
Appeared in: Proceedings of the 12th International Conference on Distributed Computing Systems,

Yokohama, Japan, June 1992, pages 452--459.

End-to-End Scheduling to Meet Deadlines in Distributed Systems

R. Bettati and Jane W.-S. Liu

Department of Computer Science
University of Illinois at Urbana-Champaign

Urbana, IL 61801

Abstract

In a distributed system or communication network tasks
may need to be executed on more than one processor.
For time-critical tasks, the timing constraints are typi-
cally given as end-to-end release-times and deadlines. This
paper describes algorithms to schedule a class of systems
where all the tasks execute on different processors in turn
in the same order. This end-to-end scheduling problem is
known as the flow-shop problem. We present two cases
where the problem is tractable and evaluate a heuristic for
the NP-hard general case. We generalize the traditional
flow-shop model in two directions. First, we present an
algorithm for scheduling flow shops where tasks can be ser-
viced more than once by some processors. Second, we de-
scribe a heuristic algorithm to schedule flow shops that con-
sist of periodic tasks. Some considerations are made about
scheduling systems with more than one flow shop.

1 Introduction

In real-time distributed systems, tasks are often decom-
posed into chains of subtasks. The subtasks are executed
in turn on different processors. We use the terms tasks and
subtasks loosely here to mean individual units of work that
are allocated resources and then executed. The execution
of a subtask requires the exclusive use of some resource,
referred to here as a processor. In particular, a task may
be a granule of computation or data transmission. Its ex-
ecution may require a computer or a data link; both are
modeled as processors. Each time-critical task has end-to-
end timing constraints, typically given by its release time
and deadline. The former is the time instant after which
its first subtask can begin execution. The latter is the
time instant by which its last subtask must be completed.
As long as these end-to-end constraints are met, it is not
important when its earlier subtasks have completed.

As an example, we consider a distributed control sys-
tem containing an input computer, an input link, a com-
putation server, an output link, and an output computer.
The input computer reads all sensors and preprocesses the
sensor data, which is transmitted over the input link to
the computation server. The latter computes the control
law and generates commands, which are transmitted over
the output link to the output computer. Each task mod-
els a tracker and controller. Its release time and deadline
are derived from its required response. For the purpose
of studying how to schedule the task to meet its dead-

line in the presence of similar tasks, we decompose it into
five subtasks: the first subtask is the processing of the
sensor data on the input computer; the second subtask is
the transmission of sensor data on the input link; and so
on. These subtasks must be scheduled on the correspond-
ing processors to meet the overall deadline. Similarly, the
transmissions of real-time messages over an n-hop virtual
circuit proposed in [8] can be thought of as tasks, each con-
sisting of a chain of n subtasks. Each subtask forwards the
message through one hop, modeled as a processor on which
this subtask executes. The maximum allowed end-to-end
delay gives us the deadline by which the nth subtask must
be completed.

This paper is concerned with scheduling tasks that ex-
ecute in turn on different processors and have end-to-end
release time and deadline constraints. It focuses on the
case where the system of tasks to be scheduled can be
characterized as a flow shop. A flow shop models a dis-
tributed system or communication network in which tasks
execute on different processors, devices, and communica-
tion links (all modeled as processors) in turn, following the
same order. The systems in the last paragraph are exam-
ples of flow shops. The examples of integrated processor
and I/O scheduling given by Sha et al. [15] also can be
modeled as flow shops or variations of flow shops.

A distributed system may contain many classes of tasks.
Tasks in each class execute on different processors in the
same order, but tasks in different classes execute in differ-
ent orders. Rather than scheduling tasks from all classes
together, a strategy is to partition the system resources
and assign them statically to task classes. The tasks in
each class are then scheduled according to a scheduling al-
gorithm suited for the class. As an example, suppose that
two classes A and B share a processor. We partition the
processor into two virtual processors, on which tasks in A
and B execute and which have speeds F and 1− F times
the speed of the physical processor. We schedule the tasks
in both classes by themselves. A distributed system that
contains N classes of tasks and uses such a static resource
partition and allocation strategy can be modeled as a sys-
tem containing N flow shops. In Section 6 we will discuss
how to partition resources among different classes of tasks
scheduled as flow shops.

