their enumerative approach described in [16] to schedule flow

shops with arbitrary release times and deadlines to minimize lateness. In no-wait flow shops the

tasks are not buffered between processors. In other words, when a task is started in a no-wait

flow shop, it has to run through all processors until it terminates. The problem of scheduling

no-wait flow shops is reviewed in [15].

The general problem of scheduling to meet deadlines on identical multiprocessor systems

is also NP-hard [11, 25]. However, polynomial algorithms for optimally scheduling tasks with

identical processing times on one or two processors exist [10, 13]. Our algorithms in Chapter 4

and Chapter 5 make use of one of them.

3.2 Pipeline Scheduling

Lawler et al. [24] identify three differences between the pipeline-scheduling and the flow-shop

scheduling problems:

(1) As opposed to flow-shops, no buffering of subtasks is allowed between stages in pipelines.

We note that the buffering of subtasks allows for non-permutation schedules on flow shops.

Consequently the flow-shop scheduling problem is more difficult.

(2) When two tasks are dependent, it is usually assumed in the flow-shop model that the last

subtask of the predecessor task is the immediate predecessor of the first subtask of the

successor task. In the pipeline model, arbitrary dependencies between internal stages are

allowed.

(3) In flow-shop scheduling, there is a single sequence of processors, whereas pipeline schedul-

ing has to deal with multiple, perhaps specialized, pipelines. In this way, the pipeline

scheduling problem is more complex.

The main objective in traditional pipeline scheduling is the generation of schedules that

maximize throughput. Polynomial-time algorithms are known for scheduling pipelines of length

two with arbitrary precedence constraints and pipelines of length k with precedence constraints

that are trees [4]. Most generalizations of these two cases are NP-complete. For example, the

general pipeline-scheduling problem to minimize completion time on a single pipeline of length

k for arbitrary dependency graphs is NP-complete [29].

14

Palem and Simons [39] describe a priority-driven heuristic algorithm to schedule pipelines

with timing constraints. Their pipeline model is generalized to consider inter-instructional la-

tencies. Dependencies can be weighted to represent the minimal delay between the termination

of one subtask and the execution of the descendent subtask. Inter-instructional latencies are

similar to minimum-distance constraints described by Han in [19, 20]. According to the heuristic

in [39], the priority assignments are based on weighted path lengths in the dependency graph.

Timing constraints are then added in the form of additional such latencies.

3.3 Real-Time Communication

In a real-time communication system [23], there is a time constraint on the delay of each

message, that is, the length of the time interval between the time instants when the source

generates the message and when the destination receives it. The message is discarded when its

delay exceeds this constraint. A typical application is packetized audio or video transmission,

where the signal is digitized and packetized at the sender and reconstructed at the destination.

The delay of the packets is constrained to be below a limit. Packets that do not arrive at the

destination within the maximally allowed delay are discarded. The encoding and packeting

schemes are designed so that the occasionally loss of packets has a minimal effect on the quality

of the received audio or video. Recently, a considerable amount of effort has been directed

toward how to ensure messages with time constraints are delivered over multiple-access networks

[1, 23, 38, 55] in time.

When the underlying network has a point-to-point interconnection structure, such as in

wide-area networks [7], it is more complicated to guarantee timely message delivery. Since

only the end-to-end delay is constrained to be under some limit, there are more choices in

scheduling message transmissions through the multiple links in the network. The increase in

the number of choices results in either more complicated algorithms or heuristics with uncertain

performance. Kandlur et al. [22] describe a method to guarantee time-constrained, sequenced

message delivery over unidirectional virtual connections, called (real-time) channels. A channel

consists of a sequence of communication links. The communication links in each channel are

selected at channel-establishment time. During channel-establishment time, it is necessary to

ensure that the new channel does not affect the guaranteed delivery times of existing channels.

15

Moreover, on each link along the channel, an upper bound on the message delay, called worst-

case message delay, is determined by a schedulability analysis of the channels on that link. The

channel can be established if the sum of the worst-case delays on all the links along the channel

is less than the end-to-end delay allowed for the entire channel. The run-time scheduling on

each link is done according to a variation of the effective-earliest-deadline-first algorithm that

is described in Chapter 4. The worst-case message delays along the links in a channel are

computed at channel-establishment time and are used to determine the effective deadlines of

message transmissions on each link.

3.4 Task Assignments

Burns et al. [5] discuss the problem of allocating and scheduling periodic tasks, called trans-

actions, that consist of chains of subtasks (called subtransactions) in DIA (Data Interaction

Architecture) [49]. Each transaction consist of a collection of precedence related processes that

are modeled as subtasks in our periodic flow-shop model. The processors in DIA are linked via

dual-port memories. The network is not fully connected and hence the placement of tasks and

the routing of messages cannot be considered separately. Burns et al. propose a simulated an-

nealing approach that allocates subjobs to processors and assigns priorities to subjobs to satisfy

end-to-end timing constraints. In Chapter 6 we prove that the problem of assigning priorities

to subjobs to meet deadlines is indeed NP-hard, even for a single processor. We have simple

and efficient heuristics that can solve this problem effectively without having to use expensive

optimization techniques.

16

Chapter 4

End-To-End Scheduling of Flow Shops

The traditional flow-shop model is the basic model used in this thesis. In this chapter, we

present two special cases of flow shops for which polynomial-time scheduling algorithms exist.

We describe how we extend these algorithms into heuristic algorithms to schedule flow shops

with arbitrary task parameters.

4.1 Scheduling Identical-Length Task Sets on Flow Shops

Sometimes, tasks have regular structures. In the simplest case, the processing times τij of all

subtasks are identical for all i and j, that is, the task set is of identical length. As an example,

suppose that we are to schedule a set of 64 kbps voice data streams over a n-hop virtual circuit.

The virtual circuit is assigned the same bandwidth on all the links. This system can be modeled

as a flow shop where the subtasks form an identical-length task set with processing times τ .

Sometimes, release times and deadlines are multiples of τ . In this case, we can simply use

the classical earliest-effective-deadline-first (EEDF) algorithm to optimally schedule all tasks

[9]. Again, an algorithm is optimal if it always produces a feasible schedule whenever such

a schedule exists. According to the EEDF algorithm, the subtasks Tij on each processor Pj

are scheduled nonpreemptively in a priority-driven manner. An algorithm is priority-driven

if it never leaves any processor idle when there are tasks ready to be executed. According

to the EEDF algorithm, priorities are assigned to subtasks on Pj according to their effective

deadlines: the earlier the effective deadline, the higher the priority. In other words, the subtask

Tij is assigned a higher priority than Thj if dij < dhj. The scheduling decisions are made

on the first processor P1 whenever it is free; the subtask with the highest priority among all

ready subtasks is executed until completion. The regular structure of the task set allows us to

propagate these scheduling decisions on to the subsequent processors; whenever the subtask T ij

completes on Pj , Ti(j+1) starts on Pj+1.

17

The scheduling decision on the first processor is slightly more complicated if release times

and deadlines are arbitrary rational numbers, that is, not multiples of τ . Garey et al. [13]

introduced the concept of forbidden regions during which tasks are not allowed to start execu-

tion. Their algorithm postpones the release times of selected tasks. This is done to adequately

insert the necessary idle times to make an EEDF schedule optimal. We call the release times

generated from the given effective release times by the above mentioned algorithm the modified

release times. In our subsequent discussion, by release times, we mean modified release times.

By the earliest-effective-deadline-first algorithm, we mean the earliest-effective-deadline-first

algorithm using the modified release times as input parameters rather than the given effective

release times.

Theorem 2. For nonpreemptive flow-shop scheduling of tasks that have arbitrary release times

and deadlines, and whose subtasks have identical processing times τ on all m processors, the

EEDF algorithm never fails to find a feasible schedule whenever such schedules exist. In other

words, the EEDF algorithm is optimal.

Proof. We schedule all the first tasks Ti1 on the first processor P1 according to the EEDF

algorithm. If the resultant schedule S1 of the subtasks T11, T12, · · · , Tn1 on P1 is feasible, then

a feasible schedule of the tasks T1, T2, · · · , Tn on the m processors can be constructed from

S1 as follows: (1) On Pj the subtasks T1j , T2j , · · · , Tnj are executed in the same order as

T11, T21, · · · , Tn1 on P1. The resultant schedule is thus a permutation schedule. (2) The execu-

tion of Tij on Pj begins as soon as Ti(j−1) is completed for j = 2, 3, · · · ,m. Since the processing

times of all subtasks are identical, this construction is always possible. Moreover, since Ti1

completes by its effective deadline di1 given by Equation (2.1), Ti completes by its deadline di.

Suppose that the EEDF algorithm fails to find a feasible schedule of T11, T21, · · · , Tn1 on

P1. Because of the optimality of the EEDF algorithm for scheduling tasks with identical

processing times on one processor [9, 13], we can conclude that there is no feasible schedule

of T11, T21, · · · , Tn1, meeting their effective deadlines d11, d21, · · · , dn1. Therefore there exists no

feasible schedule of T1, T2, · · · , Tn. 2

Corollary 1. For flow-shop scheduling of identical-length tasks sets that have zero release

times and arbitrary deadlines on m processors, the EEDF algorithm is optimal.

18

Proof. This corollary follows from Theorem 2 and the following fact: when the release times of

all tasks are identical, the schedules of T11, T21, · · · , Tn1 on P1 produced by the preemptive and

nonpreemptive EEDF algorithms are the same. Hence the nonpreemptive EEDF algorithm is

optimal among all algorithms. 2

4.2 Scheduling Homogeneous Task Sets on Flow Shops

The assumption that the task sets have identical processing times is a very restrictive one.

Taking a step toward the complete removal of this assumption, we now consider a more general

class of flow shops in which the subtasks Tij on each processor Pj have identical processing

times τj , but subtasks Tij and Tih on different processors may have different processing times,

that is, τj 6= τh in general. This class of flow shops is called flow shops with homogeneous task

sets. An example of flow shops with homogeneous tasks arises in scheduling a set of identical

communication requests over a n-hop virtual circuit when the circuit does not have the same

bandwidth on all the links. We can use Algorithm A, described in Figure 4.1, to schedule such

a set of tasks. According to this algorithm, the scheduling decisions are made on a bottleneck

processor: A processor Pb is a bottleneck processor if the processing time τb of the subtasks on

it is the longest among all processors. The decisions are then propagated to other processors.

The following theorem states the optimality of Algorithm A.

Theorem 3. For nonpreemptive flow-shop scheduling of tasks that have arbitrary release times

and deadlines and whose subtasks on the processor Pj have processing times τj, Algorithm A

never fails to find a feasible schedule whenever such a schedule exists.

Proof. If the resultant schedule Sb on the bottleneck processor Pb is not feasible, we can con-

clude that no feasible schedule of {Tib} exists because of the optimality of the EEDF algorithm

[13]. On the other hand, if Sb is a feasible schedule of {Tib}, the propagation method described

in Step 3 can always generate a feasible schedule S of the set T . This claim is true because the

start time of the next subtask scheduled after Tib on Pb in Sb is no earlier than tib +τb, where tib

is the start time of Tib. Hence, it is always possible to schedule Ti(b+1) on Pb+1 immediately after

Tib completes, Ti(b+2) on Pb+2 immediately after Ti(b+1) completes on Pb+1, and so on. Since

Tib completes by dib, Tir completes by dir for all r ≥ b. Similarly, the subtask that starts before

19

Algorithm A:

Input: Task parameters rij , dij and τj of T .

Output: A feasible schedule S of T or the conclusion that feasible schedules of T do not exist.

Step 1: Determine the processor Pb where τb ≥ τj for all j = 1, 2, · · · , m. If there are two or more such

processors, choose one arbitrarily. Pb is the bottleneck processor.

Step 2: Schedule the subtasks on the bottleneck processor Pb according to the EEDF algorithm. If the

resultant schedule Sb is not a feasible schedule, stop; no feasible schedule exists. Otherwise, if Sb

is a feasible schedule of {Tib}, let tib be the start time of Tib in Sb; do Step 3.

Step 3: Propagate the schedule Sb onto the remaining processors as follows: Schedule Ti(b+1) on Pb+1

immediately after Tib completes, Ti(b+2) on Pb+2 immediately after Ti(b+1) completes, and so on

until Tim is scheduled. For any processor Pr, where r < b, we schedule Tir on Pr so that its

execution starts at time tib −
∑b−1

s=r τs, for r = 1, 2, · · · , b − 1.

Figure 4.1: Algorithm A.

Tib on Pb in Sb starts no later than tib − τb. Again, since τb ≥ τj for j 6= b, the construction in

Step 3 is always possible. 2

An example illustrating Algorithm A is shown in Figure 4.2. We have here 4 tasks with

task parameters listed in Table 4.1. The bottleneck processor is the one on which tasks have

the longest processing times. In this example, it is P3, or b = 3. We note that the sched-

ule S generated by Algorithm A is not an EEDF schedule. It is not priority-driven; pro-

cessors P1, P2, · · · , Pb−1 sometimes idle when there are subtasks ready to be executed. (This

is not the case for the subtasks on Pb+1, Pb+2, · · · , Pm, since the executions of the subtasks

Ti(b+1), Ti(b+2), · · · , Tim begin immediately after they become ready following the termination of

the respective preceding subtasks.) The intervals of idle time in S on the processors preceding

Pb can easily be eliminated, however. The schedule shown in Figure 4.2b is constructed from S

in Figure 4.2a by eliminating the intentional idle intervals on P1 and P2. The resultant schedule

is an EEDF schedule.

20

Tasks ri di τi1 τi2 τi3 τi4

T1 1 10 3 1 4 2

T2 1 13 3 1 4 2

T3 5 30 3 1 4 2

T4 14 26 3 1 4 2

Table 4.1: An Example of a Homogeneous Task Set.

(a) Original Schedule.

0 5 10 15 20 25
time

P1

P2

P3

P4

T1,1 T2,1 T3,1 T4,1

T1,2 T2,2 T3,2 T4,2

T1,3 T2,3 T3,3 T4,3

T1,4 T2,4 T3,4 T4,4

(b) Same Schedule with Intentional Idle Times Removed.

0 5 10 15 20 25
time

P1

P2

P3

P4

T1,1 T2,1 T3,1 T4,1

T1,2 T2,2 T3,2 T3,2

T1,3 T2,3 T3,3 T4,3

T1,4 T2,4 T3,4 T4,4

Figure 4.2: Schedule Generated by Algorithm A.

4.3 Scheduling Arbitrary Task Sets on Flow Shops

In real-world applications the processing times of tasks on individual processors are often not

the same. Some subtasks on a processor may have longer processing times than some other

subtasks on the same processors. The heuristic algorithm described in Figure 4.3 assumes that

subtasks have arbitrary processing times. It is called Algorithm H and has 5 steps. After Step 1

21

Algorithm H:

Input: Task parameters ri, di and τij of T .

Output: A feasible schedule of T , or the conclusion that it failed to find one.

Step 1: Determine the effective release times rij and effective deadlines dij of all subtasks.

Step 2: On each processor Pj , determine the subtask Tmax,j with the longest processing time τmax,j

among all subtasks Tij on Pj .

Step 3: On each processor Pj , inflate all the subtasks by making their processing times equal to τmax,j .

In other words, each inflated subtask Tij consists of a busy segment with processing time τij and

an idle segment with processing time τmax,j −τij . Now, the inflated subtasks form a homogeneous

task set Tinf .

Step 4: Schedule the inflated task set Tinf using Algorithm A.

Step 5: Compact the schedule by eliminating as much as possible the lengths of idle periods that were

introduced when we inflated the subtasks and when we propagated the schedule. The compaction

process can be done using Algorithm C described later in this section. Stop.

Figure 4.3: Algorithm H for Scheduling Arbitrary Tasks in Flow Shops.

has computed the effective ready times and effective deadlines of all subtasks, Step 2 and Step 3

transform the given arbitrary task set into a homogeneous task set, by inflating the processing

times of all subtasks on each processor Pj to be τmax,j, the longest processing time among all

subtasks on Pj . Step 4 uses Algorithm A to construct a schedule of the resultant homogeneous

task set. Then Step 5 tries to improve the schedule produced by Algorithm A and attempts to

construct a feasible schedule S for the original set of tasks.

Algorithm H is relatively simple, with complexity O(n log n + nm). It provides us with a

way to find a feasible schedule of T . By using Algorithm A, Step 4 defines the order in which

the tasks are executed on the processors and produces a permutation schedule.

4.3.1 Suboptimality of Algorithm H

Algorithm H is not optimal for 2 reasons. First, it transforms the given task set into a homo-

geneous task set. Second, it considers only permutation schedules.

22

Inflating the processing times of the subtasks to generate the homogeneous task set Tinf

in Step 3 increases the workload (consisting of the actual workload and added idle times) that

is to be scheduled on the processors. This may in turn increase the number of release-time

and deadline constraints that cannot be met. Moreover, Algorithm A, used to schedule the

inflated task set Tinf , is not optimal for scheduling the original task set T . In particular,

Step 2 in Algorithm A is not optimal for scheduling the original subtasks Tib on the chosen

bottleneck processor Pb. Algorithm A propagates the schedule on the bottleneck processor

onto the remaining processors in its Step 3 by reserving τmax,j time units for the execution of

each subtask on processor Pj . This step may lead to an infeasible schedule of T even when

the schedule Sb of {Tib} on the bottleneck processor Pb is feasible. The inflated task set Tinf

includes idle times on all the processors. Therefore the schedule generated by the invocation of

Algorithm A in Step 4 can be improved.

One way to reduce the bad effects mentioned above is to add a compaction step that

reduces as much as possible the idle times introduced in Step 3 of Algorithm H. To explain

this compaction step, Step 5, let tij be the start time of Tij on Pj . We note again that S is

a permutation schedule. Let the tasks be indexed so that tij < thj whenever i < h. In other

words, T1j starts before T2j , T2j starts before T3j , and so on, for all j. The subtask Tij starts

execution on processor Pj at time

tij = tib +
j−1
∑

k=b

τmax,k (4.1)

for j > b and

tij = tib −
b−1
∑

k=j+1

τmax,k − τij (4.2)

for j < b. However, we can start the execution of the subtask Tij as soon as T(i−1)j terminates

and frees the processor Pj . We have to take care not to begin the execution of Tij before the

effective release time rij of Tij . These considerations are taken into account in Algorithm C,

which is described in Figure 4.4. This algorithm, with complexity O(nm), is used in Step 5. It

compacts the schedule S generated in Step 4 of Algorithm H.

The example given by Table 4.2 and Figure 4.5 illustrates Algorithm H. From Table 4.2

we see that T3 has the longest processing time on P1, T1 the longest processing time on P2,

T4 on P3, and T3 on P4. Therefore, τmax,1 = τ31, τmax,2 = τ12, and so on. The processor

23

Algorithm C:

Input: A schedule S generated in Step 4 of Algorithm H.

Output: A compacted schedule with reduced idle time.

Step 1: Set r̃ij = rij for all i and j.

Step 2: Perform the following steps:

t11 = max(t11, r̃11)

for j = 2 to m do

t1j = t1(j−1) + τ1(j−1)

endfor

for i = 2 to n do

for j = 1 to m − 1 do

tij = max(t(i−1)j + τ(i−1)j , r̃ij)

r̃i(j+1) = tij + τij

endfor

tim = max(t(i−1)m + τ(i−1)m, r̃im)

endfor

Figure 4.4: Algorithm C.

with the longest τmax,j is P3. Therefore, Algorithm A in Step 4 uses P3 as the bottleneck

processor. Figure 4.5a shows the schedule produced in the first four steps in Algorithm H.

After compaction in Step 5, the final schedule is shown in Figure 4.5b. We note that T1 and

T5 miss their deadlines in the schedule of Figure 4.5a. Moreover, T1 is forced to start before

its release time. Every task meets its release time and deadline in the compacted schedule of

Figure 4.5b.

In practice, however, the compaction step (Step 5) of Algorithm H can be omitted, and

be replaced by a priority-driven local scheduler on each processor. The local scheduler on

any processor Pi executes the subtasks in the order determined in Step 4. The subtasks on

P1 become ready at their end-to-end release times and the subtasks on subsequent processors

24

Tasks ri di τi1 τi2 τi3 τi4

T1 1 10 1 2 3 2

T2 1 16 2 2 4 1

T3 1 22 3 2 3 4

T4 14 28 2 1 5 3

T5 14 29 1 1 4 1

Table 4.2: Task Set with Arbitrary Processing Times.

(a) Before Compaction.

0 5 10 15 20 25 30 35
time

P1

P2

P3

P4

T1,1 T2,1 T3,1 T4,1 T5,1
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

T1,2 T2,2 T3,2 T4,2 T5,2
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

T1,3 T2,3 T3,3 T4,3 T5,3
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

T1,4 T2,4 T3,4 T4,4 T5,4
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

(b) After Compaction.

0 5 10 15 20 25 30 35
time

P1

P2

P3

P4

T1,1 T2,1 T3,1 T4,1 T5,1

T1,2 T2,2 T3,2 T4,2 T5,2

T1,3 T2,3 T3,3 T4,3 T5,3

T1,4 T2,4 T3,4 T4,4 T5,4

Figure 4.5: A Schedule Produced by Algorithm H.

become ready when their predecessor subtasks complete. Such a policy naturally generates a

compacted schedule that is identical to the schedule generated by Algorithm C.

Again, the second reason for Algorithm H’s being suboptimal arises from the fact that it

considers only permutation schedules. In flow shops with two or more processors, it is possible

that there is no feasible permutation schedule when feasible schedules exist. In other words, the

25

Tasks ri di τi1 τi2 τi3

T1 0 14 8 2 2

T2 0 22 1 7 2

T3 0 22 1 7 2

Table 4.3: Task Set where Step 4 of Algorithm H Fails.

order of execution of the subtasks may vary from processor to processor in all feasible schedules.

By generating only permutation schedules, Algorithm H fails to find a feasible schedule in such

cases. Even when feasible permutation schedules exist, Algorithm H can fail because Step 4

may generate a wrong execution order for subtasks on the bottleneck processor Pb. This also

can be caused by the wrong choice of the bottleneck processor.

Table 4.3 and Figure 4.6 show an example where P1 is the processor with the longest subtask

and P2 is the processor with the largest sum of the processing times of all subtasks on that

processor. Using P1 as the bottleneck processor, Algorithm A produces a schedule that does

not meet all the deadlines, whereas the choice of P2 as the bottleneck processor results in a

feasible schedule. As mentioned earlier, even when the choice of the bottleneck processor

is correct, (that is, there exists a feasible schedule on the processor that can successfully be

propagated,) Step 2 in Algorithm A is not optimal for scheduling the original set of subtasks

Tib on Pb. Algorithm H can therefore fail to generate a feasible schedule on Pb when a feasible

schedule of the subtasks on Pb exists.

4.3.2 Performance of Algorithm H

We now describe two series of simulation experiments to measure the performance of Algo-

rithm H and the results of these experiments. The first series of experiments determines the

success rate of Algorithm H. By success rate we mean the probability of the algorithm being

successful in generating a feasible schedule, given that such a schedule exists. In the second

series of experiments, we compare Algorithm H to a group of algorithms that are often used to

schedule tasks with timing constraints. In particular, we compare the algorithms using success

rate and total tardiness of the generated schedules as performance measures.

26

(a) P1 as Bottleneck Processor.

0 5 10 15 20 25
time

P1

P2

P3

T1,1 T2,1 T3,1

T1,2 T2,2 T3,2

T1,3 T2,3 T3,3

(b) P2 as Bottleneck Processor.

0 5 10 15 20 25
time

P1

P2

P3

T2,1 T1,1 T3,1

T2,2 T1,2 T3,2

T2,3 T1,3 T3,3

Figure 4.6: Schedules for Two Choices of Bottleneck Processors.

In both series of experiments, we fed the scheduling algorithms with a number of task sets

and analyzed the generated schedules. To describe how the task sets were generated, we use the

notation x ∼ N(µ;σ) to indicate that the random variable x has a normal distribution N(µ;σ)

with mean µ and standard deviation σ. We use N0(µ;σ) to denote the “normal distribution”

obtained by truncating N(µ;σ) at zero so that samples distributed according to N0(µ;σ) have

only nonnegative values. Clearly, µ is not the mean of the truncated distribution N0(µ;σ).

Neither is σ the standard deviation of N0(µ;σ). Nevertheless, the parameters µ and σ give an

intuitive description of the truncated distribution N0(µ;σ). For sake of simplicity, we refer to

them loosely as the “mean” and the “standard deviation” of the truncated distribution N0(µ;σ).

We use the term normalized normal distribution to indicate a normal distribution with mean

µ = 1. Similarly, we use x ∼ U(a; b) to indicate that the random variable x is uniformingly

distributed over the interval from a to b.

The common characteristics of the task sets in each simulation run are determined by the

following parameters. We call them simulation parameters:

27

n: The number of tasks in the flow shop.

m: The number of processors in the flow shop. The parameters n and m control the size of

the task sets being generated.

ρ: This parameter controls the ratio between the mean task processing time and mean in-

terval length between consecutive release times. When ρ has a small value, the task sets

contain short tasks whose release times are far apart. With a larger value for ρ, the re-

sultant task sets are more difficult to schedule because they have long tasks whose release

times are close together.

στ : Standard deviation στ of the normalized distribution of the processing time of the subtasks

on a processor. A smaller value for στ leads to task sets that are more homogeneous.

Indeed, if στ is zero, the generated task sets are homogeneous. With increasing value for

στ , task sets are more and more non-homogeneous.

µl: Mean laxity factor. This parameter controls the ratio of mean laxity to mean total pro-

cessing time in the following way: A small value for µl results in task sets that have

little laxity. Increasing the value of µl increases the mean laxity in the task sets being

generated.

σl: Standard deviation of the normalized normal distribution of laxity factors. We note that,

for a homogeneous task set, a zero value for σl leads to a constant laxity. Moreover, the

interval between the end-to-end release time and the end-to-end deadline of tasks in these

sets have a constant length.

All the task sets used in our experiments are generated in the following way:

(1) The end-to-end release times ri are uniformingly distributed in the range [0, I]:

ri ∼ U(0; I).

When the number n of tasks becomes large, the interval between any two consecutive

release times become exponentially distributed with mean I/n.

28

(2) The mean processing times µτj
of the subtasks on each processor Pj are uniformingly

distributed in the range [0, ρI]:

µτj
∼ U(0; ρI).

(3) The processing time τij of any subtask on Pj is a sample from the truncated normalized

normal distribution N0(1, στ) multiplied by µτj
:

τij

µτj

∼ µτj
N0(1, στ).

(4) The end-to-end deadline di of each task Ti is determined by adding the total processing

time of the task and a laxity to the end-to-end release time. The laxity is determined

by multiplying the total processing time of the task with a laxity factor. The larger the

laxity factor for a given task, the larger the amount of laxity of that task. The laxity

factor li for task Ti is a sample from the normal distribution N0(1, σl) multiplied by the

mean laxity factor µl:

li
µl

∼ µlN0(1, σl).

In the discussion of the experiment results, we denote the amount of laxity of a task by the

utilization factor ui, a measure that is strongly related to the laxity factor, but more intuitive.

The utilization factor is the ratio between the total processing time of the task and the sum of

its total processing time and laxity. The relation between utilization factor ui and the laxity

factor li is straightforward:

ui =
1

li + 1
, li =

1 − ui

ui

The same relation obviously holds also for the mean utilization factor µu and the mean laxity

factor µl.

In our experiments, we varied the size of the task sets (by varying n and m), the degree

of homogeneity (by varying στ), and the amount of laxity (by varying µu). We have decided

to keep ρ constant in order to limit the result space. The variance of the laxity factors was

also kept constant (by not varying σl). This is because the distribution of the actual laxity is a

function of both the distribution of the laxity factor and the distribution of the total processing

time. The effect of varying the variance of the laxity factor is therefore marginal.

29

Parameter Setting

n 4, 6, . . . , 22

m 4, 6, . . . , 22

ρ 0.25

στ 0.05, 0.1, 0.2, 0.3, 0.5

µu 0.2, 0.4, 0.6, 0.7

σl 0.5

Table 4.4: Settings for Simulation Parameters in Experiments.

Table 4.4 gives an overview of the chosen values of the simulation parameters. The half

lengths of the 95% confidence intervals of all the results are below 3%, meaning that in all cases

the confidence interval for a measured success rate of x% is (x ± 3)%. In the vast majority of

the cases the half lengths are below 1.5%.

4.3.2.1 Success Rate of Algorithm H

In this experiment, we measured the success rate of Algorithm H, that is, the probability of

Algorithm H finding a feasible schedule when such a schedule exists. In Figure 4.7 the success

rate of Algorithm H is plotted as a function of the mean utilization factor µu. We see that the

more the task set resembles a homogeneous task set (the smaller στ), the better Algorithm H

performs. This behavior is to expected, since Algorithm H is based on Algorithm A, which is

known to be optimal for the case of homogeneous task sets. Algorithm H performs worse with

decreasing amount of laxity per task. This also is to be expected, given that it is inherently

more difficult to schedule a task set when the laxity is scarce. In some of these experiments,

the amounts of laxity are very small (in the order of 40% of the processing time of a task).

In a sequence of experiments we tried larger amounts of laxity (in the order of 4 times the

processing time of a task) and with larger numbers of tasks on 4 processors. The remaining

other parameters are στ = 0.1 and µu = 0.2. The results, shown in Figure 4.8, indicate that

Algorithm H performs very well.

Unfortunately, the task sets used in this series of experiments are either very small (4 or

6 tasks on 4 or 6 processors) or have large amounts of laxity. This is due to the difficulty in

generating feasible task sets with random parameters.

