
Appeared in: Proceedings of the 11th IEEE Workshop on Real-Time Operating Systems and Software.

An End-to-End Approach to Schedule Tasks with Shared Resources
in Multiprocessor Systems

Jun Sun Riccardo Bettati Jane W.-S. Liu
Department of Computer Science

University of Illinois, Urbana-Champaign
Urbana, IL 61801

Abstract

In this paper we propose an end-to-end approach
to scheduling tasks that share resources in a multipro-
cessor or distributed systems. In our approach, each
task is mapped into a chain of subtasks, depending on
its resource accesses. After each subtask is assigned
a proper priority, its worst-case response time can be
bounded. Consequently the worst-case response time
of each task can be obtained and the schedulability of
each task can be verified by comparing the worst-case
response time with its relative deadline.

1 Introduction

Tasks in real-time systems often share resources,
and semaphore-like operations are necessary to guar-
antee their mutual-exclusive access to critical sections.
A previous study shows that careless use of semaphore
operations can cause uncontrolled priority inversion,
which occurs when a high-priority task is blocked by
some low-priority tasks for an unpredictable amount
of time [1]. We refer to the total length of time a task
is delayed by lower-priority tasks due to resource con-
tention as its blocking time. To ensure predictability, it
is imperative to bound the blocking time of each task,
as shown in [2]. Several effective solutions have been
proposed for single processor systems; two well-known
examples are the Priority Ceiling Protocol (PCP) [1]
and the Stack Based Protocol (SBP) [3].

In multiprocessor and distributed systems concur-
rency and distribution complicate the resource con-
tention problem. A task Ti can be blocked not only
by a local task on the same processor due to local
resource contentions, but also by a remote task that
needs some global resources also needed by Ti. Rajku-
mar, et al. [4] extended PCP for single processor sys-
tems to multiprocessor systems and provided an initial
solution for this problem. The extended protocol is

known as the Multiprocessor Priority Ceiling Protocol
(MPCP). According to MPCP, a resource needed by
remote tasks on other processors is a global resource,
and the processor on which a global resource resides is
called its synchronization processor. When a task Ti

gains access to a global resource, a Global Critical Sec-
tion (GCS) server runs on the resource’s synchroniza-
tion processor on behalf of Ti. On each processor PCP
is used to schedule both local tasks and GCS servers.
Consequently, for each task, the total blocking time
due to both local resource contention and global re-
source contention can be bounded, and whether each
task can meet its deadline can be determined based
on this blocking time by using the schedulability con-
dition for the single-processor PCP.

However, the performance of MPCP is sometimes
poor, especially for tasks on synchronization proces-
sors. One reason is that GCS servers on each synchro-
nization processor always have higher priorities than
local tasks. The priority inversion problem is rein-
troduced when a high-priority local task is delayed
by GCS servers executing on behalf of lower-priority
tasks.

In this paper we propose an end-to-end approach
to scheduling tasks with shared resources and to ana-
lyzing their schedulability in multiprocessor systems.
Section 2 gives an informal description of this ap-
proach and compares and contrasts it with MPCP.
Section 3 presents in detail the procedure used in the
end-to-end approach. Future work is discussed in sec-
tion 4.

2 The End-to-End Scheduling Ap-
proach

From the viewpoint of end-to-end scheduling, a task
that needs remote resources is viewed as a chain of
subtasks in the following way. Each critical section

associated with a remote resource is a subtask that
executes on the synchronization processor of the re-
mote resource. A segment that requires no resources
or only local resources is also a subtask, and this sub-
task executes on the local processor. Subtasks of the
same task collectively inherit the task’s release time
and deadline, and they execute in turn. Specifically,
if task Ti has n subtasks, subtask Ti,1 is ready for ex-
ecution at the release time of Ti, and subtask Ti,j is
ready for execution when subtask Ti,j−1 completes, for
j = 2, 3, . . . , n. The last subtask Ti,n must complete
by the deadline of Ti. If task Ti is a periodic task, this
precedence relation holds for every instance of Ti.

The precedence relation among the subtasks of
each task can be easily satisfied by using the phase-
modification method proposed in [5]. Let ci,j be
the worst-case response time of Ti,j . According to
the phase-modification method, once we know ci,k for
k = 1, 2, . . . , j − 1, we postpone the phase of the sub-
task Ti,j by

∑j−1
k=1 ci,k. This modification allows us

to enforce the precedence relation between subtasks
while treating the subtasks in each task as if there is
no precedence relation between them. We will return
to discuss how to bound the worst-case response times
of subtasks on each processor using the schedulability
condition in [5], provided that the subtasks are as-
signed fixed priorities and some single-processor syn-
chronization protocol is used to control priority inver-
sion. By summing up the worst-case response times
of all its subtasks, we can determine the worst-case
response time of each task, and therefore whether the
task can meet its deadline.