We describe here algorithms for finding schedules of
tasks in flow shops to meet their end-to-end deadlines. A
feasible schedule is one in which all tasks meet their dead-
lines. An algorithm is optimal if it always finds a feasible

schedule whenever the tasks can be scheduled to meet all
deadlines.

The problem of scheduling tasks in a flow shop to meet
deadlines is NP-hard, except for a few special cases [5, 10].
In [1] we described two optimal O(nlogn) algorithms for
scheduling tasks that have identical processing times on all
processors and tasks that have identical processing times
on each of the processors but have different processing
times on different processors. These algorithms are used
as the basis of a heuristic algorithm for scheduling tasks
with arbitrary processing times. We also consider two vari-
ations of the traditional flow-shop model, called flow shop
with recurrence and periodic flow-shop. In a flow shop with
recurrence each task executes more than once on one or
more processors. This model describes systems that do
not have a dedicated processor for every function. As an
example, suppose that the three computers in the control
system mentioned earlier are connected by a bus, not by
two dedicated links. We can model the bus as a processor
and the system as a flow shop with recurrence. Each task
executes first on the input computer, then on the bus, on
the computation server, on the bus again, and finally on
the output computer. In a periodic flow shop, each task is
a periodic sequence of requests for the same computation.
Hence, a sequence of requests for a periodic computation
in a traditional flow shop is represented as a single task
in the periodic flow shop. The periodic flow shop can be
viewed as a special case of the flow shop with recurrence,
as well as a generalization of the traditional flow shop.

Past efforts in flow-shop scheduling have focused on
the minimization of completion time [3, 6, 10]. Johnson
[3] showed that tasks in a two-processor flow shop can
be scheduled to minimize completion time in O(n logn)
time. Beyond the two-processor flow shop, however, al-
most every flow-shop scheduling problem is NP-complete.
For example, the general problem of minimizing com-
pletion time on three processors is strictly NP-hard [6].
Consequently, many studies of flow-shop problems were
concerned with restrictions of the problem that make it
tractable, or focused on enumerative methods and heuris-
tic algorithms. Flow-shop scheduling is similar to schedul-
ing in pipelined multiprocessors. Several algorithms for
scheduling pipelines to maximize throughput are described
in [9, 14]. The general problem of scheduling to meet
deadlines on identical multiprocessor systems is also NP-
hard [5, 10]. However, polynomial algorithms for optimally
scheduling tasks with identical processing times on one or
two processors exist [4, 7]. Our algorithms make use of one
of them.

We review the traditional flow-shop model in Section 2.
The flow shop with recurrence and the periodic flow-shop
model are described. Section 3 summarizes our earlier
results on optimally scheduling homogeneous tasks with
identical processing times on each processor on traditional
flow shops [1] and an extension to scheduling such tasks
on flow shops with recurrence. In Section 4 we general-
ize this approach to schedule tasks where the processing
times are identical on any processor, but may vary between
processors. We describe a heuristic to schedule tasks with
arbitrary processing times. Simulation results are given to

measure the performance of the heuristic. In Section 5 we
consider the periodic flow-shop model. We give a summary
in Section 6 and discuss how the algorithms presented here
can be used to schedule task systems that consist of sub-
systems of flow shops.

2 The Model

In a traditional flow shop, there are m different proces-
sors P1, P2, . . . , Pm and a set T of n tasks T1, T2, . . . , Tn

that are executed on the processors. Specifically, each task
Ti consists of m subtasks Ti1, Ti2, . . . , Tim, that have to be
executed in order; first Ti1 on P1, then Ti2 on processor
P2, and so on. Every task passes through the processors
in the same order. Let τij denote the time required for the
subtask Tij to complete its execution on processor Pj . τij

is referred to as the processing time of Tij . Let τi denote
the sum of the processing times of all the subtasks of the
task Ti, called the total processing time of Ti. Each task
Ti is ready for execution at or after its release time ri and
must be completed by its deadline di. We will occasionally
refer to the totality of release times, deadlines, and pro-
cessing times as the task parameters. The task parameters
are rational numbers unless it is stated otherwise.