30

Parameter Setting

n 4, 6

m 4

ρ 0.25

στ 0.1, 0.2, 0.3

µu 0.2, 0.4, 0.6, 0.7

σl 0.5

(a) Simulation Parameters

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
uc

ce
ss

 R
at

e

Mean Utilization Factor mu_u

sigma_t = 0.1
sigma_t = 0.2
sigma_t = 0.3

(b) 4 Tasks on 4 Processors

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
uc

ce
ss

 R
at

e

Mean Utilization Factor mu_u

sigma_t = 0.1
sigma_t = 0.2
sigma_t = 0.3

(c) 6 Tasks on 4 Processors

Figure 4.7: Success Rate of Algorithm H for Small Task Sets.

80

85

90

95

100

105

110

2 4 6 8 10 12 14 16 18

S
uc

ce
ss

 R
at

e

Number of Tasks

Figure 4.8: Success Rate of Algorithm H for Larger Task Sets (µu = 0.2, στ = 0.1).

31

Two problems arise when generating task sets with random parameters: First, with a small

mean laxity factor µl or a large number n of tasks in the flow shop, most of the task sets

generated are not feasible. Before a feasible task set is found, a large number of others that

are not feasible must be discarded. Moreover, every task set being generated has to be tested

for feasibility. Determining the feasibility of a task set has been shown in Chapter 2 to be

NP-hard, and therefore requires expensive search techniques. Although heuristics are used to

detect and discard obviously infeasible task sets (Appendix A describes the heuristics used in

this process), the cost of generating large numbers of feasible task sets of larger size becomes

prohibitively expensive.

The second problem in generating large feasible task sets is more subtle and serious: The

process of sampling the task parameters from a set of distributions and then discarding the

infeasible task sets may bias the original distributions. To illustrate this problem, let us consider

the task sets with a small mean laxity factor µl. As described earlier, the laxity factor li of each

task is a sample from the distribution N(1, σl), multiplied by the factor µl. If µl is small, only

task sets with large li’s can be feasible, effectively biasing the laxity factor distribution towards

a larger mean. The distributions of the task parameters of the feasible task sets do not reflect

the distributions of the simulation parameters (in this example µl) anymore. By limiting this

experiments to very small task sets and a minimum mean laxity factor of 3/7, we avoid the

problem of biasing the original distributions.

4.3.2.2 Comparison of Algorithm H to Other Algorithms

Although the results in the previous section show the success rates of Algorithm H in generating

feasible schedules, we do not know how difficult it is to schedule those task sets in the first place.

In this section, we compare Algorithm H against five other algorithms of different complexities.

These algorithms are:

First-Come-First-Served (FCFS): According to this algorithm, subtasks on the first pro-

cessor are executed in a first-come-first-served order. In other words, subtasks with earlier

release times have higher priorities. This order is preserved on the remaining processors.

This algorithm makes no effort to consider the task deadlines.

32

Least-Laxity-First (LLF): Whenever a processor becomes idle, it selects the subtask that

has the lowest laxity at that time among all the ready ones, and executes it to completion.

This algorithm is non-preemptive and avoids the well known problem of its preemptive

counterpart that sometimes degenerates to a processor-sharing policy.

Effective-Earliest-Deadline-First (EEDF): Whenever a processor becomes ready, it se-

lects the subtask that has the earliest effective deadline among all the ready subtasks,

and executes it to completion. We note that for homogeneous task sets, EEDF behaves

like LLF.

Preemptive-Effective-Earliest-Deadline-First (pEEDF): This is the preemptive coun-

terpart of Algorithm EEDF. Whenever a processor becomes idle or a subtask becomes

ready, the processor selects for execution the subtask with the earliest effective deadline.

If necessary, the currently executing subtask is preempted.

Algorithm Ha: This is an extended version of Algorithm H. It repeatedly executes Algo-

rithm H until it finds a feasible schedule, up to m times. Each time it selects a different

processor as the bottleneck processor. If no feasible schedule is found after all processors

have been used as bottleneck processors, the schedule with the lowest total tardiness is

returned.

In this series of experiments, we compare the performance of the algorithms listed above

and Algorithm H by measuring the success rate and the relative performance of each algorithm.

The success rate is the rate at which an algorithm generates a feasible schedule. The relative

performance is the rate at which the algorithm generates a schedule that is at least as good

as the schedules generated by the competing algorithms. Specifically, an algorithm generates a

schedule that is at least as good as the others for a given task set if (1) the schedule is feasible,

or (2) if no algorithm generates a feasible schedule, and the schedule has the smallest total

tardiness among all the schedules. For a given schedule, if a task completes by its deadline,

the tardiness of the task is zero; otherwise it is equal to the amount of time by which the task

misses its deadline. The total tardiness of a schedule is the sum of the tardiness of all the tasks.

We note that the relative performance is never lower than the success rate and that several

algorithms may score as performing the best for a given task set.

33

The figures plotting the relative performance and the success rates of the algorithms studied

here are in Appendix B. In these plots the vertical axis represent either the success rate or the

relative performance. In Figures B.1 – B.9, we display the relative performance of the algorithms

as a function of the mean utilization factor µu for different degrees of homogeneity (i.e. different

values for στ). As expected, in all experiments Algorithm Ha performs consistently better than

Algorithm H. This is because Algorithm Ha repeatedly uses Algorithm H and improves on it

treating each time a different processor as the bottleneck processor. For task sets with high

and medium degrees of homogeneity, that is for στ = 0.05 and 0.1, both Algorithm H and

Algorithm Ha perform very good, for large and small task sets. Figures B.1 – B.9 show how

for σt = 0.05 and σt = 0.1, Algorithm Ha performs consistently best. In the same cases,

Algorithm H performs at least as good as the remaining algorithms, except for some cases

where the EEDF algorithm performs slightly better. For example, this is the case in Figure B.5

where for µu = 0.4 the EEDF algorithm performs better than Algorithm H, even for very high

degrees of homogeneity (σt = 0.05). If we compare with the success rates of different algorithms

in Figure B.13, we note that the success rates drop to nearly zero at µu = 0.4, that is, at the

same value of µu at which we notice a drop in the performance of Algorithm H and where the

EEDF algorithm performs better.

For small task sets and low degrees of homogeneity (e.g. in Figure B.1 with στ = 0.3 or

0.5), the preemptive pEEDF algorithm performs better than Algorithm Ha. When the size of

the task sets increases, pEEDF algorithm does not perform as well anymore, especially with

high utilization factors. The reason that preemption does not pay off with larger task sets is

illustrated by the example in Figure 4.9. This example compares a pEEDF schedule against a

non-preemptive schedule. By preempting subtask T11 after 4 time units, task T2 finishes earlier

by one time unit; but it causes the completion time of task T1 to be increased by 5 time units.

This increase is enough for T1 to miss its deadline. The simulation results show that this effect

becomes more pronounced for larger task sets, containing a larger number of tasks or a larger

number of processors.

Figures B.10 – B.18 show the success rates of the algorithms as a function of the mean

utilization factor for different degrees of homogeneity. As opposed to the experiments described

in Section 4.3.2.1, in this series of experiments the task sets are not checked for schedulability

before they are used. Therefore, the value of the success rate does not necessarily reflect the

34

0 5 10 15 20
time

P1

P2

∧
r1

∧
r2

∧
d1

∧
d2

T1,1 T2,1

T1,2 T2,2

(a) Schedule Without Preemption.

0 5 10 15 20
time

P1

P2

∧
r1

∧
r2

∧
d1

∧
d2

T1,1 T2,1 T1,1

T1,2T2,2
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

(b) pEEDF Schedule.

Figure 4.9: Preemption not Always Pays Off.

quality of an algorithm. Specifically, a low success rate may indicate that few task sets were

schedulable in the first place. For example, in Figures B.13 – B.16 the success rate for task sets

containing 14 tasks on 4 processors is very low except for task sets with very low utilization

factors. This does not necessarily indicate that the performance of the algorithms are poor,

since it is very unlikely that a randomly chosen task set of that size is schedulable. Therefore, a

large portion of the task sets of this size that were used in this experiment are not schedulable

by any algorithm.

The results for the success rate are similar as for the relative performance: Algorithm FCFS

has lower success rates for all sizes of task sets. For example, as shown in Figure B.14, the

success rate of Algorithm FCFS is substantially lower than all the remaining algorithms, even

when the task sets with small utilization factors µu. Moreover, with increasing µu its success

rate drops to nearly zero, whereas all other algorithms maintain high success rates. Figures B.14,

B.15, and B.18 show that the EEDF algorithm and Algorithm LLF have very similar success

35

rates. Indeed, for task sets with high degrees of homogeneity, the success rates of the two

algorithms are nearly identical. The similarity in the performance of the EEDF algorithm and

Algorithm LLF reflects the fact that for homogeneous task sets the two algorithms behave

the same. In contrast, the values of the relative performance of these algorithms are not

similiar. For example, Figures B.5, B.6, and B.9 show a substantial difference between the

relative performance of these two algorithms. This difference increases with decreasing degree

of homogeneity or increasing mean utilization factor. The reason for this difference in relative

performance of the two algorithms that have similar behaviour, is due to the way the relative

performance is calculated. If the schedules generated by two algorithms are nearly identical

but have a slightly different total tardiness, only one algorithm succeeds when determining the

relative performance. Although the schedules generated by the EEDF algorithm are similar to

the ones generated by Algorithm LLF, their total tardiness is generally smaller.

Algorithm Ha and Algorithm H perform best for high and medium degrees of homogeneity,

and Algorithm Ha performs best for larger task sets. Figure B.14 supports this conclusion; it

shows that Algorithm Ha, Algorithm H, and the pEEDF algorithm have nearly identical success

rates for nearly homogeneous task sets. With decreasing degrees of homogeneity, Algorithm H’s

success rate decreases in relation to the success rates of Algorithm Ha and pEEDF. While for

στ = 0.05 all three algorithms have a success rate of nearly 100% at µu = 0.4, for στ = 0.5 the

success rate of Algorithm H drops to below 80%, whereas the success rate of both Algorithm Ha

and pEEDF is around 90%. Figures B.15 and B.17 clearly show that the success rates of both

Algorithm H and Algorithm Ha are higher than those of the pEEDF algorithm. the only

exceptions are very non-homogeneous task sets (στ = 0.5), where Algorithm Ha and pEEDF

have very similar success rates.

We note that when the numbers of processors in a flow shop increases, the success rates

for all the algorithms increase too. This is counter-intuitive. We expect that as the number

of processors increases and the size of the system becomes larger, task sets should become

more difficult to schedule. A careful examination shows that the reason for the increase in

success rates with larger numbers of processors lays in the way the task sets are generated:

The amount of laxity per task is determined by multiplying the total processing time of the

task by the laxity factor. When the number of processors increases, the total processing time

of the tasks in the task sets increases, and so does the amount of laxity. The negative effect

36

that additional processors have on the schedulability is more than compensated by the positive

effect of the additional laxity.

Figures B.19 – B.24 show the relative performance of the algorithms as a function of the

size of the task sets. The results are shown for high and low degrees of homogeneity (with µτ

equal to 0.05 and 0.5) and for small, medium, and high utilization factors (with µl equal to

0.2, 0.4, and 0.7). With the exception of the case of small degrees of homogeneity and medium

utilization factors (see Figure B.22), Algorithm Ha clearly outperforms all the other algorithms

for all task-set sizes. In general, when the size of the task set varies, the performance of all

the algorithms varies in a similar way. The relative performance increases with the number of

processors and decreases with the number of tasks. Increasing the number of tasks reduces the

relative performance whereas increasing the number of processors increases it. The latter is due

to the increase in laxity, as was explained earlier. In particular, the results in Figure B.24 show

that for systems with very little laxity (µu = 0.7), the performance of some algorithms does not

always decrease with decreasing number of processors. In these cases, Algorithm H and the

two deadline-driven algorithms EEDF and pEEDF perform slightly better on small numbers

of processors. As can be seen from Figures B.25 – B.30, the success rates for these cases are

very small, and so do not contribute to the relative performance. The increase in relative

performance of Algorithm H on task sets with few processors can be explained easily: With

decreasing numbers of processors, the probability of choosing the same bottleneck processor as

Algorithm Ha increases, and so does the probability of generating the same schedule. Similarly,

the probability that the EEDF algorithm generates a schedule that is identical to the one

generated by Algorithm Ha increases with decreasing numbers of processors. This argument

does not hold for the pEEDF algorithm. Because of the small laxity in the task sets, the

schedules generated by the preemptive algorithm are apt to contain many preemptions, thus

bearing little resemblance with the schedules generated by Algorithm Ha. However, the negative

effects of preemptions are not as pronounced for small numbers of processors.

Figures B.25 – B.30 show the success rate as function of the size of the task set. The results

show once more how Algorithm Ha outperforms the other algorithms in all cases, except for

task sets in Figure B.28 which have a low degree of homogeneity and little laxity. These figures

also show that the success rate increases with increasing numbers of processors. Again, this is

due to the higher amount of laxity in task sets with larger numbers of processors.

37

4.4 Scheduling Highly Non-Homogeneous Task Sets

While in some systems (such as fixed-size packet switched networks) the task sets are homo-

geneous or nearly homogeneous, in other systems this may not be the case. For instance, the

data transmitted over a sequence of communication links may consist of large-sized units (such

as entire files) and small units (such as commands). Here we model the communication links as

processors. We can model such a system of data transmissions as a task set that contains tasks

with long subtasks and tasks with short subtasks. This task set is highly non-homogeneous.

However, the task set in this example (call it T) can be partitioned into two task sets TS and

TL. TL consists of long tasks with long subtasks, and TS consists of short tasks with short

subtasks. Each of these two task sets is homogeneous or nearly homogeneous.

In this section we present an algorithm to schedule non-homogeneous task sets that can

be decomposed into two identical-length task sets. We call this algorithm Algorithm PCC and

describe it in Figure 4.10. When the release times of all the tasks are identical, Algorithm PCC

is optimal for a task set that consist of two identical-length task sets with processing times τ

and pτ , where p is a positive integer.

Algorithm PCC in Figure 4.10 uses the EEDF algorithm to schedule the subtasks on each

of the processors preemptively, starting from the first processor P1. The release times of the

subtasks on P1 are the end-to-end release times of the tasks. On each of the subsequent

processors, the release times of the subtasks are the completion times of the predecessor subtasks

on the preceding processor.

When all release times on the first processor are identical, there is no preemption on that

processor. On successive processors, preemptions happen only at times that are integer multi-

ples of τ , because the smallest granule of processing time is τ . For this reason, we can think

of each subtask in TL as a sequence of p subtasks of length τ . We do not need to consider

preemptions explicitly in the proof of the following lemma, which will be used in the proof for

the optimality of Algorithm PCC.

Lemma 1. Let Ta and Tb be two tasks of identical length in a flow shop. If ra ≤ rb and

da ≤ db, any feasible schedule S can be transformed into another feasible schedule S̃ where, on

every processor, Ta executes before Tb.

38

Algorithm PCC:

Input: Task parameters di, τ , and p of T = TS + TL. Both TS and TL are identical-length task sets,

with processing time τ and pτ .

Output: A feasible schedule of T , or the conclusion that feasible schedules of T do not exist.

Step 1: Determine the effective deadlines dij of all subtasks. Set the effective release times ri1 = ri

and the effective release time rij = 0 for all j = 2, · · · , m.

Step 2: On each processor Pj , starting from P1 and continuing until Pm, do the following:

(1) Use preemptive EEDF on Pj to schedule the subtasks on Pj .

(2) For each Tij ∈ T , set the effective release time ri(j+1) of Ti(j+1) to the time when Tij

completes on Pj .

Figure 4.10: Algorithm PCC for Scheduling Task Sets with Two Classes of Identical-Length

Tasks.

Proof. We need to consider two cases: (1) all the subtasks in Ta and Tb have processing time

pτ , and (2) all the subtasks have processing time τ . We will prove the lemma is true for case

(1). That it is true for case (2) follows straightforwardly.

In case (1) the transformation works as follows: Taj and Tbj together have 2p time units

according to the schedule S. In the transformed schedule S̃, Taj is scheduled during the first p

of these time units, and Tbj is scheduled during the remaining p units. When there is only one

processor, we need not be concerned with subtasks on different processors and the dependencies

between the subtasks. S̃ is therefore a valid schedule. Since da < db, if both Ta and Tb meet

their deadlines according to S, they meet their deadline according to S̃.

Suppose that the lemma holds for the k-processor case. We now prove that it holds for

the (k + 1)-processor case also. In S, either Tak completes at time t1 and Tbk completes at a

later time t2, or vice versa. Because Ta’s deadline is no later than Tb and all the subtasks in

Ta and Tb have the same processing time pτ , on processor Pk, the effective deadline dak of Tak

is no later than dbk. The first k processors and the subtasks on them can therefore be viewed

as a k-processor system. By induction hypothesis, the schedule for the first k processors can

39

be transformed into one with the desired property. The resultant schedule is identical to the

schedule S̃ on the first k processors. Moreover, in S̃, Tak completes at or before time t1 and

Tbk completes exactly at time t2. Since all dependencies are preserved in S, both Ta(k+1) and

Tb(k+1) are scheduled at or after time t1. In S̃, Ta(k+1) is scheduled during the first p units of the

2p units of time during which Ta(k+1) and Tb(k+1) are scheduled in S. Clearly, the dependency

between Tak and Ta(k+1) is preserved in S̃. After the transformation, Tb(k+1) is scheduled in a

later interval than it is in S; the dependency between Tbk and Tb(k+1) is preserved too in S̃. We

conclude that all the dependencies are preserved in S̃. Moreover in S̃, Ta completes no later

than in S, and Tb completes either when it completes in S or when Ta completes in S. Both

Ta and Tb meet their deadlines in S̃. 2

Theorem 4. When used to schedule any flow-shop task set T that consists of two identical-

length task sets TS and TL whose tasks have identical release times and whose processing times

are τ and pτ , respectively, for some positive integer p, Algorithm PCC never fails to find an

existing feasible schedule.

Proof. We prove that any feasible schedule S can be transformed into a schedule generated

by Algorithm PCC (a PCC schedule, for short). Let S be a feasible schedule of the task set T .

We transform S into a PCC schedule by applying the steps described below. In the following

description, by swapping two intervals Ia and Ib of length τ between two subtasks Taj and Tbj ,

we mean the following: Before the swapping takes place, Ia and Ib are assigned to Taj and Tbj ,

respectively. (In other words, Taj (or a portion of Taj) is scheduled in Ia and Tbj (or a portion

of Tbj) is scheduled in Ib.) After swapping, Ib is assigned to Taj and Ia is assigned to Tbj .

The two-step transformation works as follows: In a first step, we swap the time intervals

assigned to all short tasks according to S so that, after all the swappings are done, every task

in TS executes before all other tasks in TS that have later deadlines. This is done by repeatedly

swapping the intervals assigned to a pair of short tasks that are not scheduled in order, until

they are in order. Similarly, we repeatedly swap the intervals assigned to pairs of long tasks

that are not scheduled in order according to S until every task in TL executes before all other

tasks in TL that have later deadlines. Lemma 1 shows that this can always be done. We call

the resultant ordered schedule So.

40

Pj−1

Pj

Pj+1

IX

IA IB

IY IZ

t − τ t t + τ t + 2τ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

end of
PCC schedule

Figure 4.11: Transforming an Arbitrary Schedule into a PCC Schedule.

In a second step, we scan the ordered schedule So from the left to the right on each processor,

starting from processor P1, then P2 and so on. Specifically, suppose that while scanning the

schedule So on processor Pj , we find that the schedule So is a PCC schedule until time t > τ ;

the schedule on processors P1, P2, · · · , Pj−1 is already a PCC schedule. At t, we encounter one

of the following conditions, making the schedule So not a PCC schedule. We stop and take the

actions described below. To describe these conditions, we will use the following notations: The

typical situation encountered while scanning the schedule is described in Figure 4.11. IA and

IB refer to two adjacent intervals of length τ on processor Pj . IX refers to the interval which

starts and ends at the same time as IA but is on processor Pj−1. IY and IZ are two adjacent

intervals of length τ on processor Pj+1. IY starts at the same time as IB and IZ starts after

IY . Each of the intervals IA, IB , IX , IY , and IZ is either an idle interval, or is assigned to an

entire subtask of a short task in TS or to a portion of a subtask of a long task in TL.

(1) The interval IA is an idle interval and IB is assigned to Taj : If IX is not assigned to

Ta(j−1), swap the intervals IA and IB , that is, assign IA to Taj and leave IB idle.

(2) IA is assigned to Taj and IB is assigned to Tbj, where Ta ∈ TS and Tb ∈ TL, and daj > dbj :

If IX is assigned to Tb(j−1), we continue scanning. Otherwise, we swap IA and IB on

processor Pj . If IY is assigned to Ta(j+1), swap IY and IZ so that the dependency between

Taj and Ta(j+1) is preserved. Similarly, on each of the remaining processors, if necessary

41

Pj−1

Pj

Pj+1

Ta(j+1) · · · Ta(j+1)

IX

IA IB

IY IC

t − τ t t + τ tc

Figure 4.12: Ta(j+1) Starts at Time t.

to preserve the dependencies of subtasks in Ta, swap the interval assigned to Ta with the

immediately following interval of length τ .

(3) IA is assigned to Taj and IB is assigned to Tbj, where Ta ∈ TL and Tb ∈ TS , and daj > dbj :

If IX is assigned to Tb(j−1), continue scanning. Otherwise, swap IA and IB . If IY is

assigned to Ta(j+1), then let IC (starting at time tc) be the first interval after time t

assigned to a subtask other than Ta(j+1) as illustrated by Figure 4.12. Swap IY and IC .

Similarly, on each of the remaining processors, if necessary to preserve the dependency

of subtasks in Ta, swap the first interval assigned to Ta with the first interval of length τ

that is not assigned to Ta.

We now argue that the actions described above can always be taken without creating an

invalid or infeasible schedule: Case (1) is clearly always possible.

In Case (2), the swapping of IA and IB on Pj and IY and IZ on Pj+1 preserve all dependencies

between subtasks on Pj and on Pj+1. The same holds true on the remaining processors when the

interval assigned to Ta is swapped with the immediately following interval in order to preserve

the dependencies of subtasks in Ta. Case (2) is therefore always possible.

In order to argue that Case (3) is always possible, we need to show first that during the

transformation process we never swap two intervals assigned to two tasks both of which belong

to either TS or TL ; therefore, during the entire transformation process, the orders of tasks

within TS or TL are preserved. To prove this, we now show that the interval IC is not assigned

42

to a long task by contradiction. Assume that IC is assigned to Tc, where Tc ∈ TL. There is not

enough time between t + τ (the end of the interval IB) and tc (the beginning of the interval

IC) to execute Tcj. Therefore, at least some portion of Tcj executes before some portion of Taj ,

which is assigned interval IA. On Pj+1, some portion of Ta(j+1) precedes a portion of Tc(j+1).

This contradicts the assumption that after Step 1 the tasks in TL are scheduled in order of

increasing deadlines. Hence, either IC is an idle interval, or it is assigned to a short task. If

IC is an idle interval, Case (3) is clearly possible. If, on the other side, IC is assigned to some

short task Tc, we can argue in a similar way as above that the subtask Tcj must complete by

time t+ τ : Assume that Tcj completes later than time t+ τ . In this case, Tbj precedes Tcj, and

Tc(j+1) precedes Tb(j+1), contradicting the assumption that all the short tasks are scheduled

in order of increasing deadlines. The action taken in Case (3) does therefore not violate any

dependency between subtasks on Pj and subtasks on Pj+1. That swappings on the remaining

processors are possible, if necessary to preserve the dependencies between subtasks in Ta, can

be shown by this same argument.

During these repeated transformations we sort the subtasks according to their deadlines

and eliminate idle times whenever possible. Hence, this process eventually comes to an end and

generates a PCC schedule.

Suppose that Algorithm PCC fails to find a feasible schedule, that is, Algorithm PCC gen-

erates a schedule that is not feasible, but a feasible schedule exists. We use the transformation

process described above to generate a feasible PCC schedule from the feasible schedule. This

leads to a contradiction. Therefore, no feasible schedule exists. 2

Algorithm PCC is not optimal when used to schedule task sets with long and short tasks

whose release times are arbitrary. There are two reasons: (1) the unexpected delay a task

experiences on later processors when it is preempted, and (2) inconsistency of timing constraints

when release times are arbitrary.

The first reason was discussed earlier in Section 4.3.2.2. Figure 4.9 shows that Algo-

rithm pEEDF (and therefore Algorithm PCC) is not optimal for scheduling identical-length

task sets with arbitrary release times. Since identical-length task sets are a special case of task

sets with long tasks and short tasks, Algorithm PCC is not optimal for the latter task sets

either.

43

0 5 10 15 20
time

P1

P2

P3

∧r1
r2

∧r3

∧
d1
d3

∧
d2

T2,1 T3,1 T2,1 T1,1

T1,2T3,2 T2,2

T1,3T3,3 T2,3
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

(a) PCC Schedule with Inconsistent Deadlines.

0 5 10 15 20
time

P1

P2

P3

∧r1
r2

∧r3

∧
d1

∧
d3

∧
d2

T1,1 T3,1 T2,1

T1,2 T3,2 T2,2

T1,3 T3,3 T2,3

(b) PCC Schedule with Adjusted Deadlines.

Figure 4.13: Effect of Inconsistent Deadlines.

The second reason for Algorithm PCC not being optimal for arbitrary release times is the

inconsistency of timing constraints. By a set of timing constraints being inconsistent, we mean

that at least one given timing constraint (a release time or a deadline) does not reflect the

actual timing constraint that task must meet in order to complete in time. In all feasible

schedules, the task starts after the timing constraint, if it is a release time, or finishes before

it, if it is a deadline. For example, Figure 4.13a shows a task set whose timing constraints are

not consistent. The latest point in time by which task T11 must complete on P1 is t = 1, which

is well before the effective deadline d11 = 11. If T11 completes after time t = 1, the task T1

can not finish before its deadline d1, because all processors are used by T3. To make the set of

44

deadlines consistent, d11 must be adjusted from d11 = 11 to d11 = 1, and d12 from d12 = 13

to d12 = 2. As illustrated in Figure 4.13a, because the effective deadline d11 does not reflect

the time by which of T11 must complete on P1 in order for T1 to complete in time, a wrong

scheduling decisions is made. In Figure 4.13b the effective deadlines for T1 have been adjusted.

The scheduling decisions in Figure 4.13b are based on the adjusted effective deadlines. This

causes T1 to start before T2 and to hence meet its deadline. The resulting schedule is feasible.

The difficulty is that there is no easy way to determine how effective deadlines should

be adjusted. One form of consistency of timing constraints (called internal consistency) is

formally defined by Garey and Johnson in [10]. This definition is used for the special case of

unit-length tasks on two processors with dependencies. Garey and Johnson reduce this two-

processor scheduling problem to the problem of adjusting the deadlines to make them internally

consistent, and then scheduling the tasks in order of increasing adjusted deadlines. Similarly, the

use of forbidden regions (defined by Garey et al. in [13] and mentioned before in Section 4.1),

during which tasks are not allowed to start execution, is a way to resolve inconsistencies of

release times. Unfortunately, ways to find consistent timing constraints are only known for

systems with unit-length tasks and one or two processors.

These considerations about why Algorithm PCC is not optimal lead us directly to a heuristic

algorithm, Algorithm HPCC, that we use to schedule task sets with arbitrary task parameters

containing short tasks and long tasks. Algorithm HPCC, described in Figure 4.14, is based

on Algorithm PCC. Tasks are scheduled according to the preemptive EEDF algorithm on

each processor. The release times of tasks on each processor are either the end-to-end release

times of the tasks, on the first processor, or the finishing time on the earlier processor, for the

remaining processors. The preemptability of tasks is restricted, however. By restricting the

preemptability, we mean that only short tasks are allowed to preempt other tasks. Long tasks

are not allowed to preempt any task. In this way we deal with the earlier mentioned problem

of unexpected delays on later processors when a task is preempted. The delay of the currently

executing task caused by preemption is limited to the processing time of a short subtask per

each preemption. The penalty incurred by the preempted task is therefore limited.

Algorithm HPCC does not consider inconsistencies of timing constraints. However, the effect

of these inconsistencies on preemptive schedules is much smaller. In one-processor systems with

no dependencies, for example, inconsistent deadlines can cause a non-preemptive EDF scheduler

45

Algorithm HPCC:

Input: Task parameters ri, di and τij of T = TS +TL. TS and TL are sets of tasks whose subtasks have

short and long processing times.

Output: A feasible schedule of T , or the conclusion that feasible schedules of T do not exist.

Step 1: Determine the effective deadlines dij of all subtasks. Set ri1 to be ri.

Step 2: On each processor Pj , starting from P1 and continuing until Pm, do the following:

(1) Use restricted preemptive EEDF on Pj . Restrict the ability to preempt so, that no task can

be preempted by a long task.

(2) For each Tij ∈ T , set the effective release time ri(j+1) of Ti(j+1) to the time when Tij

completes on Pj .

Figure 4.14: Algorithm HPCC for Scheduling Task Sets with Short and Long Tasks.

to fail. They have no effect on a preemptive EDF scheduler, however. Therefore, we expect

that inconsistencies of timing constraints are much less likely to cause Algorithm HPCC to fail

than would be the case for a non-preemptive algorithm.

The performance of Algorithm HPCC was evaluated in a sequence of simulation experiments

that compared the algorithm to a number of algorithms traditionally used to schedule task

sets with timing constraints. In particular, we compared Algorithm HPCC to the algorithms

described in Section 4.3.2.2. We used the method described there: We apply Algorithm HPCC

to randomly generated task sets and measure the success rate and the relative performance of

each algorithm.