Similar to MPCP, we allow nested resource ac-
cesses. However, we impose an additional restriction
that all resources accessed in one nested critical sec-
tion must reside on the same processor. In other words
accesses to resources on different processors cannot be
nested. One consequence of the end-to-end schedul-
ing approach is that there is no need to control the
accesses to remote, global resources differently from
local resources. Each subtask that is a GCS server in
MPCP model is local to its synchronization proces-
sor. All resource contentions are resolved locally and
separately on each processor.

Table 1 gives an example, Example 1. In the table,
Ti denotes a task; column proc lists the processor Ti is
assigned to; φi is Ti’s priority; pi denotes Ti’s period;
and τi stands for Ti’s processing time. The smaller
the value of φi, the higher Ti’s priority. The system
in this example has two processors P1 and P2. There
are two periodic tasks, T1 and T2, and one resource R.
The deadline for each task is the end of its period. T1

is assigned to P1; T2 and R are on P2. The table lists
the parameters of the tasks. Specifically, T1 has three
segments. The first and the last segments need no re-
source; they are executed on P1, each with processing
time 2. The middle segment requires the resource R;
its processing time is 2. (The notation t(R) in the Seg-
ments column indicates that the segment is a critical
section that has duration t and accesses the resource
R.) We note that the tasks can not be scheduled ac-
cording to MPCP. Since T1 needs to access R on P2,
there is a GCS server running on P2 on behalf of T1.
This server has a higher priority than T2. Since the
processing time for this server is as long as T2’s period
and T2 will be blocked by the GCS server whenever
the server executes, T2 can not meet its deadline.

Ti proc φi pi τi Segments
T1 P1 2 20 6 2 2(R) 2
T2 P2 1 2 1 1

Table 1: Example 1 - A Simple System

In the end-to-end scheduling model, task T1 is di-
vided into three subtasks, T1,1, T1,2 and T1,3. T1,1 and
T1,3 execute on processor P1 and need no resource,
while T1,2 executes on P2 and needs resource R. T1,1,
T1,2 and T1,3 are dependent: the kth instance of T1,1

(i.e., the instance of T1,1 in its kth period) must com-
plete before the kth instance of T1,2 can begin execu-
tion. Similarly, the kth instance of T1,3 cannot start
execution until the kth instance of T1,2 completes. Ta-
ble 2 shows the parameters of the subtasks. τi,j is the
processing time of subtask Ti,j , fi,j denotes the mod-
ified phase of Ti,j , and βi,j denotes the blocking time
Ti,j can experience.

Ti,j proc φi,j pi,j τi,j βi,j ci,j fi,j

T1,1 P1 2 20 2 0 2 0
T1,3 P1 2 20 2 0 2 8
T2,1 P2 1 2 1 0 1 0
T1,2 P2 2 20 2(R) 0 6 2

Table 2: Example 1 - Using the End-to-End Approach
to Schedule the Simple System

In this example, there is only one critical section,
and therefore there is no blocking. The priorities of
the subtasks are assigned on rate-monotonic basis. We
see that the worst-case response time C1 of the task
T1 is c1,1 + c1,2 + c1,3 = 10, which is less than 20, and
the worst-case response time of T2 is 1, and it is less
than 2. We can therefore conclude that the deadlines
of both tasks are always met.

Input :

1. Task set {Ti}. For each task Ti, the dead-
line Di, period pi, processing time τi, and
resource accesses;

2. The task assignment mapping task set {Ti}
to processor set {Pk};

3. The resource set {Rj} and the resource as-
signment mapping {Rj} to {Pk}.

Output : The conclusion whether the system can
be scheduled and the priorities assigned to sub-
tasks on each processor in the case the system is
schedulable.

Step 1 : Map the given task set {Ti} to a end-to-
end task set {Ti,j}.

Step 2 : Assign priorities to subtasks.

Step 3 : Obtain the worst-case response time for
each subtask.

Step 4 : Based on the results obtained in Step 3,
analyze the schedulability for the whole system.

Figure 1: Pseudo-Code of the End-to-End Scheduling
Procedure

3 Schedulability Analysis

We now describe how to choose the priorities
for subtasks and determine their worst-case response
times. We confine our attention to the case where
tasks are periodic and their subtasks are assigned fixed
priorities. However, the subtasks of each task may be
assigned different priorities.

Figure 1 gives the pseudo-code description of the
end-to-end scheduling procedure.

Step 1 : Map the given task set to an end-
to-end task set

Following the rules below, Step 1 breaks up each
task Ti in the given task set into a chain of ni subtasks
Ti,j in the corresponding end-to-end task set :

1. Each subtask Ti,j is either a critical section that
requires some remote resources or a segment that
requires no resource or only local resources. If a

task has nested resource accesses, each outermost
critical section is mapped to a subtask.