Our algorithms make use of the effective deadlines of
subtasks. The effective deadline dij for the subtask Tij

is the point in time by which the execution of Tij must
be completed to allow the later subtasks, and the task
Ti, to complete by the deadline di; therefore dij = di −∑m

k=j+1
τik. Similarly, we define the effective release time

rij of Tij to be the earliest point in time at which the
subtask can be scheduled. Since Tij cannot be scheduled
until earlier subtasks are completed, rij = ri +

∑j−1

k=1
τik.

With arbitrary task parameters, the flow-shop problem
is NP-hard, even where preemption is allowed [1, 2]. In
two special cases of task sets, the scheduling problem be-
comes tractable. In the first case the processing times τij

of all subtasks are equal to a unit τ on all processors. We
call these task sets identical-length task sets. In the second
case the processing times τij of all subtasks are identical
for any one processor, but may vary between different pro-
cessors. In other words, all the subtasks Tip on a given
processor Pp have the same processing time τp, but sub-
tasks Tip and Tiq on processors Pp and Pq have different
processing times, that is, τp 6= τq when p 6= q. We call task
sets of this sort homogeneous task sets.

In the more general flow-shop-with-recurrence model,
each task Ti has k subtasks, and k > m. Without loss
of generality, we let the subtasks be executed in the order
Ti1, Ti2, . . . , Tik for all tasks Ti, that is, Ti1 followed by
Ti2, followed by Ti3, and so on. We characterize the order
in which the subtasks execute and the processors on which
they execute by a sequence V = (v1, v2, . . . , vk) of integers,
where vj is one of the integers in the set {1, 2, . . . ,m}. vj

being l means that the subtasks Tij are executed on pro-
cessor Pl. For example, suppose that we have a set of
tasks each of which has 5 subtasks, and they are to be
executed on 4 processors. The sequence V = (1, 2, 3, 2,
4) means that all tasks first execute on P1, then on P2,
P3, again on P2, and then P4, in this order. We call this
sequence the visit sequence of the tasks. If an integer l

........

.........
...........

..
..........
.........
.....

.........
...........

..
..........
.........
.....

.........
...........

..
..........
.........
.....

.........
...........

..
..........
.........
.....

........

.........
...........

..
..........
.........
.....

P1 P2 P3 P5

P4

..

...

...

...........
...........

...........
...........

...........
...........

...........
...........

...........
.........................

...
...
............

1

2

34

5

6

Figure 1: Visit graph for visit sequence V =

(1, 2, 3, 4, 2, 3, 5).

appears more than once in the visit sequence, the corre-
sponding processor Pl is a reused processor. In this exam-
ple P2 is reused, and each task visits it twice. This flow
shop with recurrence models the distributed control system
of Section 1 with P2 modeling the bus that is used both
as input and as output link. The traditional flow-shop
model is therefore a special case of the flow-shop-with-
recurrence model with visit sequence (1, 2, . . . ,m). Any
visit sequence can be represented by a directed graph G,
called a visit graph, whose set of nodes Pi represents the
processors in the system. There is a directed edge eij from
Pi to Pj with label a if and only if in the visit sequence
V = (v1, v2, . . . , va, va+1, . . . , vk) va = i and va+1 = j. A
visit sequence can be represented as a path with increas-
ing edge labels in the visit graph. An example of a visit
graph is shown in Figure 1. We confine our attention here
to a class of visit sequences that contain simple recurrence
patterns: some sub-sequence of the visit sequence contain-
ing reused processors appears more than once. We call
this kind of recurrence pattern a loop in the visit sequence.
The notion of loops becomes intuitively clear when we look
at the visit graph. In Figure 1, the sub-sequence (2, 3) oc-
curs twice and therefore makes the sequence (4, 2, 3) into
a loop. P2 and P3 are reused processors. The length of a
loop is the number of nodes in the visit graph that are on
the cycle. The loop in Figure 1 has length 3. Loops can
be used to model systems where a specific processor (or
a sequence of processors) is used before and after a cer-
tain service is attained. An example is a database that is
queried before and updated after a specific operation.