The task sets that are used in the experiments described below are non-homogeneous and

have the following common characteristics:

• The task sets consist of long and short tasks.

• The subtasks of each task have identical processing times. The processing times of sub-

tasks in different tasks may not be identical.

• Short tasks have less laxity than long tasks.

46

The following simulation parameters are used to generate the task sets. Some of the param-

eters (n, m, µl, σl) have the same meaning as in the experiments in Section 4.3.2, whereas the

meanings of some other parameters (ρ and στ) are slightly different. Other parameters, such

as s and p, have been added:

n: The number of tasks in the flow shop.

m: The number of processors in the flow shop.

s: The portion of tasks in the task set that are short. The task set contains bs nc short tasks

and n − bs nc long tasks.

ρ: This parameter controls the mean processing time of long subtasks. The mean processing

time of long subtasks is set to be ρI, where I denotes the range of the end-to-end release

time of all tasks.

p: The ratio of the mean processing times of long subtasks to short subtasks. The larger p,

the smaller the processing time of short subtasks.

στ : Standard deviation of the normalized distribution of the processing time of the subtasks

in a task. If στ is zero, the generated task sets consist of two identical-length task sets.

With large values for στ , task sets generated may no longer consist of two distinguishable

classes of (long and short) tasks.

µl: Mean laxity factor. This parameter controls the ratio of laxity to total processing time.

σl: Standard deviation of the normalized normal distribution of laxity factors.

All the task sets used in the following experiments are generated in the following way, that

is similar to the method used in Section 4.3.2:

(1) The end-to-end release times ri are uniformingly distributed in the range [0, I]:

ri ∼ U(0; I).

(2) The processing time τi of all subtasks of each task is chosen from one of two distributions:

τi ∼ ρN0(1, στ) if Ti is a long task

τi ∼
ρ
pN0(1, στ) if Ti is a short task.

47

Parameter Setting

n 4, 12, 20

m 12

s 0.25, 0.75

ρ 0.2

στ 0.05, 0.2, 0.5

µu 0.2, 0.4, 0.6, 0.7

σl 0.5

Table 4.5: Settings for Simulation Parameters in Experiments.

(3) The processing times τij of each subtasks is set to τi:

τij = τi, for all i and j

(4) The end-to-end deadline di of each task Ti is determined by adding the total processing

time of the task and a laxity to the end-to-end release time. The laxity is determined by

multiplying the total processing time of the task with a laxity factor. The laxity factor li

for task Ti is first chosen from the normal distribution N0(1, σl) and then multiplied by

the mean laxity factor µl:

li ∼ µlN0(1, σl) = N0(µl, µlσl).

We note that the laxity factors for long and short tasks are sampled from the same

distribution. This generates short tasks with smaller amounts of laxity than long tasks.

The settings of the simulations parameters are shown in Table 4.5. The half-length of the

95% confidence intervals of the results are below 1.1% for both the relative performance and

the success rate.

The plots of the relative performance and success rates summarizing the results of these

experiments are in Appendix C. Figures C.1 to C.3 show the results of this experiment on a flow

shop with 12 processors. The results show that Algorithm HPCC performs very well for task sets

with large numbers of long tasks (s = 0.25), especially when laxity is scarce (µu = 0.6, 0.7). As

expected, Algorithm HPCC does not perform well when the variance of processing times is high

48

(as for στ = 0.5). These task sets no longer consist of long and short tasks, but look much more

like task sets with arbitrary task parameters. For such cases the pEEDF algorithm performs

better, and, when laxity is scarce (µu = 0.7), Algorithm Ha performs best. Algorithm Ha was

shown to perform well earlier in the experiments described in Section 4.3.2.2. The algorithms

LLF, FCFS, and EEDF perform very bad throughout the experiment. For this reason, we do

not include the results on their performance here.

The success rate of Algorithm HPCC, shown in Figure C.4 to Figure C.6, are not as good

as its relative performance would suggest. Throughout the experiments, the success rates of

Algorithm HPCC are similar to that of the pEEDF algorithm. For the case of many short tasks

in particular, the results are nearly identical. This is because Algorithm HPCC and the pEEDF

algorithm behave identically for task sets that contain no long tasks. In general, the success

rates of Algorithm HPCC are slightly lower than those of the pEEDF algorithm, except for

task sets with little slack (µu = 0.6 or 0.7) and little variance in processing time (στ = 0.05).

The good results for the relative performance show that Algorithm HPCC generates schedules

with smaller total tardiness than Algorithm pEEDF.

We note that all algorithms have better results for task sets with large numbers of short

tasks. This illustrates how occasional wrong scheduling decisions tend to have smaller effects

when the tasks involved are small.

49

Chapter 5

Scheduling Flow Shops with Recurrence

In this chapter we present two algorithms to schedule identical-length task sets on flow shops

with simple recurrence patterns. Specifically, we focus our attention on the case of simple task

sets. By a simple flow shop with recurrence, we mean one where the visit sequence contains

a single simple loop. The visit graph of such a visit sequence is depicted in Figure 2.1. An

example of a flow shop whose visit sequence contains a loop is the control system described in

Chapter 1 where the two communication links are replaced by a bus.

5.1 Identical Release Times

We extend the EEDF algorithm so that it can be used to optimally schedule simple task sets

on flow shops with recurrence and identical release times. We show that a modified version of

the EEDF algorithm, called Algorithm R, is optimal for scheduling tasks to meet deadlines.

The key strategy used in Algorithm R is based on the following observation. If a loop in

the visit graph has length q, the second visit of every task to a reused processor, corresponding

to a node in this loop, should not be scheduled before (q − 1)τ time units after the completion

of its first visit to the processor. Let Pvl
be the first processor in the loop of length q. Let {Til}

and {Ti(l+q)} be the sets of subtasks that are executed on Pvl
. Til is the subtask at the first

visit of Ti to Pvl
, and Ti(l+q) is the subtask at the second visit of Ti to the processor. Ti(l+q) is

dependent on Til.

Algorithm R is described in Figure 5.1. The scheduling decision is made on a reused

processor Pvl
, the first processor in the loop in the visit graph. Specifically, Step 1 uses the

EEDF algorithm to schedule the set {Til}. As the subtask Til at the first visit is scheduled, the

effective release time of the second visits is postponed whenever necessary, so that it will be

scheduled to start no sooner than (q−1)τ time units after Til completes. The subtask Ti(l+q) is

scheduled together with other subtasks on the processor according to the EEDF algorithm. In

50

Algorithm R:

Input: Task parameters rij , dij , τ , of T and the visit graph G. Pvl
is the first processor in the single

loop of length q in G.

Output: A feasible schedule S or the conclusion that the tasks in T cannot be feasibly scheduled.

Step 1: Schedule the subtasks in {Til}∪{Ti(l+q)} on the processor Pvl
using the modified EEDF algo-

rithm described below: the following actions are taken whenever Pvl
becomes idle

(1) If no subtask is ready, leave the processor idle.

(2) If one or more subtasks are ready for execution, start to execute the one with the earliest

effective deadline. In both cases, when a subtask Til (that is, the first visit of Ti to the

processor) is scheduled to start its execution at time til, set the effective release time of its

second visit Ti(l+q) to til + qτ .

Step 2: Let til and ti(l+q) to be the start times of Til and Ti(l+q) in the partial schedule SR produced

in Step 1. Propagate the schedule to the rest of the processors according to the following rules:

(1) If j < l, schedule Tij at time til − (l − j)τ .

(2) If l < j ≤ l + q, schedule Tij at time til + (j − l)τ .

(3) If l + q < j ≤ k, schedule Tij at time ti(l+q) + (j − l − q)τ .

Figure 5.1: Algorithm R to Schedule Flow Shops with Single Simple Loops.

the second step, the partial schedule on processor Pvl
is propagated to the remaining processors

by appending the execution of the remaining subtasks on both sides of the scheduled subtasks.

The following theorem states the optimality of Algorithm R.

Theorem 5. For nonpreemptive scheduling of tasks in a flow shop with recurrence, Algo-

rithm R is optimal, when the tasks have identical release times, arbitrary deadlines, identical

processing times, and a visit sequence that can be characterized by a visit graph containing a

single, simple loop.

Proof. By virtue of the effective release times and deadlines, whenever we can find a feasible

schedule Svl
of {Til} and {Ti(l+q)} on processor Pvl

in Step 1, we can propagate it to the other

processors and thus generate a feasible schedule for the entire flow shop. It is therefore sufficient

51

for us to prove that Step 1, which generates a modified EEDF schedule SR on the processor

Pvl
, is optimal. We do so by showing that any feasible schedule Svl

on Pvl
can be transformed

into the schedule SR.

Suppose that the feasible schedule Svl
of the subtasks {Til} and {Ti(l+q)} on Pvl

is not a

modified EEDF schedule. We can transform Svl
into a modified EEDF schedule by repeatedly

applying the steps described below. In the following description, we use the same term swapping

defined in Section 4.4. Because all tasks have the same release times and identical processing

times τ , the schedule Svl
can be segmented into intervals of length τ , each of which is assigned

to a single subtask. Instead of saying that we swap the two intervals that are assigned to two

subtasks Taj and Tbj , in the following we simply say that we swap the subtasks Taj and Tbj .

The transformation process works as follows: we repeatedly scan the schedule Svl
from the

beginning until we reach the end of the schedule or a point t when we encounter one of the

following conditions. We take the corresponding action when a condition is encountered.

(1) No subtask is scheduled to start at time t− τ and the subtask scheduled to start at time

t is Tal: We schedule Tal to start its execution at time t − τ .

(2) No subtask is scheduled to start at time t − τ and the task scheduled to start at time t

is Ta(l+q): We schedule Ta(l+q) to start at time t − τ if t− τ ≥ tal + qτ , where tal denotes

the start time of Tal.

(3) Tal and Tbl are scheduled to start at times t − τ and t, respectively, and dal > dbl: We

swap Tal and Tbl. If Ta(l+q) is scheduled before Tb(l+q), we swap these to subtasks.

(4) Ta(l+q) and Tb(l+q) are scheduled to start at times t − τ and t, respectively, and da(l+q) >

db(l+q): If Tbl is scheduled to start before t−(q+1)τ , we swap Ta(l+q) and Tb(l+q). Otherwise

we continue scanning.

(5) Ta(l+q) and Tbl are scheduled to start at times t − τ and t, respectively, and da(l+q) > dbl:

We swap Ta(l+q) and Tbl.

(6) Tal and Tb(l+q) are scheduled to start at times t − τ and t, respectively, and dal > db(l+q):

If Tbl is scheduled to start after t − (q + 1)τ , we continue scanning. Otherwise, if Tbl is

scheduled to start at or before t− (q+1)τ , we swap Tal and Tb(l+q). If Ta(l+q) is scheduled

52

to start at t+ (q − 1)τ , its execution must be delayed by at least τ time units to keep the

schedule valid. There are three possibilities:

(a) If no subtask is scheduled to start at time t + qτ , Ta(l+q) is delayed to start at time

t + qτ .

(b) If a subtask of Txl, the first visit of some task Tx, is scheduled to start at time t+qτ ,

we swap Txl with Ta(l+q).

(c) If a subtask Tx(l+q), the second visit of some task Tx, is scheduled to start at time

t + qτ , we swap Tx(l+q) with Ta(l+q).

Each of the actions described above ensures that the schedule remains valid throughout the

transformation. Obviously, the actions in cases (1) to (5) are possible, and they do not lead to

an infeasible schedule; so are cases (6a) and (6b). Case (6c) is possible because for the original

schedule to be valid, Txl must be scheduled to start before t− τ . Txl is not schedule to start at

t − τ or t, and Tx(l+q) starts at t + qτ . Therefore, there is enough time between the first and

the second visit of Tx to processor Pvl
after Tx(l+q) is swapped with Ta(l+q).

Again, we repeatedly scan the schedule until no more transformation can be applied. In

this transformation process we sort the subtasks according to their deadlines and eliminate idle

times whenever possible. Therefore, the transformation process eventually comes to an end and

generates a schedule SR, that is, a modified EEDF schedule.

To complete the proof of that Algorithm R never fails to generate a feasible schedule,

whenever such a schedule exists, we suppose that the Algorithm R fails to find a feasible

schedule. In other words, the modified EEDF schedule produced in Step 1 is not feasible.

Suppose that there is a feasible schedule Svl
of {Til} and {Ti(l+q)} on Pvl

. We can use the

transformation process described above to transform Svl
into a feasible schedule SR that is a

modified EEDF schedule. This leads to a contradiction. Therefore, there exists no feasible

schedule of {Til} ∪ {Ti(l+q)} on Pvl
and no feasible schedule of {Ti} when the Algorithm R

produces an infeasible schedule. 2

The example given in Table 5.1 and Figure 5.2 illustrates Algorithm R. The length of the

processing time τ of all subtasks is one. The visit sequence is V = (1, 2, 3, 4, 2, 3, 5), with the

subsequence (2, 3, 4, 2, 3) forming a single simple loop. Since processor P2 is the first reused

processor in the loop, the scheduling decision is made on P2.

53

Tasks ri di

T1 0 8

T2 0 9

T3 0 10

T4 0 12

V = (1, 2, 3, 4, 2, 3, 5)

(a) The Task Set. (b) The Visit Sequence.

Table 5.1: Identical-Length Task Set with Identical Release Times.

0 2 4 6 8 10 12
time

P1

P2

P3

P4

P5

T1,1 T2,1 T3,1 T4,1

T1,2 T2,2 T3,2 T1,5 T2,5 T4,2 T3,5 T4,5

T1,3 T2,3 T3,3 T1,6 T2,6 T4,3 T3,6 T4,6

T1,4 T2,4 T3,4 T4,4

T1,7 T2,7 T3,7 T4,7

Figure 5.2: Schedule Generated by Algorithm R.

We note that Algorithm R can also be used for task sets that have individual release times

and an overall deadline. For this purpose, before applying Algorithm R, the signs of the release

time and the deadline of each task are negated, that is, we treat the release time as the deadline

and the deadline as the release time. Also, we reverse the dependencies, that is, Ti(m−1) depends

on Tim, Ti(m−2) depends on Ti(m−1), and so on. In this way a mirror image of the original task

set is generated. The schedule is then generated ‘backwards’ starting from the original deadline.

This is explained by the example depicted in Table 5.2 and Figure 5.3. All tasks in the task

set T in Table 5.2 have identical deadlines, but arbitrary release times. Changing the sign of

release times and deadlines and reversing the dependencies generates the mirror image task

set T ′, in which all tasks have identical release times r ′i = −di = −20. Figure 5.3a shows

the resultant schedule S ′ after Algorithm R has been applied to task set T ′. The schedule S ′

54

Tasks ri di

T1 11 20

T2 14 20

T3 15 20

V = (1, 2, 3, 2, 4)

(a) The Task Set. (b) The Visit Sequence.

Table 5.2: Identical-Length Task Set with Arbitrary Release Times and Identical Deadlines.

−20 −18 −16 −14 −12
time

P4

P2

P3

P1

T3,5 T2,5 T1,5

T3,4 T2,4 T1.4T3,2 T2,2 T1,2

T3,3 T2,3 T1,3

T3,1 T2,1 T1,1

(a) Schedule S ′ of Task Set T ′.

12 14 16 18 20
time

P1

P2

P3

P4

T3,1T2,1T1,1

T3,4T2,4T1.4 T3,2T2,2T1,2

T3,3T2,3T1,3

T3,5T2,5T1,5

(a) The Final Schedule S.

Figure 5.3: Applying Algorithm R to Task Set with Arbitrary Release Times and Identical
Deadlines.

meets all deadlines d′i of the task set T ′. The schedule S of the original task set T is generated

by changing the sign of the start times in S ′ of the subtasks, effectively generating the mirror

55

image of the schedule S ′. Figure 5.3b shows the final schedule S of the original task set T . All

release times and deadlines are met in this schedule.

The problem of scheduling the subtasks on the reused processor Pvl
in Step 1 of Algorithm R

is a variation of the problem of scheduling in-trees with separation constraints described by Han

in [19]. In Han’s problem, a set of unit-processing time tasks, whose dependency graph consists

of a set of in-trees, is to be scheduled on one processor in a way that (1) the individual deadlines

of the root tasks are met, and (2) whenever Ti is dependent on Tj, Ti must be executed k or

more time units after Tj is executed. k is called the minimum separation and is a parameter of

the problem. Han solves this problem in [19] with a vertex labeling approach in the dependency

graph. We note that our problem of scheduling on a reused processor can be formulated as a

scheduling problem with separation constraints where the in-trees are chains of two subtasks,

with the minimum-distance constraint k equal to the length of the loop.

Both the problem of scheduling on a reused processor and Han’s problem of scheduling with

separation constraints are related to a wide class of multiprocessor and pipeline scheduling

problems that can be formulated as separation problems [29]. The separation problem, as well

as its dual problem, the bandwidth-minimization problem, is defined in the following way: Given

an arbitrary graph, find a one-to-one labeling of the vertices, so that the difference between

the labelings of any two adjacent vertices is at least k. The problem of scheduling on a reused

processor with identical release times can be easily formulated as a separation problem.

5.2 Non-Identical Release Times

Algorithm R is optimal only if all the tasks in the identical-length task set have identical release

times or identical deadlines. This is because the modified EEDF algorithm used in Step 1 of

Algorithm R fails to optimally schedule the subtasks on the reused processor when the subtasks

have individual release times and deadlines. In the following, we describe Algorithm RR for

scheduling task sets with individual release times and deadlines, when both release times and

deadlines are integer multiples of qτ , where q is the length of the loop. Algorithm RR is de-

scribed in Figure 5.4. It is similar to Algorithm R. However, it does not use the modified EEDF

algorithm in Step 1, but an algorithm that optimally schedules the subtasks with individual

release times and deadlines on the reused processor.

56

Algorithm RR:

Input: Task parameters ri, di, τ , of T and the visit graph G. Pvl
is the first processor in the single

loop of length q in G. The rivl
’s and divl

’s are multiples of qτ .

Output: A feasible schedule S or the conclusion that the tasks in T cannot be feasibly scheduled.

Step 1: Schedule the subtasks in {Til}∪{Ti(l+q)} on the processor Pvl
using the following algorithm:

(a) Transform the set of subtasks {Til}∪{Ti(l+q)} in the following way:

(i) Multiply the processing time of each subtask by q. Each subtask has now the processing

time qτ .

(ii) Define each subtask Ti(l+q) to be dependent from Til. By this we mean that Ti(l+q) can

only start executing once Til is terminated.

We call the resulting task set T̃vl
, and each modified subtask T̃il or T̃i(l+q).

(b) Find a feasible q-processor schedule for the task set T̃vl
. This can be done by using Al-

gorithm F described later in this section. Call the resultant schedule S̃vl
. If no feasible

schedule can be generated, stop: no feasible schedule exists. Otherwise, go to Step (c).

(c) Scan the schedule S̃vl
from left to right. For each time interval of length qτ in the schedule

S, determine which modified tasks T̃ij execute on the q processors in S̃vl
. Schedule the

corresponding subtasks Tij (of length τ) on Pvl
so, that no two visits of Ti to Pvl

are

scheduled within (q − 1)τ time units of each other. This is done by first executing the first

visits to Pvl
, and after that the second visits. The second visits Ti(l+q) to Pvl

are scheduled

in the same order as their first visits were schedule earlier. The resultant schedule on Pvl
is

called SRR.

Step 2: Propagate the partial schedule SRR produced in Step 1 to the remaining processors in the

same way as described in Step 2 of Algorithm R.

Figure 5.4: Algorithm RR to Schedule Flow Shops with Single Simple Loops.

This algorithm used in Step 1 of Algorithm RR consists of two parts: In a first part, the

time line is partitioned into non-overlapping intervals of length qτ , each of which starts at an

integer multiple of qτ . All subtasks on Pvl
are scheduled to execute during one of these intervals,

such that (1) all subtasks meet their timing constraints, (2) no two subtasks belonging to the

same task are assigned to the same interval, and (3) for every task, the second subtask does not

start earlier than q − 1 time units after the first subtask completes. This schedule, called SRR

57

in Figure 5.4, is used as the basis in Step 2 of Algorithm RR, which produces the schedules

for the other processors in the system. To construct the schedule SRR in Step 1(a), we first

transform the set {Til}∪{Ti(l+q)} of subtasks on Pvl
as follows: For each subtask Til (or Ti(l+q)),

there is a corresponding subtask T̃il (or T̃i(l+q)) with processing time qτ . Its effective release

time and deadline are the same as that of Til (or Ti(l+q)). T̃i(l+q) depends on T̃il, as Ti(l+q)

depends on Til. We then schedule the transformed set {T̃il}∪{T̃i(l+q)} on q processors. This

work is done in Step 1(b). Because the release times of all subtasks are integer multiples of qτ

and the processing times of all subtasks T̃il and T̃i(l+q) are equal to qτ , in the resultant schedule,

called schedule S̃vl
in Figure 5.4, all subtasks are scheduled to start at time instants that are

integer multiples of qτ and are not preempted.

In Step 1(c), the schedule S̃vl
is transformed into the schedule S̃RR on the processor Pvl

. If

the subtask T̃ij is scheduled to start from time t in S̃vl
, the corresponding subtask Tij is assigned

to the interval [t, t+qτ] in S̃RR. We schedule the corresponding task Tij in the interval assigned

to T̃ij Clearly, if T̃ij meets its timing constraints, the corresponding subtask Tij also meets its

timing constraints.

Since T̃il and T̃i(l+q) are dependent, they are not scheduled at the same time in schedule

S̃vl
. Til and Ti(l+q) are therefore assigned to different intervals. After all the subtasks have

been assigned, the subtasks in each interval are scheduled in such a way that for each task Ti

the second visit Ti(l+q) to Pvl
does not start earlier than q − 1 time units after the first visit Til

completes. Since there are at most q subtasks assigned to each interval, it is always possible to

construct such a schedule.

We now describe the algorithm used in Step 1(b). The problem of scheduling the subtasks

{T̃il}∪{T̃i(l+q)} is the same as the problem of scheduling on q processors unit-processing time

tasks that have integer release times and deadlines and whose dependency graph contains chains.

This problem can be formulated as a network-flow problem. Algorithm F used in Step 1(b) is

based on this formulation; it is described in Figure 5.6.

Before we generate the network, we partition the time line into a sequence of disjoint intervals

Ik = [tk, tk+1] according to the release times and deadlines of subtasks as follows: The release

times and deadlines are sorted in increasing order. Let t1, t2, · · · , tu for u ≤ 2n be the sequence

of distinct time instants, where tk is either a release time or a deadline, obtained by deleting

duplicates in the sorted sequence. The end points of the interval Ik are ti and tk+1.

58

.

.

.

.

.

.

.

.

..

..
..
..
...
.............

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

................
..
..
..
.
..
.
.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

..

..
..
..
...
.............

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

................
..
..
..
.
..
.
.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

..

..
..
..
...
.............

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

................
..
..
..
.
..
.
.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

..

..
..
..
...
.............

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

................
..
..
..
.
..
.
.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

..

..
..
..
...
.............

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

................
..
..
..
.
..
.
.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

..

..
..
..
...
.............

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

................
..
..
..
.
..
.
.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

..

..
..
..
...
.............

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

................
..
..
..
.
..
.
.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

..

..
..
..
...
.............

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

................
..
..
..
.
..
.
.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

..

..
..
..
...
.............

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

................
..
..
..
.
..
.
.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

..

..
..
..
...
.............

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

................
..
..
..
.
..
.
.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

..

..
..
..
...
.............

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

................
..
..
..
.
..
.
.
.
.
.
.
.
.

S1 S2

T̃1

T̃2

T̃n

I1

I2

I3

I4

I2u−2

I2u−1

.

.

.

..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
..
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.

..
..................

...
....
....
...
....
....
....
...
....
....
....
...
....
....
...
....
....
....
...
....
....
...
....
....
....
..................

...

..............
....
..

.

...
...
..
...
...
...
..
...
...
...
...
..
...
...
...
..
...
...
...
..
...
...
...
..
...
...
...
..
...
...
...
...
..
...
...
...
..
...
...
...
..
...
...
...
..
.....
..
..
..
..
...
...
...
.

..

.

..

.

.

.

..

.

.

.

.

.

.

.

.

.

.

2

2

2

...
....
....
...
....
....
....
...
....
....
....
...
....
....
...
....
....
....
...
....
....
...
....
....
....
...
....
....
...
....
....
....
...
....
....
....
...
....
....
...
....
....
....
...
....
....
...
....
....
....
...
....
....
....
...
....
....
...
....
....
....
...
....
....
...
....
....
....
...
....
....
...
....
....
....
..................

...

..............
....
..

..

......
....
...
..
..
..
.

..
...
...
..
..
..
..
..
..
.
.

.....
........
.......
.......
........
.......
.......
.......
........
.......
.......
........
.......
.......
.......
........
.......
.......
.......
........
.......
.......
........
.......
.......
.......
........
.......
.......
........
.......
.......
.......
........
.......
.......
........
..........................

..........
....
...
...

..

...
...
...
..
..
..
..
..
.

..

......
....
...
..
..
..
.

..
...
...
..
..
..
..
..
..
.
.

|I1|

|I2|

|I3|

|I3|

|I4|

|I2u−2|

|I2u−1|

...
..
..
...
...
....
....

..

..
..
.
.
..
.
.
.
..
.
.
.
.
.

...
...
......
........

..
..
..
..
..
.
..
..
.
..
.
.

..
...
...
..
..
..
..
..
..
.
.

..

.....
....
...
...
..
..
.

..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
...........

..
..
..
.
.
..

....................

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
....
..
..
..
.
..
.
.
.
.
.
.
.
.

....................

q|I1|

q|I2|

q|I3|

q|I4|

q|I2u−2|

q|I2u−1|

Figure 5.5: Network G = (V,E).

The set V of vertices in the network G = (V,E) consists of the following vertices:

(1) a source S1 and a sink S2.

(2) one vertex T̃i for each pair of subtasks T̃il and T̃i(l+q).

(3) one vertex Ik for each interval. Let Ik represent the time interval [tk, tk+1]. We denote

the length (tk+1 − tk)/qτ of the interval by |Ik|.

The set E of arcs is constructed as follows:

(1) The source S1 is connected to each of the vertices T̃i by an arc with capacity 2.

(2) There is an arc connecting T̃i to Ik if ril ≥ tk and dil ≤ tk+1, or if ri(l+q) ≥ tk and

di(l+q) ≤ tk+1; in other words, when either T̃il or T̃i(l+q) can be scheduled during the

interval Ik. The capacity of the arc is |Ik|.

(3) Each vertex Ik is connected to the sink S2 by an arc of capacity q|Ik|.

The capacity of |Ik| of the arc from T̃i to Ik denotes that T̃i can be executed for at most |Ik|

time units of length qτ during the interval Ik. The capacity of the arc from the vertex Ik to S2

59

Algorithm F :

Input: Task parameters ri, di, of task set T̃ consisting of pairs of tasks T̃il and T̃i(l+q) of length qτ .

The ri’ and di’s are multiples of qτ .

Output: A feasible schedule S̃ on q processors or the conclusion that the tasks in T̃ cannot be feasibly

scheduled.

Step 1: Generate the sequence of intervals I1, I2, . . . , I2u−1 as described in Page 59.

Step 2: Generate the network G = (V, E) as described on Page 59 from the task set T̃ .

Step 3: Find the maximum flow in the network G. If the flow is smaller than 2n, stop: no feasible

schedule exists. Otherwise, go to Step 4.

Step 4: Scan the intervals from I1 to I2u−1. For each interval scan all the incoming arcs ei that carry a

non-zero flow. If the flow is 1, schedule T̃il (or T̃i(l+q) if T̃il has been scheduled earlier) to start on

any available processor as early as possible during the interval Ik. If the flow on ei is 2, schedule T̃il

on any available processor to start as early as possible during Ik , and schedule T̃i(l+q) to start on

any available processor to start as late as possible during Ik . If at the end of this step some pairs

of tasks execute simultaneously, separate them by swapping the T̃i(l+q) with any task scheduled

to run later during Ik .

Figure 5.6: Algorithm F Used in Step 1(b) of Algorithm RR.

enforces that no more than q processors are used during the interval Ik. Figure 5.5 shows the

general form of the network G = (V,E) constructed in the way described above.

To find a feasible schedule, we first try to generate a flow that equals 2n. If no such flow

exists, no feasible schedule exists either. The flow cannot exceed 2n, because the capacity of

the arcs that leave S1 is 2n. Once a flow of 2n is found, the schedule can be generated from

the flows carried by the arcs between the vertices in {T̃i} and those in {Ik} in Step 4 described

in Figure 5.6. From each vertex T̃i there is either one arc ei that carries a flow of 2 or two arcs

ei1 and ei2 that carry a flow of 1 per arc. This can be safely assumed since the capacity of each

arc from each vertex T̃i is equal to 1 or 2 and all integral network-flow problems are known

to have integer solutions. Moreover, virtually all network-flow algorithms generate an integer

solution [40, 52]. Consequently Step 4 is always possible. To generate the schedule S̃vl
we scan

the intervals I1, I2, · · · , I2u−1. During any interval Ik we look at the incoming arcs to Ik which

60

carry a non-zero flow. Such an arc carries either a flow of 2, in which case both task T̃il and

T̃i(l+q) execute during Ik, or a flow of 1, in which case only T̃il or T̃i(l+q) execute during Ik. By

construction, every part of a task (either T̃il or T̃i(l+q)) that executes during the interval Ik has

ri ≤ tk and di ≥ tk+1, and therefore meets its timing constraints. To generate the schedule S̃vl
,

we have to schedule the executions of the tasks in each interval Ik separately. In this we have

to make sure that no two T̃il and T̃i(l+q) are scheduled during the same time instant. Step 4

of Algorithm F does this by scheduling the T̃il’s at the beginning of the interval Ik and the

T̃i(l+1)’s at the end of the interval.