2. A subtask that requires no resource or only local
resources is on the local processor of Ti. A sub-
task that requires remote resources is on the syn-
chronization processor of the remote resources.

3. For every j = 1, 2, . . . , ni−1, consecutive subtasks
Ti,j and Ti,j+1 are on different processors.

Rule 3 is not necessary for the correctness of the later
discussion. However it allows us to obtain a tighter
upper bound for the response time of each subtask.

Example 2 illustrates the rules described above. In
this example there are four resources and three proces-
sors. Resource R1 is assigned to processor P1; R2 and
R3 to P2; and R4 to P3. Task T1 is a periodic task. It
has 10 segments, as shown by Figure 2. The shaded
segments denote that T1 requires some resources dur-
ing those time intervals.

According to Step 1, T1 is mapped into 6 subtasks,
as shown by Table 3. The segment from time 0 to time
6, denoted as (0,6], is mapped onto one subtask T1,1

because during this time interval, T1 either does not
require any resources or only requires local resources.
According to rule 3, we map it onto one subtask, and
it runs on the local processor, P1. Similarly, segment
(6,10] is mapped onto the subtask T1,2 because the
accesses to R2 and R3 are nested and only the out-
most critical section becomes a subtask. This subtask
runs on processor P2. Segments (16,19] and (19,22]
are two different subtasks, T1,4 and T1,5, because they
access different remote resources. They run on P2 and
P3 respectively. The segments (10,16] and (22,24] are
mapped onto T1,3 and T1,6. They are both on P1.

Ti proc pi τi,j Segment
T1,1 P1 50 6 1 2(R1) 3
T1,2 P2 50 5 2(R2) 1(R2, R3) 2(R2)

T1,3 P1 50 5 5
T1,4 P2 50 3 3(R2)

T1,5 P3 50 3 3(R4)

T1,6 P1 50 3 3

Table 3: Example 2 - Subtasks Assignment

Step 2 : Assign priorities to subtasks

Several methods can be used to assign priorities.
Rate-monotonic assignment is a possible choice. Other
choices include :

��
��

................ �
��
�

................ @@
................

@
@@

@@@
@@
@
@

................��
................

................ @@@
@@

@
@@

................

@
@@
@
@

................
......................... �
��
�
��
�
��
�
��
�
��

.........................

�
��

@
@
@
@@
@
@@
��
@
@@

@
@@ @@

@
@

@
@@��

R1 R2 R3 R2 R2 R4

0 2 4 6 8 10 12 14 16 18 20 22 24

Ti proc pi τ1 Segments
T1 P1 50 25 1 2(R1) 3 2(R2) 1(R2, R3) 2(R2) 5 3(R2) 3(R4) 3

Figure 2: Example 2 - Task T1

• Global-deadline-monotonic assignment: the pri-
ority of a subtask is based on the global rela-
tive deadline, Di, the deadline of the task Ti; the
shorter Di is, the higher priority Ti,j has.

• Effective-deadline-monotonic assignment: the
priority of a subtask Ti,j is chosen based on sub-
task’s effective relative deadline. The effective rel-
ative deadline EDi,j of Ti,j in a task Ti with ni

subtasks is:

Di −
ni∑

k=j+1

τi,k

Ti,j must complete at EDi,j units of time after Ti

is released in order for Ti as a whole to complete
in time.

Table 4 lists the priorities of subtasks in Example 3
with their priorities assigned based on their effective
relative deadlines.

Ti proc φi pi τi,j
T1,1 P1 31 50 6
T1,2 P2 36 50 5
T1,3 P1 41 50 5
T1,4 P2 44 50 3
T1,5 P3 47 50 3
T1,6 P1 50 50 3

Table 4: Example 2 - Priority Assignment Based on
Subtasks’ Effective Deadlines

Step 3 : Determine the worst-case response
times for subtasks

After Step 2 we have a set of subtasks on each pro-
cessor, in which (1) every subtask requires either no
resource or local resources and (2) every subtask has
a fixed priority. Resource-access-control protocols for
single-processor systems can be used to prevent dead-
locks and uncontrolled priority inversion. Both PCP

and SBP can be used in this case. Furthermore, we
can obtain the worst-case blocking time βi,j for each
subtask Ti,j . Consequently the worst-case response
time ci,j for each subtask can be computed accord-
ing to the following equation. The derivation for this
equation can be found in [5].

ci,j =

∑
Tk,l∈Hi,j

τk,l + βi,j

1−
∑

Tk,l∈H′
i,j
uk,l

(1)

In this equation Hi,j is the set of subtasks that (1) are
on the same processor as Ti,j , (2) are of different tasks
than Ti, and (3) have priorities equal to or higher than
Ti,j . H ′i,j is a subset of Hi,j in which every subtask
has a higher priority than Ti,j . ui,j is the processor
utilization factor of Ti,j . Again, βi,j is the maximum
blocking time Ti,j can experience. For both PCP and
SBP, βi,j can be approximated by MAX(Sk,l), where
Sk,l is the maximum duration of critical sections for
all possible Tk,l that (1) is on the same processor as
Ti,j and (2) has lower priorities than Ti,j .