The periodic flow-shop model is a generalization of
both the traditional flow-shop model and the traditional
periodic-job model [11, 13]. As in the traditional periodic-
job model, the periodic job system J to be scheduled in
a flow shop consists of n independent periodic jobs; each
job consists of a periodic sequence of requests for the same
computation. In our previous terms, each request is a task.
The period pi of a job Ji in J is the time interval between
the ready times of two consecutive tasks in the job. The
deadline of the task in every period is the ready time of
the task in the next period. In an m-processor flow shop,
each task consists of m subtasks that are to be executed
on the m processors in turn following the same order. The
processing time of the subtask on processor Pj of each task
in the job Ji is τij .

3 Scheduling Identical-Length Task Sets

In this section we describe an extension of an optimal
algorithm for scheduling identical-length task sets on tra-

ditional flow shops [1]. The extension is optimal when
used to schedule identical-length tasks on flow-shops with
simple recurrence patterns.

In many systems, tasks are designed to have regular
structures. In the simplest case, all the processing times
τij are identical for all i and j, that is, the task set is of
identical length. As an example, suppose that we are to
schedule a set of identical communication requests over a
n-hop virtual circuit which is assigned the same bandwidth
on all the links.

When release times and deadlines are multiples of τ ,
we can simply use the classical earliest-effective-deadline-
first (EEDF) algorithm to optimally schedule all tasks [3].
Again, an algorithm is optimal if it always produces a fea-
sible schedule whenever such schedule exists. In the EEDF
algorithm, the subtasks Tij on each processor Pj are sched-
uled nonpreemptively in a priority-driven manner. An al-
gorithm is priority-driven if it never leaves any processor
idle when there are tasks ready to be executed. The EEDF
algorithm assigns priorities to subtasks on Pj according to
their effective deadlines: the earlier the effective deadline,
the higher the priority. The scheduling decision is made on
P1 whenever it is free; the subtask with the highest prior-
ity among all ready subtasks is executed until completion.
This scheduling decision is propagated on to the subse-
quent processors; whenever Tij completes on Pj , Ti(j+1)

starts on Pj+1.

The scheduling decision is more complicated if release
times and deadlines are arbitrary rational numbers, that is,
not multiples of τ . Garey et al. [7] introduce the concept
of forbidden regions during which tasks are not allowed to
start execution. The release times of selected tasks are
postponed to insert the necessary idle times to make an
EEDF schedule optimal. We call the release times gener-
ated from the effective release times by this algorithm the
modified release times. By release times, we mean modi-
fied release times. By the EEDF algorithm, we mean the
EEDF algorithm using the modified release times as in-
put parameters rather than the effective release times. We
proved in [1] that the EEDF algorithm is optimal for non-
preemptive flow-shop scheduling of identical-length task
sets with arbitrary release times and deadlines.

We now extend the EEDF algorithm to optimally sched-
ule simple task sets on flow shops with recurrence. We
focus our attention on the simple case where (1) all tasks
have identical release times, arbitrary deadlines, and have
identical processing times τ on all the processors, and (2)
the visit sequence contains one loop. We show that a mod-
ified version of the EEDF algorithm, called Algorithm R,
is optimal for scheduling tasks to meet deadlines.

The key strategy used in Algorithm R is based on the
following observation. If a loop in the visit graph has
length q, the second visit of every task to a reused pro-
cessor in this loop cannot be scheduled before (q − 1)τ
time units after the termination of its first visit to the
processor. Let Pvl be the first processor in the loop of
length q. Let {Til} and {Ti(l+q)} be the sets of subtasks
that are executed on Pvl . Til is the subtask at the first
and Ti(l+q) is the subtask at the second visit of Ti to the
processor. While Til is ready for execution after its release

Algorithm R:
Input: Task parameters rij , dij , τ , of T and the visit graph

G. Pvl is the first processor in the single loop of length q
in G.

Output: A feasible schedule S or the conclusion that the tasks
in T cannot be feasibly scheduled.