As described earlier, the q-processor schedule S̃vl
is used in Step 1(c) of Algorithm RR to

generate the schedule SRR on the reused processor.

61

Chapter 6

End-To-End Scheduling of Periodic Flow Shops

Each job Ji in a m-processor periodic flow-shop job set can be logically divided into m subjobs

Jij . The period of each subjob Jij is pi, the period of the job Ji. The subtasks in all periods of Jij

are executed on processor Pj and have processing times τij . In other words, a set Jj of subjobs,

whose members Jij are characterized by pi and τij, is to be scheduled on each processor Pj .

Each subjob Jij is a sequence of subtasks that are invoked periodically. When it is necessary

to distinguish the individual subtasks, the subtask in the k th period (the kth invocation) of

subjob Jij is called Tij(k). For a given i, the subjobs on different processors are dependent,

since the subtask Tij(k) cannot begin until Ti(j−1)(k) is completed. Unfortunately, there are

no known polynomial-time optimal algorithms that can be used to schedule dependent periodic

jobs to meet deadlines, and there is no known schedulability criteria to determine whether the

jobs are schedulable. Hence, it is not fruitful to view the subjobs of each job Ji on different

processors as dependent subjobs. In the approaches described in the following sections we

consider the subjobs to be scheduled on all processors independent and schedule the subjobs on

each processor independently from the subjobs on the other processors. We will describe how

we effectively take into account the dependencies between subjobs of each job, so that Tij(k)

never begins execution until Ti(j−1)(k) is completed according to our schedules.

6.1 The Phase Modification Approach

Let bi denote the time at which the first task Tij(1) becomes ready. bi is called the phase of

Ji. In particular, bi1 is the phase of the subjob Ji1 of Ji on the first processor. Hence, the kth

period of the subjob Ji1 begins at bi1 + (k − 1)pi. Suppose that we can schedule the subjobs

on P1 in such a way that we can be sure that every subtask Ti1(k) is completed by the time

rik = bi + (k − 1)pi + ci1. We call cij the worst-case completion time of the subjob Jij . The

worst-case completion time Ci of the job Ji is the sum of the worst-case completion times cij

of the subjobs in Ji, that is, Ci =
∑m

j=1 cij . Now, we let the phase of every subjob Ji2 of Ji

62

on processor P2 be bi2 = bi1 + ci1. By postponing the phase bi2 of every subjob Ji2, we delay

the ready time of every subtask Ti2(k) in every subjob Ji2 on processor P2 until its predecessor

subtask Ti1(k) is surely completed on processor P1. In this way we can ignore the precedence

constraints between subjobs on the two processors. Any schedule produced by scheduling the

subjobs on P1 and P2 independently in this manner is a schedule that satisfies the precedence

constraints between the subjobs Ji1 and Ji2. Similarly, if every task in Ji2 is guaranteed to

complete by the time instant ci2 units after its ready time, we delay the phase bi3 of Ji3 by this

amount, and so on.

Suppose that the subjobs on each of the m processors are scheduled independently from the

subjobs on the other processors, and all subtasks in Jij complete by cij units of time after their

respectively ready times, for all i and j. Moreover, suppose that Ci =
∑m

j=1 cij ≤ Di, where

Di is the deadline of Ji. We can delay the phase of each subjob Jij on Pj by ci(j−1) units.

The resultant schedule is a feasible schedule where all precedence constraints and all deadlines

are met. We call this method of transforming dependent subjobs into independent subjobs the

phase modification method. In the following sections we describe methods that allow to use

existing schedulability criteria [26, 27, 31] to determine whether there is a set of {cij} where
∑m

j=1 cij ≤ Di. The job system J can be feasibly scheduled if such a set of cij ’s exists.

6.2 Phase Modification and Rate-Monotonic Scheduling

In this section we describe a simple way of applying phase modification to end-to-end scheduling

of periodic flow shops based on the schedulability bounds provided by the rate-monotonic

scheduling theory. Suppose that the set J1 of subjobs is scheduled on the first processor P1

according to the well-known rate-monotone algorithm [31]. This algorithm is priority-driven;

it assigns priorities statically to jobs (and, hence, to individual tasks in them) on the basis of

their periods; the shorter the period of a job, the higher its priority. Without loss of generality

we assume that the n jobs in the job system J have n different priorities. A job Ji having

priority φi means that φi −1 jobs in the job system J have a higher priority than Ji. We index

the jobs in order of decreasing priority, that is, φi = i, with J1 having the highest priority, and

Jn the lowest.

63

Jobs τi1 τi2 pi ci1 ci2 Ci

J1 2 1 8 3.3 3.6 6.9

J2 1 2 10 4.125 4.5 8.625

J3 1 2 16 6.6 7.2 13.8

Table 6.1: Set of Periodic Jobs on a Two-Processor Flow Shop.

Equation (6.1) [27] gives the so called schedulability bound umax(n, ρ) on the total utilization

uj(n) =
∑n

i=1 τij/pi of the subjobs on each processor Pj ; a set of subjobs whose total utilization

is equal to or less than umax(n, δ) is surely schedulable by the rate-monotone algorithm to

complete within δpi units after their ready time.

umax(n, δ) =















n((2δ)1/n − 1) + (1 − δ), 1
2 ≤ δ ≤ 1

δ 0 ≤ δ ≤ 1
2

(6.1)

Given the total utilization uj on processor Pj we can find from Equation (6.1) δj = u−1
max(n, uj),

where u−1
max denotes the inverse of the function umax. If we delay the phase of each subjob

Jij on Pj by cij = δjpi units, and if
∑m

j=1 δipi ≤ Di, the resultant rate-monotonic schedule if

feasible and all precedence constraints and deadlines are met.

Table 6.1 shows an example of a set of three periodic jobs to be scheduled on a flow shop with

two processors. We want to know if we can always complete every job by the end of its period.

In this example we schedule the jobs on the processors using the rate-monotone algorithm.

The total utilization factors of subjobs on processors P1 and P2 for the job set in Table 6.1

are u1 = 0.4125 and u2 = 0.45, respectively. By applying the formula in Equation (6.1) to

the two processors, we get δ1 = 0.4125 and δ2 = 0.45. Therefore we know that T11(k) always

terminates by time c11 = δ1p1 = 3.3 units, T21(k) by time c21 = δ1p2 = 4.125 units, and T31(k)

by time c31 = δ1p3 = 6.6 units after their respective release times. We therefore delay the

phases of the jobs J12, J22, and J32 on P2 by 3.3, 4.125, and 6.6 units, respectively. On P2,

T12(k), T22(k), and T32(k) always complete by time c12 = δ2p1 = 3.6 units, c22 = δ2p2 = 4.5

units, and c32 = δ2p3 = 7.2 units, respectively, after their release times. Every invocation of J1

is completed at or before time 6.9 units after its release time and therefore before the end of

its period. Hence, it meets its deadline. The same holds for J2 and J3.

64

Jobs τi1 τi2 pi ci1 ci2 Ci

J1 5 5 10 0.553 0.553 1.106

J2 0.5 0.5 10 0.553 0.553 1.106

Table 6.2: Unschedulable Set of Periodic Jobs on a Two-Processor Flow Shop.

Table 6.2 shows an example that is due to Lehoczky et al. [27]. The job set in this example

can not always be scheduled so that both jobs meet their deadlines at the end of their respective

periods. When the two jobs have the same phase, J1 is interrupted to let J2 execute and misses

its deadline. The total utilization factors u1 on P1 and u2 on P2 are both 0.55 . The maximum

utilization on each processor for the two jobs to be schedulable on a two-processor flow shop

dropped to 0.5 from 0.83 in the single-processor case, and Lehozcky shows how the maximum

utilization drops to 1/r for r processors. In this example we show that we can achieve a higher

utilization bound if we allow the deadlines of the jobs to be delayed beyond the end of the period.

By solving Equation (6.1) for δ1, we deduce that the subjobs on P1 can always complete within

0.553 times their periods. We therefore delay the phase of the subjobs Ji2 by 0.553pi. A similar

analysis for the subjobs on P2 shows that all the jobs can complete within 1.106pi time units.

By postponing the deadlines of the jobs slightly more than 10% beyond the period, we can

guarantee the job set to be schedulable.

We can refine the schedulability bounds for the rate-monotonic scheduling algorithm, and

use the tighter schedulability condition to reduce the values of δi’s in order to reduce the amount

of delay necessary on successive processors and preserve the dependencies. One straightforward

way to reduce these delays becomes evident from the following simple observation: If all the

subjobs on a given processor are independent, subjobs with a lower-priority do not interfere

with subjobs with a high priority. In calculating cij for a specific subjob Jij , only Jij and

the subjobs with higher priorities, i.e. J1j , J2j , · · · , J(i−1)j need to be considered. cij therefore

becomes cij = δijpi, where

δij = u−1
max(i, uj(i)),

and the function uj(i) denotes the total utilization of subjobs J1j , J2j , . . . , Jij on Pj ; in other

words uj(i) =
∑i

k=1 τkj/pk. The function u−1
max(i, uj(i)) is strictly decreasing with increasing

priority i, giving us smaller values of cij for for high-priority jobs. Table 6.3 shows a comparison

65

Basic Method Refined Method

Jobs τi1 τi2 τi3 pi ci1 ci2 ci3 Ci ci1 ci2 ci3 Ci

J1 2 1 1 8 3.8 3.6 2.8 10.2 2 1 1 4

J2 1 2 1 10 4.75 4.5 3.5 12.75 3.5 3.25 2.25 9

J3 2 2 2 16 7.6 7.2 5.6 20.4 7.6 7.2 5.6 20.4

Table 6.3: Refined Schedulability Bounds for Rate-Monotonic Scheduling

Jobs τi1 τi2 τi3 pi φi1 ci1 φi2 ci2 φi3 ci3 Ci

J1 1 1 1 10 1 1 1 1 1 1 3

J2 1 1 1 12 2 2.2 2 2.2 2 2.2 6.6

J3 1 1 5 14 3 3.567 3 3.567 3 7.592 14.726

Table 6.4: Unschedulable Job System with Rate-Monotonic Priority Assignment.

of the completion times for a job system on three processors. The jobs are scheduled according

to the rate-monotonic algorithm with phase modification. When the basic method is used, no

task appears to be schedulable. With the refined method, however, the higher-priority jobs J1

and J2 become schedulable, while the lowest-priority job J3 remains not schedulable.

6.3 Phase Modification and General Fixed-Priority Scheduling

According to the rate-monotonic priority algorithm, all subjobs within a job have the same

priority. This strategy may fail to schedule some job sets that are schedulable. Table 6.4

shows an example. This job system can not be scheduled by the rate-monotonic algorithm,

even when the phase delays are set according to the refined method. We note that job J3

consists of two short subjobs, J31 and J32, followed by the very long subjob J33. Intuitively,

we would like to assign a higher priority to J31 and J32 in order to allow more time for J33

to execute before its deadline. In this section we describe an efficient method based on the

deadline-monotonic approach to determine approximate upper bounds on the cij ’s for arbitrary

fixed-priority assignments. This method allows us to compute the worst-case completion times

of the subjobs in different processors when they are assigned different priorities.

66

0 2 4 6 8 10 12 14
time

Jkj

Jij

...
...
..
..
..

..............

..

.....
...
..
..
..τkj

..
...
..
..
..

..............

...

.....
...
..
..
..pk

..
...
..
..
..

..............

...

.....
...
..
..
..Dij

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Figure 6.1: Higher-Priority Subjobs Interfering with Jij .

The deadline-monotonic priority algorithm assigns priorities to jobs according to their dead-

lines Di: The shorter the deadline, the higher the priority. This assignment is optimal for job

systems in which the relative deadlines of jobs are shorter or equal to their periods, that is

Di ≤ pi [2, 30]. (In the special case when the Di’s are proportional to the periods, this assign-

ment is identical to the rate-monotonic assignment.) In [2] we are given a sufficient but not nec-

essary schedulability condition for a job set on one processor with arbitrary deadlines Di ≤ pi

to be schedulable according to the deadline-monotonic priority algorithm. Equation (6.2) is

based on this condition. This equation states that, for subjobs on Pj to be schedulable, the

sum of the processing time of each task and the processing times of the higher-priority tasks

can not be larger than Dij .

∀i : τij + Iij ≤ Dij (6.2)

where

Iij =
i−1
∑

k=1

(⌊

Dij

pk

⌋

τkj + min

(

τkj, Dij −

⌊

Dij

pk

⌋

pk

))

. (6.3)

Figure 6.1 illustrates the meaning of Iij: The subjob Jkj has a higher priority than Jij , and

therefore interferes with Jij ’s execution. Dij = 11. bDij/pkc = 2. Up to time t = 2pk = 10, Jij

gives up 2τkj units of execution time to Jkj. From t = 0 to Dij = 11, Jij gives up Dij − 2pk or

τkj units of execution time, whichever is bigger. Equation (6.2) can be rewritten as follows:

∀i : τij +
i−1
∑

k=1

(⌊

Dij

pk

⌋

τkj + min

(

τkj, Dij −

⌊

Dij

pk

⌋

pk

))

≤ Dij (6.4)

67

We approximate min
(

τkj, Dij −
⌊

Dij

pk

⌋

pk

)

by τkj, and
⌊

Dij

pk

⌋

τkj + τkj by
(

Dij

pk
+ 1

)

τkj, and

obtain the following condition:

∀i : τij +
i−1
∑

k=1

(

Dij

pk
+ 1

)

τkj ≤ Dij (6.5)

From Equation (6.5) we can derive the following approximate bounds for the Dij ’s:

∀i :

∑i
k=1 τkj

1 −
∑i−1

k=1
τkj

pk

≤ Dij (6.6)

In a feasible schedule, the deadline Dij of a subjob Jij is an upper bound on the completion

time cij of the subjob. The bound on the deadline derived in Equation (6.6) can be used as

an upper bound on the time by which the subjob Jij is completed. We therefore derived the

following approximation for the worst-case completion time cij of the subjob Jij :

∀i :

∑i
k=1 τkj

1 −
∑i−1

k=1 ukj

= cij , (6.7)

where ukj is
τkj

pk
. Given an arbitrary priority assignment, Equation (6.7) gives the worst-case

completion times cij of the subjobs on a single processor. This bound becomes intuitively clear

when we view the expressions in it as those of supply and demand of time: The fraction of

processor time available to the subjobs Jij of job Ji on processor Pj is 1−
∑i−1

k=1 ukj. In a time

period of length cij the supply of time is cij

(

1 −
∑i−1

k=1 ukj

)

. The demand of processing time in

the same period of length cij is
∑i

k=1 τkj. cij must be large enough so that the supply of time

covers the demand for time. The process of comparing the supply and the demand of time to

determine the schedulability of a system is known as time demand analysis [32, 43].

The bounds for the cij ’s can now be used in combination with the phase modification method

to determine the schedulability of periodic flow shops with arbitrary priority assignments. Given

a priority assignment that assigns the priority φij to the subjob Jij , we can use the formula in

Equation (6.7) to determine the worst-case completion time cij for each processor Pj separately,

giving rise to the following conditions:

∀i, j :

∑

φkj≤φij
τkj

1 −
∑

φkj<φij
ukj

= cij , (6.8)

By assigning arbitrary priorities we gain some flexibility in scheduling. This is illustrated by

the example in Table 6.5b, where three jobs are scheduled on three processors according to the

priority assignments listed here. We call a priority assignment a feasible priority assignment for

68

Jobs τi1 τi2 τi3 pi φi1 ci1 φi2 ci2 φi3 ci3 Ci

J1 1 1 1 10 1 1 1 1 1 1 3

J2 1 1 1 12 2 2.2222 2 2.2222 2 2.2222 6.6667

J3 1 1 5 14 3 3.6735 3 3.6735 3 8.5714 15.9184

(a) Rate-Monotonic Priority Assignment.

Jobs τi1 τi2 τi3 pi φi1 ci1 φi2 ci2 φi3 ci3 Ci

J1 1 1 1 10 1 1 1 1 1 1 3

J2 1 1 1 12 3 3.6207 3 3.6207 2 2.2222 9.4636

J3 1 1 5 14 2 2.2222 2 2.2222 3 8.5714 13.016

(b) Example of a Feasible Priority Assignment.

Table 6.5: Priority Assignment that Guarantees Schedulability.

a given flow shop, if jobs are schedulable according to the assignment. For the same flow shop,

the rate-monotonic priority assignment is not feasible, as was shown earlier in Table 6.4. In

Table 6.5b the subjobs on P3 are scheduled according to the rate-monotonic priority assignment.

This is not the case on P1 and P2, where the job J3 is assigned a higher priority than J2. This

assignment leads to shorter worst-case completion times c31 and c32 and leaves enough time for

J33 to complete before the end of the period. Table 6.5a shows the same job system with the

rate-monotonic priority assignment, but with the values for the cij ’s computed by the formula in

Equation (6.8). We note that the bounds on the completion time determined by Equation (6.8)

are higher than the ones derived from Equation (6.1). This stems from the fact that cij in

Equation (6.7) is an approximation for the bound on the completion time in Equation (6.2).

Moreover, Equation (6.2) represents sufficient but not necessary conditions for the job system

to be schedulable.

We now address the problem of finding a feasible priority assignment for a given periodic

flow shop. By finding a feasible priority assignment we mean determining the value for the

priority φij of each subjob Jij , so that the sum of the worst-case completion times cij for each

job Ji are smaller than its deadline. Figure 6.2 defines the feasible-priority-assignment (FPA)

problem more formally.

69

Problem FPA:

Given: A job system J with n jobs on a m-processor flow shop. Each job Ji has a deadline Di.

Problem: Assign each subjob Jij a priority φij such that the following conditions hold:

∀i, j :

∑

φkj≤φij
τkj

1 −
∑

φkj<φij
ukj

= cij

and

∀i : Ci =

m
∑

j=1

cij ≤ Di.

Figure 6.2: The FPA Problem.

Unfortunately, the FPA problem is NP-complete. In order to prove the NP-completeness

of the FPA problem, let us look at the simple case where the flow shop has only two jobs. In

this case, the worst-case completion time c1j has one of two values; so has c2j . Specifically, the

worst-case completion time cij has the value wijφ if the subjob Jij executes at priority φ.

Theorem 6. The FPA problem with two jobs is NP-complete.

Proof. The proof is by reduction from Set-Partition [11]: Assume that we have a set A

with elements {a1, a2, · · · , am}. Each aj has a weight αj . Can we partition A into two sets S

and S such that the elements in S and S have the same sum of weights?

We reduce this problem to the following FPA problem with two jobs: Find a feasible priority

assignment for a job shop with two jobs J1 and J2 on m processors with the following values

wijφ and deadlines Di: The values wijφ for the completion times are defined as follows:

wij1 = αj , wij2 = 0.

The deadlines D1 and D2 are both given by

D1 = D2 =
1

2

m
∑

j=1

αj .

The solution of this priority assignment problem solves the set partitioning problem as follows:

Assigning priority 1 to J1j (and priority 2 to J2j) means assigning aj to the set S, whereas

70

assigning it priority 2 (and priority 1 to J1j) means putting aj into set S. Therefore, every

priority assignment is isomorphic to a partitioning of the set A into two sets. The deadlines D1

and D2 force the elements in the two sets S and S to have the same sum of weights 1
2

∑m
j=1 αj .

2

Corollary 2. The FPA problem is NP-complete.

Proof. The corollary follows by restriction. 2

Fortunately, the following simple and efficient heuristic algorithms perform well in assigning

priorities to the subjobs in order to meet the deadlines.

Global-Deadline-Monotonic (GDM): This algorithm assigns priorities in order of decreas-

ing end-to-end deadlines. In other words, Jij has a higher priority than Jkj if Di < Dk.

(We note that all subjobs within a job have the same priority.)

Laxity-Monotonic (LM): According to this algorithm, the priorities on processor Pj are

assigned on the basis of the amounts of laxity that remain for the subjobs. Specifically,

the laxity lij of the periodic job Ji after finishing on processor Pj is equal to

lij = Di −
j

∑

k=1

cik −
m

∑

l=j+1

τil.

The subjob Jij has a higher priority than the subjob Jkj if lij < lik.

Relative-Laxity-Monotonic (RLM): This algorithm assigns the priorities of subjobs on

processor Pj according to their relative laxities. The relative laxity of the periodic job Ji

after finishing on processor Pj is defined as

λij =
lij
pi

.

The subjob Jij has a higher priority than the subjob Jkj if λij < λkj. We note that, in

contrast to Algorithm LM, jobs with larger periods suffer a penalty under Algorithm RLM.

6.4 Phase Modification and General Distributed Systems

Many systems of practical interest cannot adequately be described as a flow shop, but can

be modeled as a collection of flow shops that share one or more processors. An example is

71

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

..

.

..
.
..
..
..
..
..
..
..
...
...
.....................................

..
..
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
..
..
...................................

....
...
..
..
..
..
..
..
..
..
..
..
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

..

.

..
.
..
..
..
..
..
..
..
...
...
.....................................

..
..
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
..
..
...................................

....
...
..
..
..
..
..
..
..
..
..
..
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

..

.

..
.
..
..
..
..
..
..
..
...
...
.....................................

..
..
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
..
..
...................................

....
...
..
..
..
..
..
..
..
..
..
..
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

..

.

..
.
..
..
..
..
..
..
..
...
...
.....................................

..
..
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
..
..
...................................

....
...
..
..
..
..
..
..
..
..
..
..
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

..

.

..
.
..
..
..
..
..
..
..
...
...
.....................................

..
..
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
..
..
...................................

....
...
..
..
..
..
..
..
..
..
..
..
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

..

.

..
.
..
..
..
..
..
..
..
...
...
.....................................

..
..
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
..
..
...................................

....
...
..
..
..
..
..
..
..
..
..
..
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.P1

P2

P3 P4

P5

P6

.

..

...
..
...
...
..
...
...
..
...
...
..
...
...
..
...
...
..
...
...
..
...
..
...
...
..
...
...
..
...
...
..
..
..
..
..
...
....
.

.

..

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

..
..
.
..
.
..
..
.
..
.
..
..
.
..
..
.
..
.
..
..
.
..
.
..
..
.
..
.
..
..
.
..
.
..
..
.
..
.
..
..
.
..
.
..
..
.
..
..
.
..
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.

.

...................

...

.....
....
...
...
..
..
.

...

.....
....
...
...
..
..
.

.

..

...
..
...
...
..
...
...
..
...
...
..
...
...
..
...
...
..
...
...
..
...
..
...
...
..
...
...
..
...
...
..
..
..
..
..
...
....
.

.

..

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..
..
.
..
..
..
.
..
..
..
..
.
..
..
..
.
..
..
..
..
.
..
..
..
.
..
..
..
..
.
..
..
..
.
..
..
..
..
.
..
..
..
..
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

...................

.............
.
.
.
.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.........

.............
.
.
.
.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.........

Figure 6.3: Collection of Flow-Shops.

shown in Figure 6.3. The system in this figure can be modeled by two different flow shops

that share two processors, P3 and P4. The jobs in the first flow shop execute on P1, then on

P3, then P4, and P5. The jobs in the second flow shop execute on P2, P3, P4, and P6. In

other words, subjobs of jobs belonging to both flow shops execute on P3 and P4. The system

in this example is clearly not a flow shop in the traditional sense. Nevertheless, we can use

the phase-modification method to schedule such a system: The formulas in Equation (6.1) and

Equation (6.8) can be directly applied to determine the worst-case execution time of a subjob

on each of the processors. Since all the jobs are independent, only subjobs that are executing

on the same processor influence the worst-case completion time of any particular subjob. Let

Aj denote the subset of jobs that execute on the processor Pj . The formula for the worst-case

completion time of jobs for arbitrary priority assignments φij therefore becomes:

∀i, j :

∑Jk∈Aj

φkj≤φij
τkj

1 −
∑Jk∈Aj

φkj<φij
ukj

= cij (6.9)

As a practical alternative, we can use the formula in Equation (6.8) by letting the processing

times τkj of the subjob in Jk be zero if Jk does not execute on Pj .

A slight complication arises when dependencies between subjobs are not captured by the

flow-shop model: An example is the system shown in Figure 6.4. In this simple system the

subjobs Ji2 and Ji3 belong to the same job, but can execute concurrently. Such a system can

not be modeled by a flow shop or a collection of flow shops. The worst-case completion times of

individual subjobs can be determined in the same way as in systems that consist of collections

of flow shops, for example with the formula in Equation (6.9). However, since some subjobs can

72

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

..

.

..
.
..
..
..
..
..
..
..
...
...
.....................................

..
..
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
..
..
...................................

....
...
..
..
..
..
..
..
..
..
..
..
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

..

.

..
.
..
..
..
..
..
..
..
...
...
.....................................

..
..
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
..
..
...................................

....
...
..
..
..
..
..
..
..
..
..
..
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

..

.

..
.
..
..
..
..
..
..
..
...
...
.....................................

..
..
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
..
..
...................................

....
...
..
..
..
..
..
..
..
..
..
..
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

..

.

..
.
..
..
..
..
..
..
..
...
...
.....................................

..
..
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
..
..
...................................

....
...
..
..
..
..
..
..
..
..
..
..
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

..

.

..
.
..
..
..
..
..
..
..
...
...
.....................................

..
..
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
..
..
...................................

....
...
..
..
..
..
..
..
..
..
..
..
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

P1

P2

P3

P4

P5

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
...
..
..
..
..
..
..
...........

..

..

..

.

..

.

....................

...

.....
....
...
...
..
..
.

...
...
.....
..........

..
..
..
..
.
..
.
..
.
..
.
.
.

..
................. ..
..
..
..
..
..
..
..
.
..
.

..
...
...
...
...
...
...
..
...
...
...
...
...
...
..
...
...
...
...
...
...
...
...
...
...
...
...
..
...
...
...
...
...
...
...
...
...
...
...
...
..
...
...
...
...
...
...
...
...
...
...
...
...
..
...
...
...
...
...
...
...
...
...
...
...
...
..
...
...
...
...
...
...
..
...
...
...
...
...
...
...
...
...
...
...
...
..
...
...
...
...
...
...
..............

....
..
.

..................
..

Figure 6.4: A System That Can Not Be Modeled as a Collection of Flow-Shops.

execute concurrently, the total worst-case completion time Ci of job Ji is not necessarily the

sum of the worst-case completion times of its subjobs. The example in Figure 6.4 illustrates

that the subjob Ji5(k) starts execution when both subjobss Ji3(k) and Ji4(k) are completed.

The worst-case completion time Ci therefore is

Ci = ci1 + max(ci2 + ci4, ci3) + ci5.

In general, the worst-case total completion time of a job can be computed by first determin-

ing the longest path in the dependency graph of the system and then summing the worst-case

completion times of subjobs along it. In determining the longest path, we sum the weights of

vertices along each path in the dependency graph, where the weight of the vertex representing

Jij is the worst-case computation time cij of Jij . The longest path is the one with the longest

total weight. In the example in Figure 6.4 the longest path is (P1, P2, P4, P5) for a job Ji if

ci2 + ci4 > ci3; otherwise the longest path is (P1, P3, P5).

In determining the schedulability of job systems that go beyond the periodic flow-shop model

we appreciate the simplicity of the phase-modification method. With this method, the prob-

lem of scheduling systems of independent periodic jobs with arbitrary dependency constraints

between subjobs in a distributed system is reduced to the simple problem of determining the

critical path in a PERT-like graph [34, 44].

6.5 Phase Modification and Loosely Coupled Systems

The phase-modification method described in Section 6.1 assumes that all processors in the

system have tightly synchronized clocks. This assumption is often not satisfied in distributed

73

systems that are loosely coupled. Therefore, a question that must be resolved when applying

this method to loosely-coupled distributed systems is how to account for the clock drift due to

lack of synchronization.

If clock synchronization cannot be guaranteed, phase modification can not assure that the

dependencies between successive subtasks are preserved. Specifically, suppose that the clocks

on the successive processors Pj and Pj+1 in a flow shop are guaranteed to be synchronized

within εj time units. Moreover, in an earlier step it was determined that the phase of Ji(j+1) is

offset by cij time units to preserve the dependencies between the subtasks Tij(k) and Ti(j+1)(k)

in the kth execution of Ji. If the subjob Jij has phase bi, the resulting phase of Ji(j+1) is bi +cij .

However, the clock on Pj+1 can be ahead of the clock on Pj . Consequently, some subtask Tij(k)

may terminate after Ti(j+1)(k) starts executing on Pj+1, thus violating the dependency relation.

The above mentioned problem can be easily dealt with if the job system contains enough

laxity. Given sufficient laxity, we can compensate for the clock drift in the following simple

way: If the clocks of two successive processors Pj and Pj+1 are guaranteed to be synchronized

within εj time units, we can assure that the dependencies between subtasks on Pj and Pj+1 are

preserved by including the upper bound εj on the clock drift in the worst-case completion time

of the subjob on Pj . The worst-case completion time of subtasks in Jij is therefore given by

the following formula:

cij =

∑

φkj≤φij
τkj

1 −
∑

φkj<φij

τkj

pk

+ εj (6.10)

We call this method to account for clock drift the synchronous method. We will later describe

an asynchronous method and compare it to the synchronous method.

Another question that must be answered in order to apply the phase-modification approach

in loosely-coupled systems is how to trigger the execution of the successor subtask Ti(j+1)(k) on

the next processor, once the current subtask Tij(k) is completed. In a tightly coupled system,

we can use a time-driven mechanism: the subtask Ti(j+1)(k) is released on Pj+1 exactly cij time

units after Tij(k) is released on Pj . In a loosely-coupled system such an approach is often not

possible because of the lack of synchronicity. In such systems, tasks would have to be invoked

asynchronously. For example, whenever a subtasks Tij(k) completes on processor Pj , a signal

is sent to processor Pj+1, causing Ti(j+1) to become ready for execution.