Step 4 : Check schedulability for the whole
system

¿From the results obtained in previous step, the
worst-case response time for Ti can be obtained by
summing up all response times of its subtasks :

Ci =
∑

j

ci,j (2)

If Ci > Di, where Di is the relative deadline of task
Ti, we report failure for this task set. If all tasks pass
this test, we report success.

4 Conclusions

In the previous section we present a procedure for
applying the end-to-end approach to scheduling tasks
with shared resources in a multiprocessor system and

analyzing the schedulability. In order to make this ap-
proach practical, some formulas need to be improved
and problems which may arise in practice need to be
addressed. For example, the upper bound for worst-
case response time given by Eq. (1) sometimes is not
satisfactory, especially for subtasks with low priori-
ties. A method based on time-demand analysis has
been developed to give a much tighter bound and will
be presented in a future paper.

Another practical problem arises when we fix the
subtasks’ phases to enforce the execution precedence
among them. In order to make the modified phases
consistent and meaningful in a multiprocessor or dis-
tributed system, clocks on all processors have to be
strictly synchronized, which can be difficult to achieve
in practice. We can allow some clock drift among
processors, provided that the drift is within a max-
imum limit of δ time units. Extra δ time units can be
added to the worst-case response time for each subtask
obtained in the previous section, and the execution
precedence relations among subtasks will be safely en-
forced.

Another solution to this problem is to use dynamic
phasing for subtasks instead of static phasing used in
this paper. In other words, a subtask can be triggered
to start as soon as its previous subtask finishes. We
are currently working on the schedulability analysis
for such systems.

An alternative way to map tasks to subtasks is to
map all critical sections, both for local resources and
for remote resources, into subtasks. The resultant task
system has end-to-end processing not only across pro-
cessors but also within each processor. A study in [6]
has shown that schedulability analysis for end-to-end
processing within a processor is possible and promis-
ing. We are currently studying the schedulability anal-
ysis for such systems.

In this paper we assume that all resources accessed
in one nested critical section must be on the same
processor. This assumption in general can be overly
restrictive. We will address this problem from the
point of view of both resource access control and
task/resource assignment. Ideally we want to assign
resources to processors to minimize the number of
nested critical sections that access resources on more
than one processor.

In many ways, the end-to-end scheduling approach
can be viewed as a divide-and-conquer approach: it di-
vides the problem by mapping the given task set onto
an end-to-end task set where each processor becomes
relatively independent. It then resolves the local re-
source contention on each processor. Finally combines

the results to obtain a global solution. This merit
leads to a reduction in the complexity of the resource
contention problem.

Acknowledgements

This work was partially supported by NSF contract
No. NSF MIP 92-22408 and US Navy ONR contract
No. N0001492J1815. The authors thank all mem-
bers in Real-Time Systems Laboratory at University
of Illinois for many informative and inspiring discus-
sions, in particular, Too-Seng Tia for many in-depth
discussions about MPCP model.

References

[1] L. Sha, R. Rajkumar and J. P. Lehoczky, “Priority
Inheritance Protocols: An Approach to Real-Time
Synchronization”. IEEE Transactions on Comput-
ers, Vol. 39, No. 9, September 1990.

[2] R. Rajkumar, Task Synchronization In Real-Time
Systems, Kluwer Academic Publishers, Boston
1991.

[3] T. P. Baker, “A Stack-Based Resource Allocation
Policy for Real-Time Processes”. Proceeding of the
11th Real-Time Systems Symposium, pp. 191-200,
1990.

[4] R. Rajkumar, L. Sha and J. P. Lehoczky, “Real-
Time Synchronization Protocols for Multiproces-
sors”. Proceeding: Real-Time Systems Symposium,
pp. 259-269, 1988.

[5] R. Bettati, “End-to-End Scheduling to Meet Dead-
lines in Distributed Systems”. Ph.D. thesis, De-
partment of Computer Science, University of Illi-
nois at Urbana-Champaign, March 1994.

[6] M. G. Harbour, M. H. Klein, and J. P. Lehoczky,
“Timing Analysis for Fixed-Priority Scheduling of
Hard Real-Time Systems”, IEEE Transactions on
Software Engineering, Vol. 20, No. 1, pp. 13 - 28,
January 1994.