Step 1: Schedule the subtasks in {Til}∪{Ti(l+q)} on the pro-
cessor Pvl using the modified EEDF algorithm: whenever
Pvl becomes idle and one or more subtasks are ready for
execution, start to execute the one with the earliest effec-
tive deadline. When a subtask Til (that is, the first visit
of Ti to the processor) is scheduled to start at time til, set
the effective release time of Ti(l+q) to til + qτ .

Step 2: Let til and ti(l+q) to be the start times of Til and
Ti(l+q) in the partial schedule SR produced in Step 1.
Propagate the schedule to the rest of the processors ac-
cording to the following rules:

1. If j < l, schedule Tij at time til − (l − j)τ .

2. If l < j ≤ l + q, schedule Tij at time til + (j − l)τ .

3. If l + q < j ≤ k, schedule Tij at time ti(l+q) + (j −
l − q)τ .

Figure 2: Algorithm R.

Tasks T1 T2 T3 T4

di 8 9 10 12

Table 1: Unit-length task set with identical release times.

time, Ti(l+q) is ready after its release time and (q−1)τ time
units after the completion of Til. Algorithm R is described
in Figure 2.

Step 1 differs from the EEDF algorithm. The schedul-
ing decision is made on a reused processor Pvl , the first
processor in the loop in the visit graph. More impor-
tantly, the effective release times of the second visits are
postponed whenever necessary as the first visits are sched-
uled. Because of this change of the effective release times
of later subtasks after earlier subtasks are scheduled, the
optimality of Algorithm R does no longer obviously fol-
low from the optimality of the EEDF Algorithm. In [2]
we used a schedule-transformation argument to prove that
for nonpreemptive scheduling of tasks in a flow shop with
recurrence, Algorithm R is optimal, for tasks with identi-
cal processing times and release times, arbitrary deadlines,
and a visit sequence that can be characterized by a visit
graph containing a single loop.

The example given in Table 1 and Figure 3 illustrates
this algorithm. The visit sequence is shown in Figure 1.
The scheduling decision is made on P2, the first reused
processor in the loop.

4 Scheduling Arbitrary Task Sets

The assumption that the task sets must have identical
processing times is restrictive. Taking a step toward the
removal of this assumption, we considered in [1] a class of
flow shops called flow shops with homogeneous task sets,
where the subtasks Tij have identical processing times τj

0 2 4 6 8 10 12
time

P1

P2

P3

P4

P5

T1,1 T2,1 T3,1 T4,1

T1,2 T2,2 T3,2 T1,5 T2,5 T4,2 T3,5 T4,5

T1,3 T2,3 T3,3 T1,6 T2,6 T4,3 T3,6 T4,6

T1,4 T2,4 T3,4 T4,4

T1,7 T2,7 T3,7 T4,7

Figure 3: Schedule generated by Algorithm R.

Algorithm A
Input: Task parameters rij , dij and τj of T .

Output: A feasible schedule S of T or the conclusion that
feasible schedules of T do not exist.

Step 1: Determine the processor Pb where τb ≥ τj for all
j = 1, 2, . . . ,m. If there are two or more such processors,
choose one arbitrarily. Pb is the bottleneck processor.

Step 2: Schedule the subtasks on Pb according to the EEDF
algorithm. If the resultant schedule Sb is not a feasible
schedule, stop; no feasible schedule exists. Otherwise, if
Sb is a feasible schedule of {Tib}, let tib be the start time
of Tib in Sb; do Step 3.

Step 3: Propagate the schedule Sb onto the remaining pro-
cessors as follows: Schedule Ti(b+1) on Pb+1 immediately
after Tib completes, Ti(b+2) on Pb+2 immediately after
Ti(b+1) completes, and so on until Tim is scheduled. For
r < b, we schedule Tir on Pr so that its execution starts

at time tib −
∑b−1

s=r
τs, for r = 1, 2, . . . , b− 1.