74

0 5 10 15 20 25
time

P1

P2

T1,1(k)T2,1(k)T3,1(k) T2,1(k + 1)

T1,2(k) T2,2(k) T2,2(k + 1) T3,2(k)

(a) Server Algorithm with Periodic Replenishment.

0 5 10 15 20 25
time

P1

P2

T1,1(k)T2,1(k)T3,1(k) T2,1(k + 1)

T1,2(k) T2,2(k) T3,2(k) T2,2(k + 1)

...
...
..
..
..

..............

..

.....
...
..
..
..pk

(b) Sporadic Server Avoids Deferred Execution Effects.

Figure 6.5: The Deferred Execution Problem in Flow Shops.

The example in Figure 6.5a illustrates the deferred execution effect [28], a problem that

appears on all but the first processor in a flow shop where jobs are invoked asynchronously.

Tij(k) and Tij(k + 1) in this example are the kth and (k + 1)th invocations of subjob Jij . The

priorities are assigned in order of increasing job index, that is, φ1j < φ2j < φ3j . Figure 6.5a

illustrates how the deferred-execution effect penalizes lower-priority jobs because of back-to-

back executions of high-priority jobs. The execution of T22(k) on the second processor is

deferred by the higher-priority task T12(k). When T22(k) completes, the lowest-priority task

T32(k) is not allowed to start, because the next invocation of subjob J22, T22(k + 1) is ready.

Since the execution budget of J22 is replenished periodically (in this case at time t = 4 and

t = 13), J22 can inflict back-to-back hits to lower-priority subjobs; in this case, J32’s execution

is delayed by twice the length of subjob J22. In some cases this may cause lower-priority jobs

to miss their deadlines.

We describe here a method to schedule subtasks in each job asynchronously so that the

problem due to deferred execution will not arise and the schedulability result produced by

75

the phase modification technique remains correct. For this purpose we make use of results in

scheduling of sporadic jobs on traditional single-processor systems. On all processors except P1,

every subjob Jij that is asynchronously invoked after Ji(j−1) terminates behaves like a sporadic

job with mean execution time pi. Sporadic jobs differ from their periodic counterparts in that

their inter-release time is not constant, but has a statistical distribution. According to the

Sporadic Server algorithm [50] to schedule sporadic jobs, we introduce a special periodic job,

called a server, that is in charge of executing a sporadic job: During the time assigned to the

server, the sporadic job served by it executes. A server job is characterized by its execution

budget and a replenishment period p for the budget. The execution budget is the maximum

amount of time the server can execute its sporadic job before the next replenishment. The

replenishment time is set to the time when the invocation of a job starts, plus the replenishment

period. If one invocation of a job is scheduled to start at time t, the budget is replenished at

time t + p where p is the replenishment period. In this approach, each subjob Jij on such a

processor is handled by one sporadic-server job with execution budget τij and replenishment

period pi. With this simple mechanism the Sporadic Server algorithm guarantees that the

execution time of the server job never exceeds the budget during a replenishment period.

The example in Figure 6.5 illustrates how sporadic servers can be used on processors where

the executions of jobs are triggered asynchronously by the completion of the jobs on other

processors. Figure 6.5b shows the example in Figure 6.5a with J22 scheduled according to the

Sporadic Server algorithm: When T22(k) starts executing at time t = 8, the replenishment time

is set to t = 8 + p2 = 17. Although T22(k + 1) becomes ready, there is no execution budget

left. Because T22(k + 1) now must wait until after the replenishment time, T32(k) is allowed to

execute.

When the Sporadic Server method is used to schedule jobs asynchronously, we can safely ap-

ply the schedulability analysis that is based on phase modification to determine the worst-case

completion times. In the worst case the schedule generated by the sporadic servers is identical

to the schedule generated by the synchronous version of the phase-modification method. We

have therefore shown that we can use the phase-modification method to determine the schedu-

lability of loosely-coupled systems where jobs are periodic on the first processor and are invoked

asynchronously on the remaining processors.

76

Earlier, we examined how the synchronous method accounts for clock drifts in synchronous

systems: Such a system does not allow for asynchronous execution of subjobs. We have to

delay the execution of subjobs on the subsequent processors long enough to include clock drift;

otherwise, dependencies might be violated. When we allow for asynchronous execution of

subjobs, lack of clock synchronization can not cause dependencies to be violated. However,

clock drift must be accounted for in the schedulability analysis. Consider a subjob on Jij with

period pi in a system with an upper bound εj−1 on the clock drift between Pj−1 and Pj , that is,

the clocks of the processors Pj−1 and Pj are guarateed to be synchronized within εj−1. Subjob

Jij can be modeled as a sporadic subjob with worst-case average inter-arrival time pi−εj−1. The

subjob Jij can be replaced by a server job with an execution budget of τij and replenishment

period pi−εj−1. Similarly, the other subjobs in the system can be replaced by their server jobs.

Since this method relies on asynchronous execution of jobs, we call it the asynchronous method

to account for clock drift. By using the asynchronous method, we have the following worst-case

completion times:
∑

φkj≤φij
τkj

1 −
∑

φkj<φij

τkj

pi−εj−1

= cij , (6.11)

In some cases the asynchronous method can be used to generate better (that is, smaller) values

for the cij ’s than the synchronous method.

As an example, consider the special case of identical processing times τij = τ , identical

periods pi = p, and a bound on the clock-drift rate γ so that εj−1 = γp. With a given value for

γ, the clocks differ by γp at the end of the period. For sake of simplicity, we assume that at

the end of each period by the processors’s local clock, the clock is synchronized. We determine

the condition under which the value cij for a specific subjob Jij achievable by the asynchronous

method is better than the value cij achievable with the synchronous method:
∑

φkj≤φij
τ

1 −
∑

φkj<φij

τ
p(1−γ)

<

∑

φkj≤φij
τ

1 −
∑

φkj<φij

τ
p

+ γp. (6.12)

The four tables in Figure 6.6 show the results of a comparison between the two methods for each

job in a job system with 20 jobs. Each table is for a different value for the clock-drift rate γ. The

rows in a table are for different processing times of the jobs in relation to the period. Entries

in each row in a table list the individual jobs in the job system. The high-priority jobs are on

the left, and the low priority jobs on the right side. The processing time τ in Equation (6.12) is

77

u Priority φij
1 20
— — — — — — — — — — — — — — — — — — — —

0.2 —
— — — — — — — — — — — — — — — — — — — —

0.4 —
— — — — — — — — — — — — — — — — — — — +

0.6 — — — — — — — — — — — — — — — — — + + +
— — — — — — — — — — — — — — + + + + + +

0.8 — — — — — — — — — — — — — + + + + + + +
— — — — — — — — — — — + + + + + + + + +

1.0 — — — — — — — — — — + + + + + + + + + +

(a) γ = 0.01

u Priority φij
1 20
— — — — — — — — — — — — — — — — — — — —

0.2 —
— — — — — — — — — — — — — — — — — — — —

0.4 —
— — — — — — — — — — — — — — — — — — — —

0.6 — — — — — — — — — — — — — — — — + + + +
— — — — — — — — — — — — — — + + + + + +

0.8 — — — — — — — — — — — — + + + + + + + +
— — — — — — — — — — — + + + + + + + + +

1.0 — — — — — — — — — — + + + + + + + + + +

(b) γ = 0.05

u Priority φij
1 20
— — — — — — — — — — — — — — — — — — — —

0.2 —
— — — — — — — — — — — — — — — — — — — —

0.4 —
— — — — — — — — — — — — — — — — — — — +

0.6 — — — — — — — — — — — — — — — — + + + +
— — — — — — — — — — — — — — + + + + + +

0.8 — — — — — — — — — — — — + + + + + + + +
— — — — — — — — — — — + + + + + + + + +

1.0 — — — — — — — — — — + + + + + + + + + —

(c) γ = 0.10

u Priority φij
1 20
— — — — — — — — — — — — — — — — — — — —

0.2 —
— — — — — — — — — — — — — — — — — — — —

0.4 —
— — — — — — — — — — — — — — — — — — — +

0.6 — — — — — — — — — — — — — — — — + + + +
— — — — — — — — — — — — — + + + + + + +

0.8 — — — — — — — — — — — — + + + + + + + +
— — — — — — — — — — + + + + + + + + + —

1.0 — — — — — — — — — + + + + + + + + + — —

(d) γ = 0.15

— : Asynchronous method performs better.
+ : Synchronous method performs better.

Figure 6.6: Comparison of Synchronous and Asynchronous Method.

given by the parameter u, where τ = u p
n , and n is the number of tasks. Again, in this example

the number of tasks is n = 20. The parameter u happens to be the utilization of the processor,

u = n τ
p . A “+” in a given row and column means that the worst-case completion time is smaller

when the synchronous method is used for a job with the given priority φ running on a processor

with the given utilization u. A “-” means that, for the same job, the asynchronous method

gives a smaller worst-case completion time.

The results show that the high-priority jobs have smaller worst-case completion times with

the asynchronous method, whereas the synchronous method is better for low-priority jobs. With

increasing processor utilization the portion of high-priority jobs for which the asynchronous

method is better decreases. The results also show that variations in the clock drift have very

little effect in this example. The portions of the jobs for which one or the other method is better

changes very little with even large variations of γ. In general the question of which method is

better must be investigated by experimental means.

78

Chapter 7

Periodic End-to-End Scheduling with Shared Resources

In the previous chapter we have been concerned with systems J consisting of independent jobs.

When subjobs access common resources, and need arises for synchronization between subjobs,

two problems must be addressed [47]: deadlocks and uncontrolled priority inversion. Priority

inversion occurs when a higher-priority subjob waits while low-priority subjobs are executing.

It is uncontrolled, since this condition may last for indefinite lengths of time. Several resource

access protocols have been devised to avoid deadlock and to prevent uncontrolled priority

inversion [3, 37, 47]. By using these protocols, the execution times of the subjobs can be made

predictable. In the following we call one interval between the request and the release of a

resource a critical section.

7.1 Local Resources

In this section we focus on the priority ceiling protocol (PCP) [47] to control access to lo-

cal resources and describe how it can be used in distributed systems with end-to-end timing

constraints. PCP is an extension of the priority inheritance protocol, according to which a

low-priority subjob that blocks a high-priority subjob inherits its priority. In this way, the

amount of time during which the high-priority subjob is blocked by the lower-priority subjob is

limited. Simple priority inheritance is not enough to avoid deadlocks. PCP avoids deadlocks by

using additional information about the resource requirements of subjobs: For each resource R,

PCP keeps track of the highest priority of all tasks that will require R. This value is called the

priority ceiling ΠR of the resource R. When a subjob Jij requests a resource (enters a critical

section), the request is only granted according to PCP if the following two conditions hold:

(1) R is not currently allocated to another subjob.

(2) The priority of Jij is higher than all the priority ceilings of resources that are currently

allocated to subjobs other than Jij .

79

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

..

.

..
.
..
..
..
..
..
..
..
...
...
.....................................

..
..
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
..
..
...................................

....
...
..
..
..
..
..
..
..
..
..
..
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

..

.

..
.
..
..
..
..
..
..
..
...
...
.....................................

..
..
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
..
..
...................................

....
...
..
..
..
..
..
..
..
..
..
..
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

..

.

..
.
..
..
..
..
..
..
..
...
...
.....................................

..
..
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
..
..
...................................

....
...
..
..
..
..
..
..
..
..
..
..
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

..

.

..
.
..
..
..
..
..
..
..
...
...
.....................................

..
..
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
..
..
...................................

....
...
..
..
..
..
..
..
..
..
..
..
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

..

.

..
.
..
..
..
..
..
..
..
...
...
.....................................

..
..
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
..
..
...................................

....
...
..
..
..
..
..
..
..
..
..
..
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

..

.

..
.
..
..
..
..
..
..
..
...
...
.....................................

..
..
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
..
..
...................................

....
...
..
..
..
..
..
..
..
..
..
..
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.P1

P2

P3 P4

P5

P6

.

..

...
..
...
...
..
...
...
..
...
...
..
...
...
..
...
...
..
...
...
..
...
..
...
...
..
...
...
..
...
...
..
..
..
..
..
...
....
.

.

..

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

..
..
.
..
.
..
..
.
..
.
..
..
.
..
..
.
..
.
..
..
.
..
.
..
..
.
..
.
..
..
.
..
.
..
..
.
..
.
..
..
.
..
.
..
..
.
..
..
.
..
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.

.

...................

...

.....
....
...
...
..
..
.

...

.....
....
...
...
..
..
.

.

..

...
..
...
...
..
...
...
..
...
...
..
...
...
..
...
...
..
...
...
..
...
..
...
...
..
...
...
..
...
...
..
..
..
..
..
...
....
.

.

..

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..
..
.
..
..
..
.
..
..
..
..
.
..
..
..
.
..
..
..
..
.
..
..
..
.
..
..
..
..
.
..
..
..
.
..
..
..
..
.
..
..
..
..
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

...................

.. R
..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.............
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.....
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.........

.............

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.....
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.........

Figure 7.1: A System with One Local Resource.

When used in combination with any fixed-priority scheduling algorithm, PCP (1) prevents

deadlocks, and (2) ensures that no subjob is blocked more than once by a lower-priority subjob

during each critical section.

In its basic form, this protocol controls the access to local resources on a single processor.

Consequently, in a first step we limit ourselves to applying PCP in distributed systems with

resources that are local to processors. (In the next section we will address the issue of global

resources.) Figure 7.1 shows an example of such a system: Two flow shops share processors P3

and P4. Moreover, there is a resource R on processor P4. Except for the resource, this example

is identical to the one depicted in Figure 6.3. The fact that resource R is on a shared processor

is not important here. However, we must note that only subjobs running on P4 can access R.

Let Bij be the blocking factor of subjob Jij . During any period, subjob Jij is blocked for

at most Bij time units due to resource contention. We can therefore extend Equation (6.2) to

determine the worst-case delay cij for subjob Jij :

cij = τij + Iij + Bij , (7.1)

where Iij was defined earlier in Equation (6.3) to be the amount of time Jij gives up execution

to higher-priority tasks. After applying the same transformations as on Page 68, we derive the

following approximation for the worst-case completion time cij of the subjob Jij :

cij =

∑

φkj≤φij
τkj + Bij

1 −
∑

φkj<φij
ukj

(7.2)

80

The bounds for the cij ’s given by this expression can now be used in combination with phase

modification to determine the schedulability of distributed systems in the same way as in the

case of no resources.

7.2 Global Resources

In a multiprocessor system, resources can be local or global. By a global resource, we mean a

resource that can be requested by subjobs that run on a processor that may be different from

the processor that manages the resource. We call a critical section between the request and

release of a global resource a global critical section, while a local resource gives rise to a local

critical section.

Rajkumar et al. [42] have extended PCP to control the access to local and global resources

in a multiprocessor environment. The multiprocessor priority ceiling protocol (MPCP), which

we will describe at the end of this section, makes the following assumptions about the system:

The processors are divided into two groups, application processors and synchronization proces-

sors. The application processors execute only application jobs. The synchronization processors

manage the global resources. (They may also execute application jobs.) When a subjob on the

application processor Pj requests a global resource R (enters a global critical section), it frees

Pj and “migrates” to the synchronization processor PR that manages the resource. The subjob

executes on PR as long as it holds the resource R. Once the subjob releases the resource (leaves

the global critical section), it migrates back to Pj , where it continues its execution.

In our flow shop model we partition each subjob Jij that accesses a global resource R into

a sequence of subjobs J
(1)
ij , J

(R)
ij , and J

(2)
ij with length τ

(1)
ij , csij , and τ

(2)
ij , respectively. The

subjobs J
(1)
ij and J

(2)
ij represent the execution of Jij on the application processor before and

after the request for resource R. J
(R)
ij represents the critical section of Jij , that is, the portion

of Jij that holds the resource R and executes on the synchronization processor. When J
(R)
ij

starts executing, it requests the resource R and releases it when it terminates. In other words,

the sequence of the execution of J
(1)
ij , J

(R)
ij , and J

(2)
ij is modeled by three subjobs. A system

in which subjobs on different processors access the same global resource can be modeled as a

collection of flow shops that all share the synchronization processor. We can therefore model

the access to global resources as a flow shop problem with end-to-end timing constraints.

81

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

..

.

..
.
..
..
..
..
..
..
..
...
...
.....................................

..
..
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
..
..
...................................

....
...
..
..
..
..
..
..
..
..
..
..
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.......................

..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

R

P1

PR

P2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

..

.

..
.
..
..
..
..
..
..
..
...
...
................................

.....
..
..
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
..
..
...................................

....
...
..
..
..
..
..
..
..
..
..
..
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..

.....
....
...
...
..
..
.

...

.....
....
...
...
..
..
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

..

.

..
.
..
..
..
..
..
..
..
...
...
.....................................

..
..
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
..
..
...................................

....
...
..
..
..
..
..
..
..
..
..
..
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..

.....
....
...
...
..
..
.

...

.....
....
...
...
..
..
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

J1, J3

J2

Jobs Proc τ
(1)
i csi τ

(2)
i pi

J1 P1 1 1 1 9

J2 P2 4 2 1 14

J3 P1 5 5 5 30

Figure 7.2: A System with One Global Resource.

By modeling a system with local and global resources in this way, every resource in the

system is requested only by subjobs that are executing on the processor that is local to the

resource. We eliminate the need for handling global resource acess differently from local re-

sources. Hence, there is no need for a multiprocessor resource access protocol; the access to

global resources can be managed by a combination of a single-processor protocol, such as PCP,

and phase modification.

In order to compute the worst-case delays for the phase modification, we use Equation (7.2).

A special consideration must be made when determining the worst-case delay of subjobs that

access global resources. In order to compute c
(1)
ij (or c

(2)
ij) of part J

(1)
ij (or J

(2)
ij) of the subjob

Jij , we can assume that the other part J
(2)
ij (or J

(1)
ij) does not interfere with its execution as

long as Jij completes before the end of its period. Therefore, we do not need to consider the

other part J
(2)
ij (or J

(1)
ij) when determining the worst-case delay c

(1)
ij (or c

(2)
ij). The worst-case

delay c
(1)
ij is given by:

c
(1)
ij =

∑

φkj≤φij
τkj − τ

(2)
ij + B

(1)
ij

1 −
∑

φkj<φij
ukj

, (7.3)

where B
(1)
ij denotes the blocking factor for the first part J

(1)
ij . c

(2)
ij is computed similarly.

To illustrate this approach, we apply it to the simple system shown in Figure 7.2. This

example illustrates how worst-case delays are determined for subjobs in systems with global

resources. Figure 7.2 shows a simple system that consists of two application processors P1 and

P2 and a synchronization processor PR that manages the single global resource R. The three

jobs J1, J3 (both running on P1), and J2 (running on P2) access resource R. The jobs in this

82

Jobs Proc τ
(1)
i csi τ

(2)
i pi B

(R)
i c

(1)
i c

(R)
i c

(2)
i Ci

J1 P1 1 1 1 9 5 1 6 1 8

J2 P2 4 2 1 14 5 4 9 1 14

J3 P1 5 5 5 30 0 9 10.72 9 28.72

Table 7.1: Schedulability Analysis Using Phase-Modification.

example are assigned priorities in order of increasing index, that is, φ1 < φ2 < φ3. The system

depicted in Figure 7.2 could be a subcomponent of a larger system, in which case the jobs J1,

J2, and J3 could be subjobs of larger jobs. As long as P1 and P2 only execute these three jobs,

and no other subjob accesses R, the schedulability analysis described below is also valid for the

larger system.

In this example, each job Ji requests resource R after τ
(1)
i units of execution. The length of

Ji’s critical section is csi. After the resource is released, job Ji executes for another τ
(2)
i units

of time before completing. The three jobs J1, J2, and J3 are partitioned into three subjobs

J
(1)
i , J

(R)
i , and J

(2)
i for each i = 1, 2, 3. We note that the blocking factors of all the subjobs

executing on the application processors P1 and P2 are zero. We determine the c
(1)
i ’s (since in

this example all jobs consist of one subjob only, we drop the second index j) by applying the

formula Equation (7.3) to both J
(1)
1 and J

(1)
3 on P1 and J

(1)
2 on P2. Since J1 and J2 execute

at the highest priority and access no resources on their application processors, they experience

no delay by other jobs, thus having c
(1)
1 = τ

(1)
1 , c

(1)
2 = τ

(1)
2 , c

(2)
1 = τ

(2)
1 , and c

(2)
2 = τ

(2)
2 . J3

executes at lower priority than J1 on P1 and its worst-case delays are c
(1)
3 = c

(2)
3 = 9. The

worst-case delays c
(R)
i on the synchronization processor PR are computed using Equation (7.2).

The blocking factor for J
(R)
1 and J

(R)
2 are equal to cs3 = 5. Since J

(3)
3 runs at lowest priority,

its blocking factor is zero. J
(R)
1 executes at highest priority and has a worst-case delay of

cs1 + B
(R)
1 = 6. J

(R)
2 executes at the next lower priority, thus having a worst-case delay of

c
(R)
2 =

cs1 + cs2 + B3

1 − cs1
p1

=
1 + 2 + 5

8/9
= 9.

Similarly, c
(R)
3 is computed to be 10.72. The results in Table 7.1 show that all jobs complete

by their deadline.

Table 7.2 lists the completion times when applying MPCP to the same example of Figure 7.2.

MPCP uses PCP on every processor, independently of whether it is an application processor

83

or a synchronization processor. In order to avoid preemption of subjobs that are granted a

global resource by subjobs that are not, the priority ceiling ΠR of each global resource R must

be higher than the highest priority πmax of any tasks in the system. When πR is the highest

priority of all tasks that require the global resource R, the priority ceiling of R is set to:

ΠR = πR + πmax + 1.

When a subjob is executing on a synchronization processor after being granted the resource R,

it does so with priority ΠR = πR + πmax + 1.

The schedulability analysis of MPCP is the same as for the single-processor version of PCP.

Equation (7.2) therefore is valid to determine the worst-case delays of subjobs that access global

resources. The worst-case blocking factor Bij is calculated differently, however. The value of

Bij is the sum of the following four quantities, which are described in detail in [42]. Let nG
ij be

the number of times subjob Jij requests a global resource.

(1) Local Blocking (LB): The upper bound on the local blocking is nG
ij +1 times the duration

csL
ij of the longest local critical section that can block Jij .

LBij = (nG
ij + 1) × csL

ij

(2) Global Blocking (GB): The upper bound on the global blocking is nG
ij times the duration

csG
ij of the longest global critical section that can block a global critical section of Jij .

GBij = nG
ij × csG

ij

(3) Remote Blocking (RB): Let Ar denote the set of subjobs that have a higher priority than

Jij , execute on another processor than Pj , and access a global semaphore. Each subjob

Jkl ∈ Ar can contribute to a maximum blocking time of CSkl × dpi/pke. CSkl is the

duration that subjob Jkl spends within global critical sections when executing alone on

the synchronization processor.

RBij =
∑

Jkl∈Ar

CSkl × dpi/pke

(4) Deferred Blocking (DB): Let Al denote the set of subjobs that have a higher priority

than Jij, execute on the same processor Pj , and require a global resource. Each subjob

84

Jobs Proc τ
(1)
i csi τ

(2)
i pi LBi GBi RBi DBi Bi Ci

J1 P1 1 1 1 9 0 5 0 0 5 8

J2 P2 4 2 1 14 0 5 2 0 7 14

J3 P1 5 5 5 30 0 0 6 1 7 30.86

Table 7.2: Results of Schedulability Analysis Using MPCP.

Jkj ∈ Al can contribute to a maximum blocking time of min(τ ′
kj, cs

G
kj) where τ ′

kj is the

computation time after the first suspension of Jkj and csG
kj is the length of the longest

global critical section of Jkj .

DBij =
∑

Jkj∈Al

min(τ ′
kj, cs

G
kj)

The worst-case blocking factor Bij is given by

Bij = LBij + GBij + RBij + DBij.

The results of the schedulability analysis are shown in Table 7.2. Since all resources are

global, all local blocking factors LBi are zero. The maximum amount of time that the jobs J1

and J2 can be blocked on R by a lower-priority job is cs3, which is 5. Since J3 has the lowest

priority among all the jobs in the system, its critical section can not be blocked by lower priority

jobs. GB3 is therefore zero. J3 can experience remote blocking by J2, which is executing on the

other processor. RB3 is cs2×dp2/p3e, which is equal to 6. J2 on the other side can be remotely

blocked by J1 for 2 time units. Since J1 has the highest priority among all the jobs in the

system, it does not experience remote blocking, which gives RB1 = 0. Among all the jobs, only

J3 can experience deferred blocking, because it is the only job that is executing on the same

processor as a higher-priority job (in this case J1). DB3 is therefore equal to min(τ
(2)
1 , cs1) = 1.

The worst-case completion times for the jobs in this example are computed using Equa-

tion (7.2). For example, C3 is determined as follows:

C3 =
τ

(1)
1 + τ

(2)
1 + τ

(1)
3 + τ

(1)
3 + cs3 + B3

1 −
τ
(1)
1 +τ

(2)
1

p1

=
24

7/9
= 30.86 .

The worst-case completion time for the other two jobs is computed similarly. According to this

analysis, J1 finishes 2 time units before the end of its period, and J2 finishes exactly by the

85

end of its period. J3, however, fails to terminate by the end of its period. According to this

analysis, the job system is therefore not schedulable.

86

Chapter 8

Summary and Conclusion

This thesis is concerned with the problem of scheduling tasks in distributed time-critical sys-

tems. In our model, a distributed system is a collection of tasks that execute on one or more

processors. When a task executes on more than one processor, it is composed of a sequence

of subtasks, each of which executes on one processor. The timing constraints of such com-

posite tasks are end-to-end, meaning that we are not concerned with the time of execution of

intermediate subtasks, as long as each overall task meets its timing constraints.

The simplest model of such a distributed system is the flow shop, in which tasks are com-

posed of subtasks that all execute in turn on the same sequence of processors. The timing

constraints of a task consist of a release time and a deadline. A schedule meets the timing

constraints if the first subtask starts no earlier than the release time, and the last subtask

completes no later than the deadline of the task. Based on the traditional flow shop model, we

derived models for more general cases of distributed systems. The flow-shop-with-recurrence

model allows us to represent systems in which processors are visited more than once by indi-

vidual tasks. The periodic-flow-shop model allows us to represent systems of tasks that execute

periodically on flow shops. Simple criteria to determine the schedulability of periodic work-

loads on single processors make it possible to easily determine the schedulability of periodic

flow shops a priori, that is, without having to generate schedules and check them for feasi-

bility. The schedulability analysis techniques presented in this thesis can be used to analyze

the schedulability of large classes of distributed systems that cannot be modeled directly as

periodic flow shops. These techniques can also be used for systems with resources, both local

and global. Finally, resource access protocols can be simplified when systems are modeled and

scheduled as distributed systems with end-to-end timing constraints.

87

8.1 Summary

In order to study the problem of scheduling tasks with end-to-end timing constraints in dis-

tributed systems, we started by investigating the scheduling of non-periodic tasks on traditional

flow shops. We expanded the basic flow shop model by allowing recurrence and periodic invoca-

tions of tasks. The result is a set of scheduling algorithms and schedulability analysis techniques

for a wide variety of distributed systems.

8.1.1 Traditional Flow Shop Scheduling

We have developed a series of efficient algorithms to schedule tasks in traditional flow shops

to meet end-to-end timing constraints. Some of these algorithms (Algorithm A and Algo-

rithm PCC) have been proven optimal for special cases of flow shops. Other algorithms are

heuristic (Algorithm H, its expanded version Algorithm Ha, and Algorithm HPCC) and have

been shown to perform very well.

In Figure 8.1 we show the universe of all possible flow shops on a two dimensional space

that is parameterized; on one axis according to the variance of the processing times on any

processor and on the other axis according to the variance of the processing times between

processors. When the variance in processing times per processor is small (the lower border of

the diagram), task sets are homogeneous. On the other hand, if the variance in processing times

between processors is small (the left border of the diagram), task sets consist of two or more

sets of nearly identical-length tasks sets. The intersection of these two classes of task sets in

the lower-left corner of the diagram forms the class of identical-length task sets. All flow shops

along the lower border of the diagram can be optimally scheduled with Algorithm A. Some flow

shops along the left border of the diagram are optimally scheduled by Algorithm PCC (as long

as the tasks have identical release times and the task set consists of only two identical-length

task sets). We have shown that Algorithm H performs well for task sets with a small variance

in processing times per processor. For tasks with a slightly higher variance, Algorithm Ha

performs well. A task set that has a big variance in processing times between processors can

sometimes be partitioned into two subsets: a subset of long tasks and a subset of short tasks.

In this case, Algorithm HPCC works very well.

88

A

PCC

..
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
.
..
...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

H

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
....
......
......
......
......
......
......
......
......
......
......
.......
......
......
......
......
......
......
......
......
......
......
......
.......
......
......
......
......
......
......
......
......
......
......
......
.......
......
......
......
......
......
......
......
......
......
......
......
.......
......
......
......
......
....

HPCC

..
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

Ha

Variation of Processing Time
between Processors

Variation of
Processing Time
per Processor

null

big

null big

multiple
identical-
length

identical-
length

homogeneous

..

.....
...
...
..
.

.

.

..

.

.

..

.

.

..

.

.

..

.

.

.

..

.

.

..

.

.

..

.

.

..

.

.

..

.

.

..

.

.

..

.

.

..