Figure 4: Algorithm A.

on processor Pj , but τj and τh are different in general. We
will use this algorithm as a starting point of a heuristic
algorithm for scheduling tasks with arbitrary parameters.
An example of flow shops with homogeneous tasks arises
in scheduling a set of identical communication requests
over a n-hop virtual circuit when the bandwidth is not the
same for all links. We can use Algorithm A, described in
Figure 4, to schedule such a set of tasks.

The optimality of Algorithm A for nonpreemptive flow-
shop scheduling of homogeneous task sets that have arbi-
trary release times and deadlines was proven in [1].

An example illustrating Algorithm A is shown in Ta-
ble 2 and Figure 5. The bottleneck processor is the one
on which tasks have the longest processing times. In this
example, it is P3, or b = 3. The schedule S generated by
Algorithm A is not an EEDF schedule. It is not priority-
driven; processors P1, P2, . . . , Pb−1 sometimes idle when
there are subtasks ready to be executed. These intervals
of idle time can easily be eliminated, however.

In real-world applications the processing times of tasks
on individual processors are usually not the same. How-
ever, it is often possible to distinguish processors with
longer processing times from processors with shorter pro-
cessing times. We can take advantage of this character-

Tasks ri di τi1 τi2 τi3 τi4
T1 1 10 3 1 4 2
T2 1 13 3 1 4 2
T3 5 30 3 1 4 2
T4 14 26 3 1 4 2

Table 2: An example of a homogeneous task set.

0 5 10 15 20 25
time

P1

P2

P3

P4

T1,1 T2,1 T3,1 T4,1

T1,2 T2,2 T3,2 T4,2

T1,3 T2,3 T3,3 T4,3

T1,4 T2,4 T3,4 T4,4

Figure 5: Schedule generated by Algorithm A.

istics in scheduling tasks with arbitrary task parameters.
Specifically, the heuristic algorithm described in Figure 6,
called Algorithm H, transforms an arbitrary task set into
a homogeneous task set and uses the latter as a starting
point. It first uses Algorithm A to construct a schedule
of the resultant homogeneous task set. Then it tries to
improve the schedule produced by Algorithm A in its at-
tempt to construct a feasible schedule S for the original
task set.

Algorithm H is relatively simple, with complexity
O(nlogn+nm). By using Algorithm A, Step 4 defines the
order in which the tasks are executed on the processors. In
the schedules produced by Algorithm H the subtasks on
different processors are scheduled in the same order. Such
schedules are called permutation schedules.

Algorithm H is not optimal for 2 reasons. Inflating
processing times of the subtasks to generate the homoge-
neous task set Tinf increases the workload that is to be
scheduled on the processors. This increases the number
of release-time and deadline constraints that are not met.
One way to reduce this bad effect is to add a compaction
step that reduces the idle times introduced in Step 3 of
Algorithm H. Let tij be the start time of Tij on Pj .
We note again that S is a permutation schedule. Let the
tasks be indexed so that T1j starts before T2j , T2j before
T3j , and so on, for all j. The subtask Tij starts execu-
tion on Pj at time tij = tib +

∑j−1

k=b
τmax,k for j > b and

tij = tib−
∑b−1

k=j+1
τmax,k− τij for j < b. However, we can

start Tij after its effective release time as soon as T(i−1)j

terminates and frees Pj . These considerations are taken
into account in Algorithm C, which is described in Fig-
ure 7. This algorithm compacts the schedule S generated
in Step 4 of Algorithm H.

The example in Table 3 and Figure 8 illustrates Algo-
rithm H. T3 has the longest processing time on P1, T1

on P2, T4 on P3, and T3 on P4. Therefore, τmax,1 = τ31,
τmax,2 = τ12, and so on. Algorithm A in Step 4 uses P3 as
the bottleneck processor. Figure 8a and Figure 8b show
the schedule before and after the compaction in Step 5. T1

and T5 miss their deadlines in Figure 8a. Moreover, T1 is

Algorithm H
Input: Task parameters ri, di and τij of T .

Output: A feasible schedule of T , or the conclusion that fea-
sible schedules of T do not exist.

Step 1: Determine the effective release times rij and effective
deadlines dij of all subtasks.