.

.

..

.

.

.

..

.

.

..

.

.

..

.

.

..

.

.

..

.

.

..

.

.

..

.

.

..

.

.

..

.

.

..

.

.

.

..

.

.

..

.

.

..

.

.

..

...

..
..
..
..
..
..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.....
...
...
..
.

Figure 8.1: Different Algorithms for Different Flow Shops.

When both the variance in processing times per processor and between processors are large,

our evaluations have shown that for flow shops with little laxity Algorithm Ha performs best.

A simple preemptive deadline-driven scheme (as implemented in Algorithm pEEDF) is better

for systems with more laxity.

8.1.2 Flow Shops with Recurrence

When tasks execute on the processors in the same order, but visit one or more processors more

than once, the system can be modeled as a flow shop with recurrence. We have developed two

efficient algorithms to schedule flow shops where all the subtasks have unit length and where

one processor, or a sequence of processors, is visited twice. Algorithm R was proven to be

optimal for the case where tasks have identical release times and arbitrary deadlines. When the

release times are a multiple of the processing time between the two visits to the same processor,

a second algorithm, Algorithm RR, is optimal.

89

8.1.3 Periodic Flow Shops

When the workload consists of periodic jobs, a closed-form solution for the worst-case comple-

tion time of a subjob on a processor gives a lower bound on the worst-case length of time which

the subjob on the next processor has to wait. By shifting the phase of the next subjob by this

worst-case delay time, we guarantee that the dependencies between the invocations of the two

subjobs are preserved. We call this method of delaying the execution of subjobs on successive

processors phase modification. Phase modification can be used in combination with any schedul-

ing algorithm for which we can compute bounds on the worst-case completion times of jobs.

In this thesis, we introduced this technique in combination with the rate-monotonic algorithm,

which has a simple formula for the worst-case completion time of subjobs. This worst-case

completion time of a subjob on a processor depends on the utilization of the processor. Much

tighter bounds on the completion times can be found when applying time demand analysis,

using the formulas for deadline-monotonic scheduling. The bounds resulting from these for-

mulas can also be used for arbitrary fixed-priority scheduling algorithms, even for algorithms

that assign different priorities to different subjobs of the same job. Devising a fixed-priority

algorithm to schedule tasks in a distributed systems becomes equivalent to assigning priorities

to subjobs in order to meet constraints on sums of worst-case completion times.

Although we introduced the phase modification technique on periodic flow shops, it can be

used on much more general systems, such as collections of flow shops sharing processors, or

even systems with arbitrary dependency graphs. In order for phase modification to work in

distributed systems, clock drift must be accounted for. This is easily done by increasing the

bounds on worst-case completion times in order to separate the invocations of the subjobs on

two successive processors enough to compensate for clock drift. When subjobs are executed

asynchronously, we have shown that we can account for clock drift with smaller increases in

worst-case computation time bounds, and therefore with smaller sacrifices of laxity. We showed

that this holds especially for high-priority jobs or jobs on processors with a low utilization.

We have shown that resource access can easily be included in the phase modification tech-

nique. Resource-access protocols, such as the priority-ceiling protocol or the multiprocessor

priority-ceiling protocol, give upper bounds on the time jobs are blocked waiting for resources.

These bounds are directly used in the computation of the worst-case completion time bounds.

90

End-to-end scheduling in general, and phase modification in particular, are an alternative

way to deal with global resource access. For this we partition jobs that access global resources

into three parts: the portion before entering the critical section, the global critical section itself,

and the portion after exiting the critical section. A global-resource-access protocol is no longer

necessary, because the access to the processor that manages the global resource is scheduled

according to an end-to-end scheduling algorithm. A local-resource-access protocol is still nec-

essary on the processor that manages the resource to control the local access to the resource.

We have shown that by eliminating the global resource access protocols we can achieve better

bounds on the worst-case completion times. In particular, we have demonstrated by an example

how we can guarantee the schedulability of a system with phase modification in combination

with the priority ceiling protocol, while the multiprocessor priority-ceiling protocol fails. In

addition to eliminating the need for global-resource-access protocols, end-to-end scheduling of

accesses to global resources allows us to assign different priorities to the three different parts of

every job accessing the resource, effectively giving more flexibility when scheduling the jobs.

8.2 End-to-End Schedulability Analysis

Part of the results in end-to-end scheduling of periodic workloads described in this thesis have

been implemented as a part of PERTS, a prototyping environment for real-time systems, which

is currently under development in the Real-Time Systems Laboratory at the University of

Illinois [32, 33]. PERTS will contain schedulers and resource access protocols, in combination

with tools and a simulation environment for the analysis and validation of real-time systems.

PERTS is designed as a vehicle to evaluate new design approaches and to experiment with

alternative scheduling and resource management strategies.

A central component in PERTS is the schedulability analyzer that allows the analysis of

real-time systems built on the periodic-job model. One component of the schedulability an-

alyzer is the End-to-End Analysis, where the user is provided with a picture of the jobs in

the system, together with the information about the processor to which each job is assigned

and the resources it accesses. The job system is represented as a directed graph where each

connected component in the graph is interpreted as a job with the jobs in the component being

its subjobs.

91

The user can choose to provide the release time and deadline of each subjob. Alternatively,

only the end-to-end release times and deadlines are given; the analyzer then uses phase modifi-

cation to assign the individual release times and deadlines of intermediate subjobs. It is possible

to freely combine end-to-end timing constraints with individual timing constraints for some or

all of the intermediate subjobs, either to satisfy system requirements, or to guide some (e.g.

deadline-monotonic) scheduling algorithms.

8.3 Outlook

Many issues addressed in this thesis remain open or can be extended. For example, the prob-

lem of preemptively scheduling task sets that consist of multiple identical-length task sets on

traditional flow shops has only been solved for identical release times and task sets that consist

of two identical-length task sets. As another example, the complexity of scheduling identical-

length task sets on flow shops with recurrence is not known for the case of arbitrary release

times and deadlines.

Several general questions need to be further investigated for periodic systems. We showed

that the problem of assigning priorities to subjobs in order to meet end-to-end timing constraints

with fixed-priority scheduling is NP-complete for very simple systems with two jobs. We have

briefly described heuristic algorithms that can be used to determine good priority assignments.

These algorithms must be further evaluated and compared.

Several further issues must be addressed if the techniques described here are to be suc-

cessfully applied. First, processors in real-life systems typically have limited buffer sizes. The

flow-shop model, both in the preemptive and non-preemptive case, assumes that jobs can be

buffered at any processor to wait for other jobs to complete execution. Scheduling algorithms

must be devised that allow for bounds on the number of preempted or waiting jobs on each

processor.

Another issue that needs to be addressed is the problem of additions or deletions of jobs in

the job system or changes in the parameters of certain jobs while the system is executing. In the

single-processor case, such a change while the system is alive is called mode change. Protocols

have been devised to ensure smooth execution of mode changes [48]. In distributed systems

mode changes can have much more severe effects than on a single processor. Simple changes

92

to job parameters, like increasing a single job’s processing time, may require reassignment of

priorities of many subjobs on one or more processors, or even migration of some subjobs to

different processors. Protocols need to be devised that ensure smooth changes between modes,

or that guarantee bounds on the amount of disruption caused by mode changes.

Throughout this thesis we have made the assumption that global and local status infor-

mation about the system is available. In loosely-coupled systems this information may not be

available or may not be kept current. The problem of end-to-end scheduling in such systems,

where the schedulers may make incoherent decisions, remains to be investigated.

93

Appendix A

Heuristic-Supported Search for Flow-Shop Schedules

The problem of scheduling flow shops to meet end-to-end release times and deadlines is an

example of the well known Constraint Satisfaction Problem (CSP) [11]. Enumerative approaches

to solving CSPs rely on heuristic-supported exhaustive search methods. We describe a depth-

first backtrack search algorithm to find feasible schedules for flow shops. In this approach, the

schedule is generated by repeatedly selecting a subtask (selecting a variable, in CSP terms)

and assigning it a start time (assigning it a value, in CSP terms). If the partial schedule that

has been generated during the execution of the search cannot be completed without violating

any constraint – be it a dependency constraint or a timing constraint – the search process has

reached a deadend and has to backtrack by reversing one or more earlier assignments. The

worst-case complexity of this search approach is exponential. However, several heuristics can

typically be applied to reduce its average cost [45, 54]. We will formulate these heuristics as

rules that guide the search process.

• Consistency-enforcing rules: To eliminate those alternatives from the search space

that can not be part of any global solution (pruning of the search tree.)

• Look-ahead rules: To decide which subtask to select next and which start time to assign

to it. We differentiate between

– Subtask-ordering rules: Try to select a subtask first that is ‘difficult’ to schedule.

This reduces the amount of backtracking.

– Start-time-ordering rules: The start time assigned to the selected subtask should be

expected to maximize the probability to successfully complete the partial schedule.

• Look-back rules: To speedily recover from deadends by possibly backtracking more

than one assignment. Possibly learn from the past development of the search process.

Generally, there is a trade-off between the amount of effort invested in minimizing the

number of generated search states and the effective savings in search time. In the following,

94

we will describe a depth-first backtrack search algorithm to find solutions for the flow-shop

problem. We will discuss heuristics that support the search process. For each rule we must

prove its correctness. A rule is correct if it does not keep the search process from eventually

generating a feasible global schedule. Look-ahead rules are by nature correct, since they only

control the order of how the search space is traversed. Consistency-enforcing rules and look-

back rules control which portions of the search space is traversed, and hence must be checked

for correctness. We note that the correctness of a rule does no imply that the rule is usefull in

speeding up the search process.

A.1 Searching for Feasible Schedules

The basic algorithm to search for feasible is described by Procedure S in Figure A.1. Procedure S

recursively schedules the subtasks on a processor-by-processor basis. First, it tries to schedule

all subtasks on the first processor. If it succeeds (in Step 4), it moves to the next processor

and starts scheduling subtasks there, until it successfully schedules all the subtasks on the last

processor (in Step 3) or declares failure. Let Q be the set of subtasks on the current processor

Pj that have already been scheduled, and U the set of subtasks on Pj that have not been

scheduled yet. In the following, tij denotes the start time and eij the completion time of Tij in

the partial schedule.

Procedure S gives a framework where additional rules can be inserted. Consistency-enforcing

rules can be used in Step 2 to determine if the newly generated partial schedule can possibly be

expanded into a feasible schedule. Subtask-ordering rules can be used in Step 4 to determine

which subtask must be chosen next to be schedule on Pj . Look-back rules can be used during

Step 2 to determine if the search should be continued at this point or if a backtrack is necessary.

In the following, we describe examples of such rules that can be used to speed up the search

process.

A.1.1 Consistency-Enforcing Rules

The goal of consistency-enforcing rules is to detect oncoming deadends early in the search

process. The consistency-enforcing rule detects cases where the choice of a specific alternative

can not possibly result in a feasible schedule and prevents the search algorithm from further

95

Procedure S(j, i, Q, U):

Input: Set Q already scheduled subtasks on processor Pj . Index of one selected subtask Tij that has

not been scheduled yet. Set U of remaining subtasks on processor Pj . The following holds:

Q + Tij + U = Tj , where Tj is the set of all subtasks on Pj .

Output: A feasible schedule, or the conclusion that no such schedule exists.

Step 1: Schedule the subtask Tij to start at time tij = max{rij , maxTlj∈Q{elj}}.

Step 2: If the partial schedule is feasible [consistent], go to Step 3. Otherwise, a deadend is detected;

return [backtrack].

Step 3: If U − Tij = {} and j = m, stop; a feasible schedule has been generated.

Step 4: If U − Tij = {}, repeatedly select a subtask Tpj ∈ U [subtask-ordering rule] and call

S(j, p, Q ∪ Tij , U − Tpj).

Otherwise, repeatedly select a subtask Tpj ∈ Tj+1 [subtask-ordering rule] and call

S(j, p, {}, Tj+1 − Tpj).

Figure A.1: Procedure S, Describing the Basic Search Algorithm.

exploring that alternative and thereby wasting search time. Clearly, there is a trade-off between

the time spent in enforcing consistency and the actual savings achieved in search time. The

simplest possible consistency-enforcing rule is represented by Rule C1, which states that the

newly scheduled subtask Tij is not allowed to exceed its effective deadline.

Rule C1: The following must hold:

tij + τij ≤ dij.

Theorem 7. Rule C1 is correct.

Proof. Trivial. 2

Rule C1 can be considered to be the ultimate consistency check, since it is equivalent to a

feasibility test for the partial schedule. We will describe in a later section how the violation of

this rule can trigger a special backtracking behavior of the search process.

96

The following rules use different ways to determine lower bounds on the tardiness of sched-

ules for the tasks sets that consist of subtasks in U, Tj+1, . . . , Tm, the set of all subtasks that

remain to be scheduled. Whenever such a lower bound on the tardiness is larger than zero, no

feasible completion of the partial schedule exists. Rule C1 and Rule C2 use different techniques

to determine two lower bounds on the tardiness of schedules for the remaining subtasks.

The following Rule C2 uses the fact that the EDF algorithm is optimal to generate feasible

schedules for tasks with identical ready times on a single processor.

Rule C2: Schedule the remaining subtasks in U according to the EEDF

algorithm, assuming that all release times are equal to r =

max{eij ,minTlj∈U{rlj}}. No subtask is allowed to exceed its effective

deadline.

Theorem 8. Rule C2 is correct.

Proof. In every schedule that is based on the current partial schedule, the subtasks in U are

bound to start at time r or later. Rule C2 defines the release time of all the subtasks in U to

be r. Consequently, it does not postpone the release times beyond the earliest point in time

by which the subtasks in U can start. If a task set is schedulable with release times equal or

larger than r, clearly it is also schedulable if all release times are exactly r. It follows that,

when the EEDF algorithm fails to feasibly schedule the subtasks in U with release times r, no

feasible schedule exists for the subtasks in U . Consequently, the partial schedule generated at

this point in the search process can not possibly be completed in a feasible way. 2

The following Rule C3 follows a different approach: Instead of testing whether a feasible

schedule exists, it determines the optimal maximum completion time cmax of all the possible

schedules of the subtasks in U and compares it with the latest effective deadline dmax among

the subtasks in U , i.e. dmax = maxTlj∈U{dlj}. If dmax < cmax, then, for every schedule of

subtasks in U , there is at least one subtask that can not meet its effective deadline. Therefore,

the partial schedule generated at this point in the search process can not be feasibly completed.

Comparing the optimal maximum completion time cmax with the maximum deadline dmax

is a looser rule to check for consistency than checking for feasibility directly. There exist

task sets that have dmax > cmax, for which no feasible schedules exist. However, rules that

97

directly check for feasibility (like Rule C2) rely on optimal algorithms to generate feasible

schedules. Unfortunately, efficient such algorithms are mostly restricted to single-processor

problems. On the other hand, good lower bounds for the optimal maximum completion time can

be found for multiprocessor- and multistage-scheduling problems like the flow-shop scheduling

problem. Rule C3 takes advantage of the following well-known fact: To minimize the maximum

completion time in a flow shop with identical release times and no more than three processors,

we only need to consider permutation schedules. French [8] and Szwarc [51] describe ways to

determine lower bounds on the optimal maximum completion time for 3-processor permutation

flow shops. We are going to use two of these methods in the following way. If in the search

process there are still more than two processors left to be scheduled, we can determine a lower

bound cmax on Pj+2 for all the tasks that have not been scheduled yet on Pj. If cmax >

maxTlj∈U{dl(j+2)}, we can not possibly expand the partial schedule into a feasible one. By

considering bounds on completion time and effective deadlines in the subsequent processor

Pj+2, the consistency check becomes substantially more powerful than if it limited itself to Pj .

To develop the lower bounds, we consider three best-case scenarios: the processing on either

one of the three processors Pj, Pj+1, or Pj+2 is continuous. In other words, on one of the three

processors, the processor is never idling. From these scenarios we derive three components lbA
j ,

lbA
j+1, and lbA

j+2 of the lower bound lbA for cmax:

lbA
j = r +

∑

Tlj∈U

τlj + min
Tkj∈U

{τk(j+1) + τk(j+2)} (A.1)

lbA
j+1 = r + min

Tlj∈U
{τlj} +

∑

Tkj∈U

τk(j+1) + min
Toj∈U

τo(j+2) (A.2)

lbA
j+2 = r + min

Tlj∈U
{τlj + τl(j+1)} +

∑

Tkj∈U

τk(j+2) (A.3)

where we defined r earlier as r = max{eij ,minTlj∈U{rlj}} and

lbA = max{lb1, lb2, lb3}. (A.4)

Similar considerations result in the following lower bound:

lbB = r + max
Tlj∈U

{τlj + τl(j+1) + τl(j+2) +
∑

Tkj∈U,Tkj 6=Tij

min{τlj, τk(j+2)}} (A.5)

We formulate Rule C3 in the following way:

98

Rule C3: If j ≤ m − 3, determine lbA, lbB as described in Equation (A.4)

and Equation (A.5). Determine lb = max{lbA, lbB} and dmax =

maxTlj∈U{dl(j+2)}. The following must hold:

lb ≤ dmax.

Theorem 9. Rule C3 is correct.

Proof. All subtasks in U are assumed to be ready to execute at the same time r, that is, as

soon as the partial schedule allows the first subtask to start its execution. If a feasible schedule

existed for the task set, certainly a feasible schedule would exist for the same schedule with all

the release times for the unscheduled subtasks set to r. If Rule C3 is not satisfied, we can not

complete the partial schedule without at least one subtask on P3 missing its effective deadline.

2

Despite the efforts to guide the search process, it can not be prevented from running into

deadends and having to backtrack. When the search process repeatedly runs into the same

deadend, it is said to be thrashing. Often thrashing could be prevented if the search process

carried along information from past failures. We describe an effective technique to reduce

thrashing by storing information about past failures. This technique is especially useful to

avoid thrashing during the process of generating a feasible schedule on a single processor. We

describe it for the special case where the search process has generated a feasible partial schedule

for all processors P1, . . . , Pm−1 and tries to complete it on the last processor Pm. If at any given

point it fails to feasibly schedule a set U of remaining subtasks on Pm, starting from time r, we

can safely assume that the same set Um can not be feasibly scheduled when starting at time

r or later. We note that the same holds for any superset of U . If at any point during the

search process a set W (with W ⊇ U) remains to be scheduled at time r or later, we can safely

backtrack, without having to continue the search process into the same deadend again.

If the consistency-enforcing rules allow us to determine a lower bound on the tardiness for

the subtasks in U if scheduled starting at time r, we can be even stricter: Let us assume that

we have determined that the set U of subtasks can not be scheduled starting at time r with a

total tardiness less than T . We can safely assume that the same set U , or any superset of it,

can not be feasibly scheduled starting at time r − T/|U | or later.

99

The same technique can be used for the generation of partial schedules on all the processors

P1, . . . , Pm. Special care must be taken, however, when the search process moves from processor

to processor. If , for example, the search process is generating a feasible schedule on Pj , a failure

to feasibly complete the schedule does not necessarily imply that the subtasks in U can not be

feasibly scheduled starting at time r. The search process may have failed to schedule any tasks

in the subsequent sets Tj+1, . . . , Tm. If we store the value

rcrit(U) = r − T/|U | (A.6)

whenever we cannot schedule the set of subtasks U starting at time r with a tardiness smaller

than T , we can use the following rule, the correctness of which was shown above.

Rule C4: The following must hold:

ti(k)j ≤ rcrit(V)

for every V ⊆ U , where rcrit has been defined in Equation (A.6).

A.1.2 Look-Ahead Rules

Two ways to reduce the average cost of backtrack search are to either carefully select the order

in which the subtasks are selected (through subtask-ordering techniques) or the start time that

is assigned to subtasks (through start-time-ordering techniques). Intuitively, a good subtask-

ordering rule chooses ‘difficult’ subtasks first. In this way, the rule avoids spending much time

in building partial solutions that cannot be completed later. Moreover, it is easier for the

consistency-enforcing rules to detect upcoming deadends. Good start-time-ordering rules on

the other hand select the least-constraining start times for the newly selected subtasks.

The basic Algorithm S defines the start time tij to be assigned to the newly scheduled

subtask, and therefore leaves no room for a start-time-ordering rule. In this section, we describe

two subtask-ordering rules that proved to support the search for feasible schedules.

Rule LA1 takes advantage of the fact that the probability that no feasible schedule exists

on a processor increases with increasing the ratio of processing time to laxity on that processor.

By definition of the effective release time and deadlines, the amount of slack is identical on

all the processors. A good subtask-ordering rule therefore tries to schedule first subtasks on

100

processors with long subtasks. Unfortunately, Algorithm S always starts by scheduling subtasks

on processor P1, then on P2, and so on. In a flow shop with long subtasks on processors that

are towards the end of the flow shop, the search algorithm would start scheduling difficult

subtasks very deep in the search tree, a case that would cause thrashing. We describe a way

to transform such flow shops in a flow shop that has processors with long task sets at the

beginning. The search algorithm would then search for a feasible schedule for the task set T by

trying to schedule the transformed task set σ(T). The transformation σ is defined as follows:

σ(τij) = τi(m+1−j)

σ(dij) = −ri(m+1−j)

σ(rij) = −di(m+1−j)

We can think of σ(T) as being the symmetrical image of T , where release times and deadlines

have been switched. Whenever the set T is feasibly schedulable, the same is true for the task

set σ(T). Moreover, if T has long subtasks on late processors, σ(T) has long subtasks on early

processors. This motivates the following subtask-ordering Rule LA1. (Again, there is no need

to check look-ahead rules for their correctness.)

Rule LA1: Before the search process starts, check if the task set T contains

longer subtasks in the processors Pdm/2e+1, . . . , Pm. If this is the

case, apply the search algorithm to the transformed task set σ(T).

The following subtask-ordering rule defines the order in which to select the next subtask Tpj

among the subtasks in U in Step 4 of Algorithm S. The goal is to generate a partial schedule

on Pj that can easily be completed into a feasible schedule (for the processor Pj). Feasible

schedules for single-processor problems tend to be very similar in general to EDF schedules.

Rule LA2 therefore tries to look for an EDF schedule first by defining an EDF subtask-ordering

in the following way:

101

Rule LA2: During Step 4 of Algorithm S, select Tpj to be that subtask in U

with the earliest effective deadline among all subtasks that have not

been selected yet.

A.1.3 Look-Back Rules

Whenever a deadend is encountered and backtracking is invoked, a decision must be made as

which assignment to reverse. Algorithm S uses a chronological backtracking scheme, in which

the assignment is reversed that was made last, and which led to the deadend. Sometimes

thrashing can be avoided if a look-back rule can detect that not only the last assignment must

be reversed, but earlier assignments also. The following backtrack Rule B1 determines when

to reverse both the last assignment to Tij and the assignment before. (Let Txj be the subtask

that was selected and assigned a start time immediately before Tij .)

Rule B1: If Rule C1 fails for Tij , that is, if the newly scheduled subtask Tij

does not meet its effective deadline dij , then reverse the assignments

to Tij and Txj.

Theorem 10. Rule B1 is correct.

Proof. To show that Rule B1 is correct, we must first show that, whenever Rule B1 fires,

there is no idle time between Txj and Tij . If there was idle time, Tij would have to start as soon

as Ti(j−1) is terminated, that is, tij = ei(j−1). This cannot occur, since di(j−1) = dij − τij, and

therefore di(j−1) < ei(j−1). Rule C1 would have failed at the time when Ti(j−1) was scheduled.

According to Algorithm S, Tij must therefore start as soon as Txj is terminated, i.e. tij = exj .

If Tij fails to meet its deadline when scheduled at time exj , we can safely reverse the assignment

to Txj also. The partial schedule including Txj cannot be successfully completed, because Tij

would have to be scheduled at time exj or later, and would therefore miss its effective deadline.

2

102

Procedure ST (j, i, tardacc, Q, U):

Input: Set Q already scheduled subtasks on processor Pj . Index of one selected subtask Tij that has

not been scheduled yet. Set U of remaining subtasks on processor Pj . The following holds:

Q + Tij + U = Tj , where Tj is the set of all subtasks on Pj .

The schedule generated up to this point has the total tardiness tardacc.

Output: The schedule with the minimum total tardiness.

Step 1: Schedule the subtask Tij to start at time tij = max{rij , maxTlj∈Q{elj}}. Set eij = tij + τij

and tardnew = max{eij − dij , 0}. If j < m, set ri(j+1) = eij .

Step 2: If tardacc + tardnew ≤ tardbound [consistent], go to Step 3. Otherwise, a deadend is detected;

return [backtrack].

Step 3: If U − Tij = {} and j = m, a feasible schedule has been generated with a lower tardiness than

the current bound. Define tardbound = tardacc + tardnew . Backtrack.

Step 4: If U − Tij = {}, repeatedly select a subtask Tpj ∈ U [subtask-ordering rule] and call

S(j, p, tardacc + tardnew , Q ∪ Tij , U − Tpj).

Otherwise, repeatedly select a subtask Tpj ∈ Tj+1 [subtask-ordering rule] and call

S(j, p, tardacc + tardnew , {}, Tj+1 − Tpj).

Figure A.2: Procedure ST to Minimize Total Tardiness.

A.2 Minimizing Total Tardiness

Algorithm S can be easily transformed into the branch-and-bound Algorithm ST to minimize

the sum of tardiness. Procedure ST , described in Figure A.2, differs only slightly from Proce-

dure S. First, it keeps track of the lowest total tardiness found so far (Step 3) and compares

against it to determine whether to backtrack or not. Second, it does not terminate when it suc-

ceeds in generating a complete schedule with a lower tardiness, but forces a backtrack (Step 3)

to continue the search. Algorithm ST compares the total tardiness tardacc accumulated in

the partial schedule with the optimal total tardiness found during the search process. If the

accumulated tardiness exceeds the current bound tardbound, the search algorithm can safely

103

backtrack, since the completion of the partial schedule can only increase the total tardiness.

After the search process terminates, the optimal value for the tardiness is tardbound.

The performance of every branch-and-bound algorithm depends greatly on the initial es-

timate for the bound. The lower the bound, the more search paths can be avoided, and the

better the performance of the algorithm is. For flow-shop scheduling, we use two approaches to

determine an initial value for the upper bound tardbound for the total tardiness:

• Use fast heuristic algorithms. We determine an initial bound on the tardiness by using

Algorithm H. This bound can usually be improved by having Algorithm H run multiple

times, each time defining a new processor to be the bottleneck.

• Determine the minimum total tardiness for permutation schedules. This is can again be

done by applying branch-and-bound algorithms. Optimal permutation schedules can be

found reasonably quickly, and have a total tardiness that can be used as a good bound for

non-permutation schedules. Since Algorithm H generates only permutation schedules, it

can be used to determine a good initial bound for the search for permutation schedules.

Once an initial bound on the tardiness has been determined, the search can start. The

search process itself can be supported by a set of rules that are very similar to the rules used to

find feasible schedules. The rules defined in Section A.1 can by large be used in Algorithm ST .

However, the consistency-enforcing rules described in Section A.1.1 are not correct for the

problem of minimizing total tardiness. In the following, we will describe four consistency-

enforcing rules to minimize total tardiness.

A.2.1 Consistency-Enforcing Rules to Minimize Total Tardiness

Consistency-enforcing rules were used in Section A.1.1 to determine whether the current partial

schedule could be completed without any task missing its deadline. In this section, consistency-

enforcing rules are applied to ensure that the current partial schedule can be expanded to a

complete schedule whose total tardiness does not exceed the current bound tardbound.

Rule C1T is closely derived from Rule C1 in Section A.1.1:

104

Rule C1T : The following must hold:

tardacc + tij + τij − dij ≤ tardbound.

Theorem 11. Rule C1T is correct.

Proof. Trivial. 2

Rule C2 described in Section A.1.1 is based on the optimality of the EDF algorithm to

determine a feasible schedule for subtasks on one processor with identical release times. Un-

fortunately, the EDF algorithm does not generate schedules with minimal total tardiness, and

can therefore not be used in general to determine a lower bound on the total tardiness for the

subtasks in U . Nevertheless, EDF schedules for task sets with identical release times have two

useful characteristics: First, as long as no task starts after its deadline in an EDF schedule,

the total tardiness is minimized [6]. Second, in any EDF schedule, the maximum tardiness is

minimized [25]. These two characteristics are used in the following Rule C2T :

Rule C2T : Schedule the subtasks in U according to the EEDF algorithm, assum-

ing that all release times are equal to r = max{eij ,minTlj∈U{rlj}}.

Determine the total tardiness tardtot(U) and the maximum tardiness

tardmax(U).

Rule C2.1T :

If for all Tlj ∈ U , tlj ≤ dlj , the following must hold:

tardacc + tardtot(U) ≤ tardbound.

Rule C2.2T :

If for some Tlj ∈ U , tlj > dlj, the following must hold:

tardacc + tardmax(U) ≤ tardbound.

Theorem 12. Rule C2T is correct.

Proof. As described in Section A.1.1, the schedulability of the subtasks in U is not affected if

the release time of all subtasks is r. By the same argument, neither the minimum total tardiness

nor the minimum maximum tardiness are increased when all subtasks in U are released at time

105

r. By the optimality of the EDF algorithm, tardtot(U) and tardmax(U) are indeed lower bounds

on the total or maximum tardiness of the task set U . 2

Rule C3 in Section A.1.1 uses the maximum completion time of subtasks to determine a

bound on the maximum tardiness. We use this in Rule C3T :

Rule C3T : If j ≤ m − 3, determine lbA, lbB as described above. Determine

lb = max{lbA, lbB} and dmax = maxTlj∈U{dl(j+2)}. The following

must hold:

tardacc + lb − dmax ≤ tardbound.

Theorem 13. Rule C3T is correct.