Step 2: On each processor Pj , determine the subtask Tmax,j

with the longest processing time τmax,j among all sub-
tasks Tij on Pj .

Step 3: On each processor Pj , inflate all the subtasks by mak-
ing their processing times equal to τmax,j . In other words,
each inflated subtask Tij consists of a busy segment of
length τij and an idle segment of length τmax,j− τij . The
inflated subtasks form a homogeneous task set Tinf .

Step 4: Schedule the inflated task set Tinf using Algorithm A.

Step 5: Use Algorithm C to compact the schedule. Stop.

Figure 6: Algorithm H.

Algorithm C:
Input: A schedule S generated in Step 4 of Algorithm H.

Output: A compacted schedule with reduced idle time.

Step 1: Set r̃ij = rij for all i and j.

Step 2: Perform the following steps:

t11 = max(t11, r̃11)
for j = 2 to m do

t1j = t1(j−1) + τ1(j−1)

endfor
for i = 2 to n do

for j = 1 to m− 1 do
tij = max(t(i−1)j + τ(i−1)j , r̃ij)
r̃i(j+1) = tij + τij

endfor
tim = max(t(i−1)m + τ(i−1)m, r̃im)

endfor

Figure 7: Algorithm C.

forced to start before its release time. All tasks meet their
release time and deadline in Figure 8b.

The second reason for Algorithm H being suboptimal
arises because it considers only permutation schedules. In
flow shops with more than two processors it is possible that
the order of execution of subtasks may vary from processor
to processor in all feasible schedules. Algorithm H fails to
find a feasible schedule for such cases. Even when feasible
permutation schedules exist, Algorithm H can fail because
Step 4 may generate a wrong execution order of subtasks
on the bottleneck processor Pb. This can be caused by the
wrong choice of the bottleneck processor in Algorithm A.
Even when the choice of the bottleneck processor was cor-
rect, Step 2 in Algorithm A is not optimal for scheduling
the original set of subtasks Tib on Pb. Algorithm H can
therefore fail to generate any existing feasible schedule on
Pb.

Tasks ri di τi1 τi2 τi3 τi4
T1 1 10 1 2 3 2
T2 1 16 2 2 4 1
T3 1 22 3 2 3 4
T4 14 28 2 1 5 3
T5 14 29 1 1 4 1

Table 3: Task set with arbitrary processing times.

(a) Before compaction.

0 5 10 15 20 25 30 35
time

P1

P2

P3

P4

T1,1 T2,1 T3,1 T4,1 T5,1
....................

T1,2 T2,2 T3,2 T4,2 T5,2
......

T1,3 T2,3 T3,3 T4,3 T5,3
..................

T1,4 T2,4 T3,4 T4,4 T5,4
...............

(b) After compaction.

0 5 10 15 20 25 30 35
time

P1

P2

P3

P4

T1,1 T2,1 T3,1 T4,1 T5,1

T1,2 T2,2 T3,2 T4,2 T5,2

T1,3 T2,3 T3,3 T4,3 T5,3

T1,4 T2,4 T3,4 T4,4 T5,4

Figure 8: A schedule produced by Algorithm H

We are investigating the conditions under which Algo-
rithm H fails to generate a feasible schedule when such a
schedule exists. Figure 9 and Figure 10 show the results
of simulation experiments to determine the probability for
Algorithm H to succeed in generating a feasible schedule,
given that one exists. We fed Algorithm H with task sets
that have feasible schedules. The experiments where re-
peated to simulate different amounts of slack time in the
task sets and different variances of processing times on a
processor. We see in Figure 9 that the smaller this vari-
ance, that is, the more the task sets resemble homogeneous
task sets, the better Algorithm H performs. This is to be
expected, since Algorithm H bases on Algorithm A, which
is optimal for homogeneous task sets. Algorithm H per-
forms worse with decreasing slack time per task. By slack
time we mean the difference between the length of a task
and the amount of time between its release time and dead-
line. This also was to be expected. It is inherently more
difficult to schedule a task set when the slack time is scarce.
The amount of slack time is in the order of 1.5 to 0.4 times
the processing time of a task. Figure 10 shows the results
of experiments with more tasks and larger amounts of slack
time (in the order of 4 times the processing time of a task).