Proof. The correctness of Rule C3T follows directly from the correctness of Rule C3. 2

Rule C4 in Section A.1.1 can easily be adopted to use information about passed failures to

check for consistency:

Rule C4T : The following must hold:

tij − rcrit(V) ≤ (tardbound − tardacc)/|U |

for every V ⊆ U where rcrit has been defined.

Theorem 14. Rule C4T is correct.

Proof. The correctness of Rule C4T follows directly from the correctness of Rule C4. 2

A.2.2 Conclusion

We used all of the rules described here at some time or the other in branch-and-bound algorithms

to search for feasible flow shop schedules or flow shop schedules with minimum total tardiness.

These algorithms were all based on either Procedure S or Procedure ST . All rules contributed

considerably to cut down the number of search states that had to be generated during the

search process. With the exception of Rule C4 and Rule C4T , They also contributed to reduce

the search time. Rule C4 and Rule C4T require the storing of large amounts of information

106

about past failures. This causes the additional computation overhead to outweigh the gains in

search space reduction, thus slowing down the search process.

107

Appendix B

Simulation Results for Algorithm H

108

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

R
e
l
.

P
e
r
f
o
r
m
a
n
c
e

(
%
)

Mean Utilization Factor mu_u

sigma_tau = 0.05

H
Ha

FCFS
LLF
EEDF

pEEDF

Parameter Setting

n 4

m 4

ρ 0.25

στ 0.05,0.1,0.2,0.3,0.5

µu 0.2,0.4,0.6,0.7

σl 0.5

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

R
e
l
.

P
e
r
f
o
r
m
a
n
c
e

(
%
)

Mean Utilization Factor mu_u

sigma_tau = 0.10

H
Ha

FCFS
LLF

EEDF
pEEDF

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

R
e
l
.

P
e
r
f
o
r
m
a
n
c
e

(
%
)

Mean Utilization Factor mu_u

sigma_tau = 0.20

H
Ha

FCFS
LLF

EEDF
pEEDF

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

R
e
l
.

P
e
r
f
o
r
m
a
n
c
e

(
%
)

Mean Utilization Factor mu_u

sigma_tau = 0.30

H
Ha

FCFS
LLF

EEDF
pEEDF

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

R
e
l
.

P
e
r
f
o
r
m
a
n
c
e

(
%
)

Mean Utilization Factor mu_u

sigma_tau = 0.50

H
Ha

FCFS
LLF

EEDF
pEEDF

Figure B.1: Relative Performance: 4 Tasks, 4 Processors.

109

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

R
e
l
.

P
e
r
f
o
r
m
a
n
c
e

(
%
)

Mean Utilization Factor mu_u

sigma_tau = 0.05

H
Ha

FCFS
LLF
EEDF

pEEDF

Parameter Setting

n 4

m 14

ρ 0.25

στ 0.05,0.1,0.2,0.3,0.5

µu 0.2,0.4,0.6,0.7

σl 0.5

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

R
e
l
.

P
e
r
f
o
r
m
a
n
c
e

(
%
)

Mean Utilization Factor mu_u

sigma_tau = 0.10

H
Ha

FCFS
LLF

EEDF
pEEDF

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

R
e
l
.

P
e
r
f
o
r
m
a
n
c
e

(
%
)

Mean Utilization Factor mu_u

sigma_tau = 0.20

H
Ha

FCFS
LLF

EEDF
pEEDF

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

R
e
l
.

P
e
r
f
o
r
m
a
n
c
e

(
%
)

Mean Utilization Factor mu_u

sigma_tau = 0.30

H
Ha

FCFS
LLF

EEDF
pEEDF

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

R
e
l
.

P
e
r
f
o
r
m
a
n
c
e

(
%
)

Mean Utilization Factor mu_u

sigma_tau = 0.50

H
Ha

FCFS
LLF

EEDF
pEEDF

Figure B.2: Relative Performance: 4 Tasks, 14 Processors.

110

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

R
e
l
.

P
e
r
f
o
r
m
a
n
c
e

(
%
)

Mean Utilization Factor mu_u

sigma_tau = 0.05

H
Ha

FCFS
LLF
EEDF

pEEDF

Parameter Setting

n 4

m 22

ρ 0.25

στ 0.05,0.1,0.2,0.3,0.5

µu 0.2,0.4,0.6,0.7

σl 0.5

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

R
e
l
.

P
e
r
f
o
r
m
a
n
c
e

(
%
)

Mean Utilization Factor mu_u

sigma_tau = 0.10

H
Ha

FCFS
LLF

EEDF
pEEDF

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

R
e
l
.

P
e
r
f
o
r
m
a
n
c
e

(
%
)

Mean Utilization Factor mu_u

sigma_tau = 0.20

H
Ha

FCFS
LLF

EEDF
pEEDF

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

R
e
l
.

P
e
r
f
o
r
m
a
n
c
e

(
%
)

Mean Utilization Factor mu_u

sigma_tau = 0.30

H
Ha

FCFS
LLF

EEDF
pEEDF

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

R
e
l
.

P
e
r
f
o
r
m
a
n
c
e

(
%
)

Mean Utilization Factor mu_u

sigma_tau = 0.50

H
Ha

FCFS
LLF

EEDF
pEEDF

Figure B.3: Relative Performance: 4 Tasks, 22 Processors.

111

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

R
e
l
.

P
e
r
f
o
r
m
a
n
c
e

(
%
)

Mean Utilization Factor mu_u

sigma_tau = 0.05

H
Ha

FCFS
LLF
EEDF

pEEDF

Parameter Setting

n 14

m 4

ρ 0.25

στ 0.05,0.1,0.2,0.3,0.5

µu 0.2,0.4,0.6,0.7

σl 0.5

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

R
e
l
.

P
e
r
f
o
r
m
a
n
c
e

(
%
)

Mean Utilization Factor mu_u

sigma_tau = 0.10

H
Ha

FCFS
LLF

EEDF
pEEDF

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

R
e
l
.

P
e
r
f
o
r
m
a
n
c
e

(
%
)

Mean Utilization Factor mu_u

sigma_tau = 0.20

H
Ha

FCFS
LLF

EEDF
pEEDF

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

R
e
l
.

P
e
r
f
o
r
m
a
n
c
e

(
%
)

Mean Utilization Factor mu_u

sigma_tau = 0.30

H
Ha

FCFS
LLF

EEDF
pEEDF

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

R
e
l
.

P
e
r
f
o
r
m
a
n
c
e

(
%
)

Mean Utilization Factor mu_u

sigma_tau = 0.50

H
Ha

FCFS
LLF

EEDF
pEEDF

Figure B.4: Relative Performance: 14 Tasks, 4 Processors.

112

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

R
e
l
.

P
e
r
f
o
r
m
a
n
c
e

(
%
)

Mean Utilization Factor mu_u

sigma_tau = 0.05

H
Ha

FCFS
LLF
EEDF

pEEDF

Parameter Setting

n 14

m 14

ρ 0.25

στ 0.05,0.1,0.2,0.3,0.5

µu 0.2,0.4,0.6,0.7

σl 0.5

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

R
e
l
.

P
e
r
f
o
r
m
a
n
c
e

(
%
)

Mean Utilization Factor mu_u

sigma_tau = 0.10

H
Ha

FCFS
LLF

EEDF
pEEDF

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

R
e
l
.

P
e
r
f
o
r
m
a
n
c
e

(
%
)

Mean Utilization Factor mu_u

sigma_tau = 0.20

H
Ha

FCFS
LLF

EEDF
pEEDF

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

R
e
l
.

P
e
r
f
o
r
m
a
n
c
e

(
%
)

Mean Utilization Factor mu_u

sigma_tau = 0.30

H
Ha

FCFS
LLF

EEDF
pEEDF

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

R
e
l
.

P
e
r
f
o
r
m
a
n
c
e

(
%
)

Mean Utilization Factor mu_u

sigma_tau = 0.50

H
Ha

FCFS
LLF

EEDF
pEEDF

Figure B.5: Relative Performance: 14 Tasks, 14 Processors.

113

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

R
e
l
.

P
e
r
f
o
r
m
a
n
c
e

(
%
)

Mean Utilization Factor mu_u

sigma_tau = 0.05

H
Ha

FCFS
LLF
EEDF

pEEDF

Parameter Setting

n 14

m 22

ρ 0.25

στ 0.05,0.1,0.2,0.3,0.5

µu 0.2,0.4,0.6,0.7

σl 0.5

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

R
e
l
.

P
e
r
f
o
r
m
a
n
c
e

(
%
)

Mean Utilization Factor mu_u

sigma_tau = 0.10

H
Ha

FCFS
LLF

EEDF
pEEDF

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

R
e
l
.

P
e
r
f
o
r
m
a
n
c
e

(
%
)

Mean Utilization Factor mu_u

sigma_tau = 0.20

H
Ha

FCFS
LLF

EEDF
pEEDF

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

R
e
l
.

P
e
r
f
o
r
m
a
n
c
e

(
%
)

Mean Utilization Factor mu_u

sigma_tau = 0.30

H
Ha

FCFS
LLF

EEDF
pEEDF

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

R
e
l
.

P
e
r
f
o
r
m
a
n
c
e

(
%
)

Mean Utilization Factor mu_u

sigma_tau = 0.50

H
Ha

FCFS
LLF

EEDF
pEEDF

Figure B.6: Relative Performance: 14 Tasks, 22 Processors.

114

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

R
e
l
.

P
e
r
f
o
r
m
a
n
c
e

(
%
)

Mean Utilization Factor mu_u

sigma_tau = 0.05

H
Ha

FCFS
LLF
EEDF

pEEDF

Parameter Setting

n 22

m 4

ρ 0.25

στ 0.05,0.1,0.2,0.3,0.5

µu 0.2,0.4,0.6,0.7

σl 0.5

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

R
e
l
.

P
e
r
f
o
r
m
a
n
c
e

(
%
)

Mean Utilization Factor mu_u

sigma_tau = 0.10

H
Ha

FCFS
LLF

EEDF
pEEDF

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

R
e
l
.

P
e
r
f
o
r
m
a
n
c
e

(
%
)

Mean Utilization Factor mu_u

sigma_tau = 0.20

H
Ha

FCFS
LLF

EEDF
pEEDF

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

R
e
l
.

P
e
r
f
o
r
m
a
n
c
e

(
%
)

Mean Utilization Factor mu_u

sigma_tau = 0.30

H
Ha

FCFS
LLF

EEDF
pEEDF

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

R
e
l
.

P
e
r
f
o
r
m
a
n
c
e

(
%
)

Mean Utilization Factor mu_u

sigma_tau = 0.50

H
Ha

FCFS
LLF

EEDF
pEEDF

Figure B.7: Relative Performance: 22 Tasks, 4 Processors.

115

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

R
e
l
.

P
e
r
f
o
r
m
a
n
c
e

(
%
)

Mean Utilization Factor mu_u

sigma_tau = 0.05

H
Ha

FCFS
LLF
EEDF

pEEDF

Parameter Setting

n 22

m 14

ρ 0.25

στ 0.05,0.1,0.2,0.3,0.5

µu 0.2,0.4,0.6,0.7

σl 0.5

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

R
e
l
.

P
e
r
f
o
r
m
a
n
c
e

(
%
)

Mean Utilization Factor mu_u

sigma_tau = 0.10

H
Ha

FCFS
LLF

EEDF
pEEDF

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

R
e
l
.

P
e
r
f
o
r
m
a
n
c
e

(
%
)

Mean Utilization Factor mu_u

sigma_tau = 0.20

H
Ha

FCFS
LLF

EEDF
pEEDF

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

R
e
l
.

P
e
r
f
o
r
m
a
n
c
e

(
%
)

Mean Utilization Factor mu_u

sigma_tau = 0.30

H
Ha

FCFS
LLF

EEDF
pEEDF

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

R
e
l
.

P
e
r
f
o
r
m
a
n
c
e

(
%
)

Mean Utilization Factor mu_u

sigma_tau = 0.50

H
Ha

FCFS
LLF

EEDF
pEEDF

Figure B.8: Relative Performance: 22 Tasks, 14 Processors.

116

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

R
e
l
.

P
e
r
f
o
r
m
a
n
c
e

(
%
)

Mean Utilization Factor mu_u

sigma_tau = 0.05

H
Ha

FCFS
LLF
EEDF

pEEDF

Parameter Setting

n 22

m 22

ρ 0.25

στ 0.05,0.1,0.2,0.3,0.5

µu 0.2,0.4,0.6,0.7

σl 0.5

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

R
e
l
.

P
e
r
f
o
r
m
a
n
c
e

(
%
)

Mean Utilization Factor mu_u

sigma_tau = 0.10

H
Ha

FCFS
LLF

EEDF
pEEDF

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

R
e
l
.

P
e
r
f
o
r
m
a
n
c
e

(
%
)

Mean Utilization Factor mu_u

sigma_tau = 0.20

H
Ha

FCFS
LLF

EEDF
pEEDF

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

R
e
l
.

P
e
r
f
o
r
m
a
n
c
e

(
%
)

Mean Utilization Factor mu_u

sigma_tau = 0.30

H
Ha

FCFS
LLF

EEDF
pEEDF

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

R
e
l
.

P
e
r
f
o
r
m
a
n
c
e

(
%
)

Mean Utilization Factor mu_u

sigma_tau = 0.50

H
Ha

FCFS
LLF

EEDF
pEEDF

Figure B.9: Relative Performance: 22 Tasks, 22 Processors.

117

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
u
c
c
e
s
s

R
a
t
e

(
%
)

Utilization Factor mu_u

sigma_tau = 0.05

H
Ha

FCFS
LLF
EEDF

pEEDF

Parameter Setting

n 4

m 4

ρ 0.25

στ 0.05,0.1,0.2,0.3,0.5

µu 0.2,0.4,0.6,0.7

σl 0.5

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
u
c
c
e
s
s

R
a
t
e

(
%
)

Utilization Factor mu_u

sigma_tau = 0.10

H
Ha

FCFS
LLF

EEDF
pEEDF

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
u
c
c
e
s
s

R
a
t
e

(
%
)

Utilization Factor mu_u

sigma_tau = 0.20

H
Ha

FCFS
LLF

EEDF
pEEDF

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
u
c
c
e
s
s

R
a
t
e

(
%
)

Utilization Factor mu_u

sigma_tau = 0.30

H
Ha

FCFS
LLF

EEDF
pEEDF

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
u
c
c
e
s
s

R
a
t
e

(
%
)

Utilization Factor mu_u

sigma_tau = 0.50

H
Ha

FCFS
LLF

EEDF
pEEDF

Figure B.10: Success Rate: 4 Tasks, 4 Processors.

118

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
u
c
c
e
s
s

R
a
t
e

(
%
)

Utilization Factor mu_u

sigma_tau = 0.05

H
Ha

FCFS
LLF
EEDF

pEEDF

Parameter Setting

n 4

m 14

ρ 0.25

στ 0.05,0.1,0.2,0.3,0.5

µu 0.2,0.4,0.6,0.7

σl 0.5

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
u
c
c
e
s
s

R
a
t
e

(
%
)

Utilization Factor mu_u

sigma_tau = 0.10

H
Ha

FCFS
LLF

EEDF
pEEDF

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
u
c
c
e
s
s

R
a
t
e

(
%
)

Utilization Factor mu_u

sigma_tau = 0.20

H
Ha

FCFS
LLF

EEDF
pEEDF

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
u
c
c
e
s
s

R
a
t
e

(
%
)

Utilization Factor mu_u

sigma_tau = 0.30

H
Ha

FCFS
LLF

EEDF
pEEDF

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
u
c
c
e
s
s

R
a
t
e

(
%
)

Utilization Factor mu_u

sigma_tau = 0.50

H
Ha

FCFS
LLF

EEDF
pEEDF

Figure B.11: Success Rate: 4 Tasks, 14 Processors.

119

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
u
c
c
e
s
s

R
a
t
e

(
%
)

Utilization Factor mu_u

sigma_tau = 0.05

H
Ha

FCFS
LLF
EEDF

pEEDF

Parameter Setting

n 4

m 22

ρ 0.25

στ 0.05,0.1,0.2,0.3,0.5

µu 0.2,0.4,0.6,0.7

σl 0.5

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
u
c
c
e
s
s

R
a
t
e

(
%
)

Utilization Factor mu_u

sigma_tau = 0.10

H
Ha

FCFS
LLF

EEDF
pEEDF

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
u
c
c
e
s
s

R
a
t
e

(
%
)

Utilization Factor mu_u

sigma_tau = 0.20

H
Ha

FCFS
LLF

EEDF
pEEDF

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
u
c
c
e
s
s

R
a
t
e

(
%
)

Utilization Factor mu_u

sigma_tau = 0.30

H
Ha

FCFS
LLF

EEDF
pEEDF

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
u
c
c
e
s
s

R
a
t
e

(
%
)

Utilization Factor mu_u

sigma_tau = 0.50

H
Ha

FCFS
LLF

EEDF
pEEDF

Figure B.12: Success Rate: 4 Tasks, 22 Processors.

120

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
u
c
c
e
s
s

R
a
t
e

(
%
)

Utilization Factor mu_u

sigma_tau = 0.05

H
Ha

FCFS
LLF
EEDF

pEEDF

Parameter Setting

n 14

m 4

ρ 0.25

στ 0.05,0.1,0.2,0.3,0.5

µu 0.2,0.4,0.6,0.7

σl 0.5

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
u
c
c
e
s
s

R
a
t
e

(
%
)

Utilization Factor mu_u

sigma_tau = 0.10

H
Ha

FCFS
LLF

EEDF
pEEDF

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
u
c
c
e
s
s

R
a
t
e

(
%
)

Utilization Factor mu_u

sigma_tau = 0.20

H
Ha

FCFS
LLF

EEDF
pEEDF

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
u
c
c
e
s
s

R
a
t
e

(
%
)

Utilization Factor mu_u

sigma_tau = 0.30

H
Ha

FCFS
LLF

EEDF
pEEDF

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
u
c
c
e
s
s

R
a
t
e

(
%
)

Utilization Factor mu_u

sigma_tau = 0.50

H
Ha

FCFS
LLF

EEDF
pEEDF

Figure B.13: Success Rate: 14 Tasks, 4 Processors.

121

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
u
c
c
e
s
s

R
a
t
e

(
%
)

Utilization Factor mu_u

sigma_tau = 0.05

H
Ha

FCFS
LLF
EEDF

pEEDF

Parameter Setting

n 14

m 14

ρ 0.25

στ 0.05,0.1,0.2,0.3,0.5

µu 0.2,0.4,0.6,0.7

σl 0.5

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
u
c
c
e
s
s

R
a
t
e

(
%
)

Utilization Factor mu_u

sigma_tau = 0.10

H
Ha

FCFS
LLF

EEDF
pEEDF

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
u
c
c
e
s
s

R
a
t
e

(
%
)

Utilization Factor mu_u

sigma_tau = 0.20

H
Ha

FCFS
LLF

EEDF
pEEDF

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
u
c
c
e
s
s

R
a
t
e

(
%
)

Utilization Factor mu_u

sigma_tau = 0.30

H
Ha

FCFS
LLF

EEDF
pEEDF

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
u
c
c
e
s
s

R
a
t
e

(
%
)

Utilization Factor mu_u

sigma_tau = 0.50

H
Ha

FCFS
LLF

EEDF
pEEDF

Figure B.14: Success Rate: 14 Tasks, 14 Processors.

122

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
u
c
c
e
s
s

R
a
t
e

(
%
)

Utilization Factor mu_u

sigma_tau = 0.05

H
Ha

FCFS
LLF
EEDF

pEEDF

Parameter Setting

n 14

m 22

ρ 0.25

στ 0.05,0.1,0.2,0.3,0.5

µu 0.2,0.4,0.6,0.7

σl 0.5

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
u
c
c
e
s
s

R
a
t
e

(
%
)

Utilization Factor mu_u

sigma_tau = 0.10

H
Ha

FCFS
LLF

EEDF
pEEDF

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
u
c
c
e
s
s

R
a
t
e

(
%
)

Utilization Factor mu_u

sigma_tau = 0.20

H
Ha

FCFS
LLF

EEDF
pEEDF

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
u
c
c
e
s
s

R
a
t
e

(
%
)

Utilization Factor mu_u

sigma_tau = 0.30

H
Ha

FCFS
LLF

EEDF
pEEDF

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
u
c
c
e
s
s

R
a
t
e

(
%
)

Utilization Factor mu_u

sigma_tau = 0.50

H
Ha

FCFS
LLF

EEDF
pEEDF

Figure B.15: Success Rate: 14 Tasks, 22 Processors.

123

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
u
c
c
e
s
s

R
a
t
e

(
%
)

Utilization Factor mu_u

sigma_tau = 0.05

H
Ha

FCFS
LLF
EEDF

pEEDF

Parameter Setting

n 22

m 4

ρ 0.25

στ 0.05,0.1,0.2,0.3,0.5

µu 0.2,0.4,0.6,0.7

σl 0.5

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
u
c
c
e
s
s

R
a
t
e

(
%
)

Utilization Factor mu_u

sigma_tau = 0.10

H
Ha

FCFS
LLF

EEDF
pEEDF

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
u
c
c
e
s
s

R
a
t
e

(
%
)

Utilization Factor mu_u

sigma_tau = 0.20

H
Ha

FCFS
LLF

EEDF
pEEDF

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
u
c
c
e
s
s

R
a
t
e

(
%
)

Utilization Factor mu_u

sigma_tau = 0.30

H
Ha

FCFS
LLF

EEDF
pEEDF

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
u
c
c
e
s
s

R
a
t
e

(
%
)

Utilization Factor mu_u

sigma_tau = 0.50

H
Ha

FCFS
LLF

EEDF
pEEDF

Figure B.16: Success Rate: 22 Tasks, 4 Processors.

124

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
u
c
c
e
s
s

R
a
t
e

(
%
)

Utilization Factor mu_u

sigma_tau = 0.05

H
Ha

FCFS
LLF
EEDF

pEEDF

Parameter Setting

n 22

m 14

ρ 0.25

στ 0.05,0.1,0.2,0.3,0.5

µu 0.2,0.4,0.6,0.7

σl 0.5

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
u
c
c
e
s
s

R
a
t
e

(
%
)

Utilization Factor mu_u

sigma_tau = 0.10

H
Ha

FCFS
LLF

EEDF
pEEDF

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
u
c
c
e
s
s

R
a
t
e

(
%
)

Utilization Factor mu_u

sigma_tau = 0.20

H
Ha

FCFS
LLF

EEDF
pEEDF

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
u
c
c
e
s
s

R
a
t
e

(
%
)

Utilization Factor mu_u

sigma_tau = 0.30

H
Ha

FCFS
LLF

EEDF
pEEDF

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
u
c
c
e
s
s

R
a
t
e

(
%
)

Utilization Factor mu_u

sigma_tau = 0.50

H
Ha

FCFS
LLF

EEDF
pEEDF

Figure B.17: Success Rate: 22 Tasks, 14 Processors.

125

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
u
c
c
e
s
s

R
a
t
e

(
%
)

Utilization Factor mu_u

sigma_tau = 0.05

H
Ha

FCFS
LLF
EEDF

pEEDF

Parameter Setting

n 22

m 22

ρ 0.25

στ 0.05,0.1,0.2,0.3,0.5

µu 0.2,0.4,0.6,0.7

σl 0.5

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
u
c
c
e
s
s

R
a
t
e

(
%
)

Utilization Factor mu_u

sigma_tau = 0.10

H
Ha

FCFS
LLF

EEDF
pEEDF

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
u
c
c
e
s
s

R
a
t
e

(
%
)

Utilization Factor mu_u

sigma_tau = 0.20

H
Ha

FCFS
LLF

EEDF
pEEDF

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
u
c
c
e
s
s

R
a
t
e

(
%
)

Utilization Factor mu_u

sigma_tau = 0.30

H
Ha

FCFS
LLF

EEDF
pEEDF

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
u
c
c
e
s
s

R
a
t
e

(
%
)

Utilization Factor mu_u

sigma_tau = 0.50

H
Ha

FCFS
LLF

EEDF
pEEDF

Figure B.18: Success Rate: 22 Tasks, 22 Processors.

126

10

15

20

Processors

10

15

20

Tasks

0
20

40

60

80

100

rel.Perf.

10

15

20

Processors

10

15

20

Tasks

0
20

40

60

80

100

rel.Perf.

Algorithm H

10

15

20

Processors

10

15

20

Tasks

0
20

40

60

80

100

rel.Perf.

10

15

20

Processors

10

15

20

Tasks

0
20

40

60

80

100

rel.Perf.

Algorithm Ha

10

15

20

Processors

10

15

20

Tasks

0
20

40

60

80

100

rel.Perf.

10

15

20

Processors

10

15

20

Tasks

0
20

40

60

80

100

rel.Perf.

Algorithm FCFS

10

15

20

Processors

10

15

20

Tasks

0
20

40

60

80

100

rel.Perf.

10

15

20

Processors

10

15

20

Tasks

0
20

40

60

80

100

rel.Perf.

Algorithm LLF

10

15

20

Processors

10

15

20

Tasks

0
20

40

60

80

100

rel.Perf.

10

15

20

Processors

10

15

20

Tasks

0
20

40

60

80

100

rel.Perf.

Algorithm EEDF

10

15

20

Processors

10

15

20

Tasks

0
20

40

60

80

100

rel.Perf.

10

15

20

Processors

10

15

20

Tasks

0
20

40

60

80

100

rel.Perf.

Algorithm pEEDF

Figure B.19: Relative Performance: στ = 0.05, µu = 0.2.

127

10

15

20

Processors

10

15

20

Tasks

0
20

40

60

80

100

rel.Perf.

10

15

20

Processors

10

15

20

Tasks

0
20

40

60

80

100

rel.Perf.

Algorithm H

10

15

20

Processors

10

15

20

Tasks

0
20

40

60

80

100

rel.Perf.

10

15

20

Processors

10

15

20

Tasks

0
20

40

60

80

100

rel.Perf.

Algorithm Ha

10

15

20

Processors

10

15

20

Tasks

0
20

40

60

80

100

rel.Perf.

10

15

20

Processors

10

15

20

Tasks

0
20

40

60

80

100

rel.Perf.

Algorithm FCFS

10

15

20

Processors

10

15

20

Tasks

0
20

40

60

80

100

rel.Perf.

10

15

20

Processors

10

15

20

Tasks

0
20

40

60

80

100

rel.Perf.

Algorithm LLF

10

15

20

Processors

10

15

20

Tasks

0
20

40

60

80

100

rel.Perf.

10

15

20

Processors

10

15

20

Tasks

0
20

40

60

80

100

rel.Perf.

Algorithm EEDF

10

15

20

Processors

10

15

20

Tasks

0
20

40

60

80

100

rel.Perf.

10

15

20

Processors

10

15

20

Tasks

0
20

40

60

80

100

rel.Perf.

Algorithm pEEDF

Figure B.20: Relative Performance: στ = 0.5, µu = 0.2.

128

10

15

20

Processors

10

15

20

Tasks

0
20

40

60

80

100

rel.Perf.

10

15

20

Processors

10

15

20

Tasks

0
20

40

60

80

100

rel.Perf.

Algorithm H

10

15

20

Processors

10

15

20

Tasks

0
20

40

60

80

100

rel.Perf.

10

15

20

Processors

10

15

20

Tasks

0
20

40

60

80

100

rel.Perf.

Algorithm Ha

10

15

20

Processors

10

15

20

Tasks

0
20

40

60

80

100

rel.Perf.

10

15

20

Processors

10

15

20

Tasks

0
20

40

60

80

100

rel.Perf.

Algorithm FCFS

10

15

20

Processors

10

15

20

Tasks

0
20

40

60

80

100

rel.Perf.

10

15

20

Processors

10

15

20

Tasks

0
20

40

60

80

100

rel.Perf.

Algorithm LLF

10

15

20

Processors

10

15

20

Tasks

0
20

40

60

80

100

rel.Perf.

10

15

20

Processors

10

15

20

Tasks

0
20

40

60

80

100

rel.Perf.

Algorithm EEDF

10

15

20

Processors

10

15

20

Tasks

0
20

40

60

80

100

rel.Perf.

10

15

20

Processors

10

15

20

Tasks

0
20

40

60

80

100

rel.Perf.

Algorithm pEEDF

Figure B.21: Relative Performance: στ = 0.05, µu = 0.4.

129

10

15

20

Processors

10

15

20

Tasks

0
20

40

60

80

100

rel.Perf.

10

15

20

Processors

10

15

20

Tasks

0
20

40

60

80

100

rel.Perf.

Algorithm H

10

15

20

Processors

10

15

20

Tasks

0
20

40

60

80

100

rel.Perf.

10

15

20

Processors

10

15

20

Tasks

0
20

40

60

80

100

rel.Perf.

Algorithm Ha

10

15

20

Processors

10

15

20

Tasks

0
20

40

60

80

100

rel.Perf.

10

15

20

Processors

10

15

20

Tasks

0
20

40

60

80

100

rel.Perf.

Algorithm FCFS

10

15

20

Processors

10

15

20

Tasks

0
20

40

60

80

100

rel.Perf.

10

15

20

Processors

10

15

20

Tasks

0
20

40

60

80

100

rel.Perf.

Algorithm LLF

10

15

20

Processors

10

15

20

Tasks

0
20

40

60

80

100

rel.Perf.

10

15

20

Processors

10

15

20

Tasks

0
20

40

60

80

100

rel.Perf.

Algorithm EEDF

10

15

20

Processors

10

15

20

Tasks

0
20

40

60

80

100

rel.Perf.

10

15

20

Processors

10

15

20

Tasks

0
20

40

60

80

100

rel.Perf.

Algorithm pEEDF

Figure B.22: Relative Performance: στ = 0.5, µu = 0.4.

130

10

15

20

Processors

10

15

20

Tasks

0
20

40

60

80

100

rel.Perf.

10

15

20

Processors

10

15

20

Tasks

0
20

40

60

80

100

rel.Perf.

Algorithm H

10

15

20

Processors

10

15

20

Tasks

0
20

40

60

80

100

rel.Perf.

10

15

20

Processors

10

15

20

Tasks

0
20

40

60

80

100

rel.Perf.

Algorithm Ha

10

15

20

Processors

10

15

20

Tasks

0
20

40

60

80

100

rel.Perf.

10

15

20

Processors

10

15

20

Tasks

0
20

40

60

80

100

rel.Perf.

Algorithm FCFS

10

15

20

Processors

10

15

20

Tasks

0
20

40

60

80

100

rel.Perf.

10

15

20

Processors

10

15

20

Tasks

0
20

40

60

80

100

rel.Perf.

Algorithm LLF

10

15

20

Processors

10

15

20

Tasks

0
20

40

60

80

100

rel.Perf.

10

15

20

Processors

10

15

20

Tasks

0
20

40

60

80

100

rel.Perf.

Algorithm EEDF

10

15

20

Processors

10

15

20

Tasks

0
20

40

60

80

100

rel.Perf.

10

15

20

Processors

10

15

20

Tasks

0
20

40

60

80

100

rel.Perf.

Algorithm pEEDF

Figure B.23: Relative Performance: στ = 0.05, µu = 0.7.

131

10

15

20

Processors

10

15

20

Tasks

0
20

40

60

80

100

rel.Perf.

10

15

20

Processors

10

15

20

Tasks

0
20

40

60

80

100

rel.Perf.

Algorithm H

10

15

20

Processors

10

15

20

Tasks

0
20

40

60

80

100

rel.Perf.

10

15

20

Processors

10

15

20

Tasks

0
20

40

60

80

100

rel.Perf.

Algorithm Ha

10

15

20

Processors

10

15

20

Tasks

0
20

40

60

80

100

rel.Perf.

10

15

20

Processors

10

15

20

Tasks

0
20

40

60

80

100

rel.Perf.

Algorithm FCFS

10

15

20

Processors

10

15

20

Tasks

0
20

40

60

80

100

rel.Perf.

10

15

20

Processors

10

15

20

Tasks

0
20

40

60

80

100

rel.Perf.

Algorithm LLF

10

15

20

Processors

10

15

20

Tasks

0
20

40

60

80

100

rel.Perf.

10

15

20

Processors

10

15

20

Tasks

0
20

40

60

80

100

rel.Perf.

Algorithm EEDF

10

15

20

Processors

10

15

20

Tasks

0
20

40

60

80

100

rel.Perf.

10

15

20

Processors

10

15

20

Tasks

0
20

40

60

80

100

rel.Perf.

Algorithm pEEDF

Figure B.24: Relative Performance: στ = 0.5, µu = 0.7.

132

5

10

15

20

Processors

5

10

15

20

Tasks

0
20
40

60

80

100

Succ. Rate

5

10

15

20

Processors

5

10

15

20

Tasks

0
20
40

60

80

100

Succ. Rate

Algorithm H

5

10

15

20

Processors

5

10

15

20

Tasks

0
20
40

60

80

100

Succ. Rate

5

10

15

20

Processors

5

10

15

20

Tasks

0
20
40

60

80

100

Succ. Rate

Algorithm Ha

5

10

15

20

Processors

5

10

15

20

Tasks

0
20
40

60

80

100

Succ. Rate

5

10

15

20

Processors

5

10

15

20

Tasks

0
20
40

60

80

100

Succ. Rate

Algorithm FCFS

5

10

15

20

Processors

5

10

15

20

Tasks

0
20
40

60

80

100

Succ. Rate

5

10

15

20

Processors

5

10

15

20

Tasks

0
20
40

60

80

100

Succ. Rate

Algorithm LLF

5

10

15

20

Processors

5

10

15

20

Tasks

0
20
40

60

80

100

Succ. Rate

5

10

15

20

Processors

5

10

15

20

Tasks

0
20
40

60

80

100

Succ. Rate

Algorithm EEDF

5

10

15

20

Processors

5

10

15

20

Tasks

0
20
40

60

80

100

Succ. Rate

5

10

15

20

Processors

5

10

15

20

Tasks

0
20
40

60

80

100

Succ. Rate

Algorithm pEEDF

Figure B.25: Success Rate: στ = 0.05, µu = 0.2.

133

5

10

15

20

Processors

5

10

15

20

Tasks

0
20
40

60

80

100

Succ. Rate

5

10

15

20

Processors

5

10

15

20

Tasks

0
20
40

60

80

100

Succ. Rate

Algorithm H

5

10

15

20

Processors

5

10

15

20

Tasks

0
20
40

60

80

100

Succ. Rate

5

10

15

20

Processors

5

10

15

20

Tasks

0
20
40

60

80

100

Succ. Rate

Algorithm Ha

5

10

15

20

Processors

5

10

15

20

Tasks

0
20
40

60

80

100

Succ. Rate

5

10

15

20

Processors

5

10

15

20

Tasks

0
20
40

60

80

100

Succ. Rate

Algorithm FCFS

5

10

15

20

Processors

5

10

15

20

Tasks

0
20
40

60

80

100

Succ. Rate

5

10

15

20

Processors

5

10

15

20

Tasks

0
20
40

60

80

100

Succ. Rate

Algorithm LLF

5

10

15

20

Processors

5

10

15

20

Tasks

0
20
40

60

80

100

Succ. Rate

5

10

15

20

Processors

5

10

15

20

Tasks

0
20
40

60

80

100

Succ. Rate

Algorithm EEDF

5

10

15

20

Processors

5

10

15

20

Tasks

0
20
40

60

80

100

Succ. Rate

5

10

15

20

Processors

5

10

15

20

Tasks

0
20
40

60

80

100

Succ. Rate

Algorithm pEEDF

Figure B.26: Success Rate: στ = 0.5, µu = 0.2.

134

5

10

15

20

Processors

5

10

15

20

Tasks

0
20
40

60

80

100

Succ. Rate

5

10

15

20

Processors

5

10

15

20

Tasks

0
20
40

60

80

100

Succ. Rate

Algorithm H

5

10

15

20

Processors

5

10

15

20

Tasks

0
20
40

60

80

100

Succ. Rate

5

10

15

20

Processors

5

10

15

20

Tasks

0
20
40

60

80

100

Succ. Rate

Algorithm Ha

5

10

15

20

Processors

5

10

15

20

Tasks

0
20
40

60

80

100

Succ. Rate

5

10

15

20

Processors

5

10

15

20

Tasks

0
20
40

60

80

100

Succ. Rate

Algorithm FCFS

5

10

15

20

Processors

5

10

15

20

Tasks

0
20
40

60

80

100

Succ. Rate

5

10

15

20

Processors

5

10

15

20

Tasks

0
20
40

60

80

100

Succ. Rate

Algorithm LLF

5

10

15

20

Processors

5

10

15

20

Tasks

0
20
40

60

80

100

Succ. Rate

5

10

15

20

Processors

5

10

15

20

Tasks

0
20
40

60

80

100

Succ. Rate

Algorithm EEDF

5

10

15

20

Processors

5

10

15

20

Tasks

0
20
40

60

80

100

Succ. Rate

5

10

15

20

Processors

5

10

15

20

Tasks

0
20
40

60

80

100

Succ. Rate

Algorithm pEEDF

Figure B.27: Success Rate: στ = 0.05, µu = 0.4.

135

5

10

15

20

Processors

5

10

15

20

Tasks

0
20
40

60

80

100

Succ. Rate

5

10

15

20

Processors

5

10

15

20

Tasks

0
20
40

60

80

100

Succ. Rate

Algorithm H

5

10

15

20

Processors

5

10

15

20

Tasks

0
20
40

60

80

100

Succ. Rate

5

10

15

20

Processors

5

10

15

20

Tasks

0
20
40

60

80

100

Succ. Rate

Algorithm Ha

5

10

15

20

Processors

5

10

15

20

Tasks

0
20
40

60

80

100

Succ. Rate

5

10

15

20

Processors

5

10

15

20

Tasks

0
20
40

60

80

100

Succ. Rate

Algorithm FCFS

5

10

15

20

Processors

5

10

15

20

Tasks

0
20
40

60

80

100

Succ. Rate

5

10

15

20

Processors

5

10

15

20

Tasks

0
20
40

60

80

100

Succ. Rate

Algorithm LLF

5

10

15

20

Processors

5

10

15

20

Tasks

0
20
40

60

80

100

Succ. Rate

5

10

15

20

Processors

5

10

15

20

Tasks

0
20
40

60

80

100

Succ. Rate

Algorithm EEDF

5

10

15

20

Processors

5

10

15

20

Tasks

0
20
40

60

80

100

Succ. Rate

5

10

15

20

Processors

5

10

15

20

Tasks

0
20
40

60

80

100

Succ. Rate

Algorithm pEEDF

Figure B.28: Success Rate: στ = 0.5, µu = 0.4.

136

5

10

15

20

Processors

5

10

15

20

Tasks

0
20
40

60

80

100

Succ. Rate

5

10

15

20

Processors

5

10

15

20

Tasks

0
20
40

60

80

100

Succ. Rate

Algorithm H

5

10

15

20

Processors

5

10

15

20

Tasks

0
20
40

60

80

100

Succ. Rate

5

10

15

20

Processors

5

10

15

20

Tasks

0
20
40

60

80

100

Succ. Rate

Algorithm Ha

5

10

15

20

Processors

5

10

15

20

Tasks

0
20
40

60

80

100

Succ. Rate

5

10

15

20

Processors

5

10

15

20

Tasks

0
20
40

60

80

100

Succ. Rate

Algorithm FCFS

5

10

15

20

Processors

5

10

15

20

Tasks

0
20
40

60

80

100

Succ. Rate

5

10

15

20

Processors

5

10

15

20

Tasks

0
20
40

60

80

100

Succ. Rate

Algorithm LLF

5

10

15

20

Processors

5

10

15

20

Tasks

0
20
40

60

80

100

Succ. Rate

5

10

15

20

Processors

5

10

15

20

Tasks

0
20
40

60

80

100

Succ. Rate

Algorithm EEDF

5

10

15

20

Processors

5

10

15

20

Tasks

0
20
40

60

80

100

Succ. Rate

5

10

15

20

Processors

5

10

15

20

Tasks

0
20
40

60

80

100

Succ. Rate

Algorithm pEEDF

Figure B.29: Success Rate: στ = 0.05, µu = 0.7.

137

5

10

15

20

Processors

5

10

15

20

Tasks

0
20
40

60

80

100

Succ. Rate

5

10

15

20

Processors

5

10

15

20

Tasks

0
20
40

60

80

100

Succ. Rate

Algorithm H

5

10

15

20

Processors

5

10

15

20

Tasks

0
20
40

60

80

100

Succ. Rate

5

10

15

20

Processors

5

10

15

20

Tasks

0
20
40

60

80

100

Succ. Rate

Algorithm Ha

5

10

15

20

Processors

5

10

15

20

Tasks

0
20
40

60

80

100

Succ. Rate

5

10

15

20

Processors

5

10

15

20

Tasks

0
20
40

60

80

100

Succ. Rate

Algorithm FCFS

5

10

15

20

Processors

5

10

15

20

Tasks

0
20
40

60

80

100

Succ. Rate

5

10

15

20

Processors

5

10

15

20

Tasks

0
20
40

60

80

100

Succ. Rate

Algorithm LLF

5

10

15

20

Processors

5

10

15

20

Tasks

0
20
40

60

80

100

Succ. Rate

5

10

15

20

Processors

5

10

15

20

Tasks

0
20
40

60

80

100

Succ. Rate

Algorithm EEDF

5

10

15

20

Processors

5

10

15

20

Tasks

0
20
40

60

80

100

Succ. Rate

5

10

15

20

Processors

5

10

15

20

Tasks

0
20
40

60

80

100

Succ. Rate

Algorithm pEEDF

Figure B.30: Success Rate: στ = 0.5, µu = 0.7.

138

Appendix C

Simulation Results for Algorithm HPCC

139

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

R
el

. P
er

fo
rm

an
ce

 (%
)

Mean Utilization Factor mu_u

sigma_tau = 0.05

H
Ha

pEEDF
HPCC

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

R
el

. P
er

fo
rm

an
ce

 (%
)

Mean Utilization Factor mu_u

sigma_tau = 0.05

H
Ha

pEEDF
HPCC

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

R
el

. P
er

fo
rm

an
ce

 (%
)

Mean Utilization Factor mu_u

sigma_tau = 0.20

H
Ha

pEEDF
HPCC

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

R
el

. P
er

fo
rm

an
ce

 (%
)

Mean Utilization Factor mu_u

sigma_tau = 0.20

H
Ha

pEEDF
HPCC

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

R
el

. P
er

fo
rm

an
ce

 (%
)

Mean Utilization Factor mu_u

sigma_tau = 0.50

H
Ha

pEEDF
HPCC

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

R
el

. P
er

fo
rm

an
ce

 (%
)

Mean Utilization Factor mu_u

sigma_tau = 0.50

H
Ha

pEEDF
HPCC

Few Short Tasks (s = 0.25). Many Short Tasks (s = 0.75).

Figure C.1: Relative Performance: 4 Tasks, 12 Processors.

140

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

R
el

. P
er

fo
rm

an
ce

 (%
)

Mean Utilization Factor mu_u

sigma_tau = 0.05

H
Ha

pEEDF
HPCC

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

R
el

. P
er

fo
rm

an
ce

 (%
)

Mean Utilization Factor mu_u

sigma_tau = 0.05

H
Ha

pEEDF
HPCC

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

R
el

. P
er

fo
rm

an
ce

 (%
)

Mean Utilization Factor mu_u

sigma_tau = 0.20

H
Ha

pEEDF
HPCC

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

R
el

. P
er

fo
rm

an
ce

 (%
)

Mean Utilization Factor mu_u

sigma_tau = 0.20

H
Ha

pEEDF
HPCC

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

R
el

. P
er

fo
rm

an
ce

 (%
)

Mean Utilization Factor mu_u

sigma_tau = 0.50

H
Ha

pEEDF
HPCC

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

R
el

. P
er

fo
rm

an
ce

 (%
)

Mean Utilization Factor mu_u

sigma_tau = 0.50

H
Ha

pEEDF
HPCC

Few Short Tasks (s = 0.25). Many Short Tasks (s = 0.75).

Figure C.2: Relative Performance: 12 Tasks, 12 Processors.

141

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

R
el

. P
er

fo
rm

an
ce

 (%
)

Mean Utilization Factor mu_u

sigma_tau = 0.05

H
Ha

pEEDF
HPCC

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

R
el

. P
er

fo
rm

an
ce

 (%
)

Mean Utilization Factor mu_u

sigma_tau = 0.05

H
Ha

pEEDF
HPCC

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

R
el

. P
er

fo
rm

an
ce

 (%
)

Mean Utilization Factor mu_u

sigma_tau = 0.20

H
Ha

pEEDF
HPCC

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

R
el

. P
er

fo
rm

an
ce

 (%
)

Mean Utilization Factor mu_u

sigma_tau = 0.20

H
Ha

pEEDF
HPCC

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

R
el

. P
er

fo
rm

an
ce

 (%
)

Mean Utilization Factor mu_u

sigma_tau = 0.50

H
Ha

pEEDF
HPCC

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

R
el

. P
er

fo
rm

an
ce

 (%
)

Mean Utilization Factor mu_u

sigma_tau = 0.50

H
Ha

pEEDF
HPCC

Few Short Tasks (s = 0.25). Many Short Tasks (s = 0.75).

Figure C.3: Relative Performance: 20 Tasks, 12 Processors.

142

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
uc

ce
ss

 R
at

e
(%

)

Mean Utilization Factor mu_u

sigma_tau = 0.05

H
Ha

pEEDF
HPCC

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
uc

ce
ss

 R
at

e
(%

)

Mean Utilization Factor mu_u

sigma_tau = 0.05

H
Ha

pEEDF
HPCC

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
uc

ce
ss

 R
at

e
(%

)

Mean Utilization Factor mu_u

sigma_tau = 0.20

H
Ha

pEEDF
HPCC

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
uc

ce
ss

 R
at

e
(%

)

Mean Utilization Factor mu_u

sigma_tau = 0.20

H
Ha

pEEDF
HPCC

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
uc

ce
ss

 R
at

e
(%

)

Mean Utilization Factor mu_u

sigma_tau = 0.50

H
Ha

pEEDF
HPCC

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
uc

ce
ss

 R
at

e
(%

)

Mean Utilization Factor mu_u

sigma_tau = 0.50

H
Ha

pEEDF
HPCC

Few Short Tasks (s = 0.25). Many Short Tasks (s = 0.75).

Figure C.4: Success Rate: 4 Tasks, 12 Processors.

143

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
uc

ce
ss

 R
at

e
(%

)

Mean Utilization Factor mu_u

sigma_tau = 0.05

H
Ha

pEEDF
HPCC

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
uc

ce
ss

 R
at

e
(%

)

Mean Utilization Factor mu_u

sigma_tau = 0.05

H
Ha

pEEDF
HPCC

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
uc

ce
ss

 R
at

e
(%

)

Mean Utilization Factor mu_u

sigma_tau = 0.20

H
Ha

pEEDF
HPCC

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
uc

ce
ss

 R
at

e
(%

)

Mean Utilization Factor mu_u

sigma_tau = 0.20

H
Ha

pEEDF
HPCC

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
uc

ce
ss

 R
at

e
(%

)

Mean Utilization Factor mu_u

sigma_tau = 0.50

H
Ha

pEEDF
HPCC

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
uc

ce
ss

 R
at

e
(%

)

Mean Utilization Factor mu_u

sigma_tau = 0.50

H
Ha

pEEDF
HPCC

Few Short Tasks (s = 0.25). Many Short Tasks (s = 0.75).

Figure C.5: Success Rate: 12 Tasks, 12 Processors.

144

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
uc

ce
ss

 R
at

e
(%

)

Mean Utilization Factor mu_u

sigma_tau = 0.05

H
Ha

pEEDF
HPCC

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
uc

ce
ss

 R
at

e
(%

)

Mean Utilization Factor mu_u

sigma_tau = 0.05

H
Ha

pEEDF
HPCC

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
uc

ce
ss

 R
at

e
(%

)

Mean Utilization Factor mu_u

sigma_tau = 0.20

H
Ha

pEEDF
HPCC

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
uc

ce
ss

 R
at

e
(%

)

Mean Utilization Factor mu_u

sigma_tau = 0.20

H
Ha

pEEDF
HPCC

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
uc

ce
ss

 R
at

e
(%

)

Mean Utilization Factor mu_u

sigma_tau = 0.50

H
Ha

pEEDF
HPCC

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
uc

ce
ss

 R
at

e
(%

)

Mean Utilization Factor mu_u

sigma_tau = 0.50

H
Ha

pEEDF
HPCC

Few Short Tasks (s = 0.25). Many Short Tasks (s = 0.75).

Figure C.6: Success Rate: 20 Tasks, 12 Processors.

145

Bibliography

[1] G. Agrawal, B. Chen, W. Zhao, and S. Davari. Guaranteeing synchronous message dead-

lines with the timed token protokol. In Proceedings of the 12th Internatioal Conference on

Distributed Computing Systems, pages 468–475, Yokohama, Japan, June 1992.

[2] N. C. Audsley, A. Burns, M. F. Richardson, and A. J. Wellings. Hard real-time scheduling:

the deadline-monotonic approach. In Proceedings of the Eighth IEEE Workshop on real-

Time Operating Systems and Software, May 1991.

[3] T. P. Baker. A stack-based allocation policy for realtime processes. In Proceedings of the

IEEE Real-Time Systems Symposium, pages 191–200, December 1990.

[4] J. Bruno, J. W. Jones III, and K. So. Deterministic scheduling with pipelined processors.

IEEE Trans. Computers, 29:120–139, 1980.

[5] A. Burns, M. Nicholson, K. Tindell, and N. Zhang. Allocating and scheduling hard real-

time tasks on a point-to-point distributed system. In Proceedings of the Workshop on

Parallel and Distributed Real-Time Systems, pages 11–20, Newport Beach, California, April

1993.

[6] H. Emmons. One-machine sequencing to minimize certain functions of job tardiness. Op-

eration Research, 17-4:701–715, 1969.

[7] D. Ferrari. Real-time communication in an internetwork. Technical Report TR-92-001,

International Computer Science Institute, Berkeley, January 1992.

[8] S. French. Sequencing and Scheduling: An Introduction to the Mathematics of the Job-

Shop. Wiley, 1982.

[9] M. R. Garey and D. S. Johnson. Scheduling tasks with nonuniform deadlines on two

processors. J. Assoc. Comput. Mach., 23:461–467, 1976.

[10] M. R. Garey and D. S. Johnson. Two-processor scheduling with start-times and deadlines.

SIAM J. Comput., 6:416–426, 1977.

146

[11] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of

NP-Completeness. W. H. Freeman and Company, New York, 1979.

[12] M. R. Garey, D. S. Johnson, and R. Sethi. The complexity of flowshop and jobshop

scheduling. Math. Oper. Res., 1:117–129, 1976.

[13] M. R. Garey, D. S. Johnson, B. Simons, and R. E. Tarjan. Scheduling unit-time tasks with

arbitrary release times and deadlines. SIAM J. Comput., 10-2:256–269, 1981.

[14] T. Gonzales and S. Sahni. Flowshop and jobshop scheduling: Complexity and approxima-

tion. Operation Research, 26-1:37–52, 1978.

[15] S. K. Goyal and C. Sriskandarajah. No-wait shop scheduling: computational complexity

and approximate algorithms. Opsearch, 25:220–244, 1988.

[16] J. Grabowski. A new algorithm of solving the flow-shop problem. In G. Feichtinger and

P. Kall, editors, Operations Research in Progress, pages 57–75. Reidel, Dordrecht, 1982.

[17] J. Grabowski, E. Skubalska, and C Smutnicki. On flow shop scheduling with release and

due dates to minimize maximum lateness. J. Oper. Res. Soc., 34:615–620, 1983.

[18] J. N. D. Gupta and S. S. Reddi. Improved dominance conditions for the three-machine

flowshop scheduling problem. Oper. Res., 26:200–203, 1978.

[19] C. C. Han. Scheduling Real-time computatios with Temporal Distance and Separation

Constraints and with Extended Deadlines. PhD thesis, University of Illinois at Urbana-

Champaign, June 1992.

[20] C. C. Han and K. J. Lin. Job scheduling with separation constraints. Technical Report

UIUCDCS-R-1635, Department of Computer Science, University of Illinois, 1990.

[21] D. Hoitomt, P. B. Luh, and K. R. Pattipati. Job shop scheduling with simple precedence

constraints. In , pages 1–6, 1991.

[22] D. D. Kandlur, K. G. Shin, and D. Ferrari. Real-time communication in multi-hop net-

works. In Proceedings of the 11th International Conference on Distributed Computing

Systems, May 1991.

147

[23] J. F. Kurose, M. Schwartz, and Y. Yemini. Multiple access protocols and time-constrained

communication. ACM Computing Surveys, 16:43–70, March 1984.

[24] E. Lawler, J. K. Lenstra, C. Martel, B. Simons, and L. Stockmeyer. Pipeline scheduling:

A survey. Technical Report RJ 5738, IBM Research Division, San Jose, CA, 1987.

[25] E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys. Sequencing and

scheduling: Algorithms and complexity. Technical report, Centre for Mathematics and

Computer Science, Amsterdam, 1989.

[26] J. P. Lehoczky and L. Sha. Performance of real-time bus scheduling algorithms. ACM

Performance Evaluation Review, 1986.

[27] J. P. Lehoczky, L. Sha, J. K. Strosnider, and H. Tokuda. Fixed priority scheduling theory

for hard real-time systems. In A. M. Tilborg and G. M. Koob, editors, Foundations of

Real-Time Computing, Scheduling and Resource Management, chapter 1. Kluwer Academic

Publishers, 1991.

[28] J. P. Lehoczky, L Sha, and J.K. Strosnider. Enhanced aperiodic scheduling in hard-real-

time environments. In Proceedings of the IEEE Real-Time Systems Symposium, pages

261–270, December 1987.

[29] J. Y.-T. Leung, O. Vornberger, and J. Witthoff. On some variants of the bandwidth

minimization problem. SIAM J. Comput., 13:650–667, 1984.

[30] J. Y.-T. Leung and J. Whitehead. On the complexity of fixed-priority scheduling of peri-

odic, real-time tasks. Performance Evaluation, 2:237–250, December 1982.

[31] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming in a hard

real-time environment. J. Assoc. Comput. Mach., 20:46–61, 1973.

[32] J.W.S. Liu, J.L. Redondo, Z. Deng, T.S. Tia, R. Bettati, A. Silberman, M. Storch, R. Ha,

and W.K. Shih. Perts: A prototyping environment for real-time systems. Technical Report

UIUCDCS-R-1802, Department of Computer Science, University of Illinois, 1993.

148

[33] J.W.S. Liu, J.L. Redondo, Z. Deng, T.S. Tia, R. Bettati, A. Silberman, M. Storch, R. Ha,

and W.K. Shih. Perts: A prototyping environment for real-time systems. In Proceedings

of the 14th Real-Time Systems Symposium, December 1993.

[34] J. A. McHugh. Algorithmic Graph Theory. Prentice Hall, Englewood Cliffs, N.J., 1990.

[35] G.B. McMahon. A Study of Algorithms for Industrial Scheduling Problems. PhD thesis,

University of New South Wales, Kensington, 1971.

[36] C. B. McNaughton. Scheduling with deadlines and loss functions. Management Sci., 6:1–

12, 1959.

[37] A. K. Mok. Fundamental Design Problems of Distributed Systems for the Hard Real Time

Environment. PhD thesis, M.I.T., 1993.

[38] J. K. Y. Ng and J. W.-S. Liu. Performance of local area network protocols for hard real-

time applications. In 11th International Conference on Distributed Computing Systems,

pages 318–326, 1991.

[39] K. V. Palem and B. Simons. Scheduling time-critical instructions on risc machines. In

ACM Symposium on Principles of Programming Languages, pages 270–280, 1990.

[40] C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimization, Algorithms and Com-

plexity. Prentice Hall, Englewood Cliffs, New Jersey, 1982.

[41] D. T. Peng and K. G. Shin. A new performance measure for scheduling independent real-

time tasks. Technical report, Department of Electrical Engineering and Computer Science,

University of Michigan, 1989.

[42] R. Rajkumar, L. Sha, and J. P. Lehoczky. Real-time synchronization of multiprocessors.

In Proceedings of the 9th Real-Time Systems Symposium, pages 259–269, December 1988.

[43] J. L. Redondo. Schedulability analyzer tool. Master’s thesis, University of Illinois at

Urbana-Champaign, Feb 1993.

[44] J. Riggs. Production Systems Planning. Wiley, third edition, 1981.

149

[45] N. M. Sadeh and M. S. Fox. Variable and value ordering heuristics for hard constraint

satisfaction problems: An application to job shop scheduling. Technical Report CMU-RI-

TR-91-23, Carnegie Mellon University, 1991.

[46] L. Sha, J. P. Lehoczky, and R. Rajkumar. Solutions for some practical problems in priori-

tized preemptive scheduling. In Proceedings of Real-Time Systems Symposium, December

1986.

[47] L. Sha, L. Rajkumar, R., and J. P. Lehoczky. Priority inheritance protocols: An approach

to real-time synchronization. IEEE Transactions on Computers, 39:1175–1185, September

1990.

[48] L. Sha, L. Rajkumar, R., J. P. Lehoczky, and K. Ramamritham. Mode change protocols

for priority-driven preemptive scheduling. The Journal of Real-Time Systems, 1:243–264,

1989.

[49] H.R. Simpson. A Data Interactive Architecture (DIA) for real-time embedded multi-

processor systems. In Computing Techniques in Guided Flight RAe Conference, April

1990.

[50] B. Sprunt, L. Sha, and J.P. Lehoczky. Aperiodic task scheduling for hard real-time systems.

The Journal of Real-Time Systems, 1:27–60, 1989.

[51] W. Szwarc. Optimal elimination methods in the m × n flow-shop scheduling problem.

Operation Research, 21:1250–1259, 1973.

[52] R. E. Tarjan. Data Structures and Network Algorithms, volume 44 of CBMS-NSF Regional

Conference Series in Applied Mathematics. Society for Industrial and Applied Mathemat-

ics, Philadelphia, 1983.

[53] C. M. Woodside and D. W. Graig. Local non-preemptive scheduling policies for hard real-

time distributed systems. In Proceedings of Real-Time Systems Symposium, December

1987.

[54] Y. Xiong, N. Sadeh, and K. Sycara. Intelligent backtracking techniques for job shop

scheduling. In Proceedings of the Third Int. Conf. on Principles of Knowledge Repr. and

Reasoning, 1992.

150

[55] W. Zhao, J. A. Stankovic, and K. Ramamritham. A window protocol for transmission of

time constrained messages. IEEE Trans. Computers, 39:1186–1203, September 1990.

151

Vita

Riccardo Bettati was born in Aarau, Switzerland on March 27, 1963. He received his diploma

in informatics from the Swiss Federal Institute of Technology (ETH) in Zürich, Switzerland, in

1988. He was research assistant at the Electronics Institute at ETH until he began his Ph.D.

studies in Computer Science at the University of Illinois at Urbana-Champaign in August 1988.

He joined the Real-Time Systems Laboratory in 1989 and completed his Ph.D. program in

1994.

152