(a) 4 Tasks on 4 Processors.

95% confidence

50

60

70

80

90

100

Success

Rate

0.3 0.4 0.5 0.6 0.7 0.8
Slack Time

� �
�

•
•

•

?

?

?

� stdev = 0.1
• stdev = 0.2
? stdev = 0.3

(b) 6 Tasks on 4 Processors.

95% confidence

50

60

70

80

90

100

Success

Rate

0.3 0.4 0.5 0.6 0.7 0.8
Slack Time

�

�
�

•

•

•

?

?

?

� stdev = 0.1
• stdev = 0.2
? stdev = 0.3

Figure 9: Performance of Algorithm H on small task sets

95% confidence

94

96

98

100
Success

Rate

2 4 6 8 10 12 14
Tasks on 4 Processors

� � � � �

� stdev = 0.2

Figure 10: Algorithm H and larger task sets

5 Periodic Flow Shops

To explain a simple method to schedule periodic jobs
in flow shops, we note that each job Ji of the n jobs in
a m-processor periodic flow-shop job set can be logically
divided into m subjobs Jij . The period of Jij is pi. The
subtasks in all periods of Jij are executed on processor Pj

and have processing times τij . In other words, for a given
j each of the n subjobs can be characterized by the 2-tuple
(pi, τij). The set of m periodic subjobs Jj =Jij is sched-
uled on processor Pj . The total utilization factor of all the
subjobs in Jj is uj =

∑n

i=1
τij/pi. When it is necessary to

distinguish the individual subtasks, the subtask in the kth
period of subjob Jij is called Tij(k). For a given j, the sub-
jobs Jij of different jobs Ji are independent, since the jobs
are independent. On the other hand, for a given i, the sub-
jobs Jij of Ji on the different processors are not indepen-

dent since the subtask Tij(k) cannot begin until Ti(j−1)(k)
is completed. There are no known polynomial-time op-
timal algorithms that can be used to schedule dependent
periodic jobs to meet deadlines, and there is no known
schedulability criteria to determine whether the jobs are
schedulable. Hence, it is not fruitful to view the subjobs
of each job Ji on different processors as dependent subjobs.
Instead, we consider all subjobs to be scheduled on all pro-
cessors as independent periodic subjobs and schedule the
subjobs on each processor independently from the subjobs
on the other processors. We take into account the actual
dependencies between subjobs of each job in the manner
described below.

Let us assume that the consecutive tasks in each job are
dependent. Ti1(k) cannot begin until Tim(k − 1) is com-
pleted. Let bi denote the phase of Ji, the time at which
the first task Tij(1) becomes ready. It is also the phase bi1
of the subjob Ji1 of Ji on P1. Hence the kth period of Ji1

begins at bi1 + (k−1)pi. Suppose that the set J1 is sched-
uled on P1 according to the well-known rate-monotone al-
gorithm. This algorithm assigns priorities statically to jobs
on the basis of their periods; the shorter the period of a
job, the higher its priority. Suppose that the total uti-
lization factor u1 on P1 is such that we can be sure that
every subtask Ti1(k) is completed by the time δ1pi units
after its ready time rik = bi + (k − 1)pi for some δ1 < 1.
Now, we let the phase of every subjob Ji2 of Ji on P2 be
bi2 = bi1 + δ1pi. By postponing the ready time of every
subtask Ti2(k) in every subjob Ji2 on P2 until its prede-
cessor subtask Ti1(k) is surely completed on P1, we can
ignore the precedence constraints between subjobs on the
two processors. Any schedule produced by scheduling the
subjobs on P1 and P2 independently in this manner is a
schedule that satisfies the precedence constraints between
the subjobs Ji1 and Ji2. Similarly, the phase bi3 of Ji3 can
be postponed, and so on.

Suppose that the total utilization factors uj for all
j = 1, 2, . . . , m are such that, when the subjobs on each
of the m processors are scheduled independently from the
subjobs on the other processors according to the rate-
monotone algorithm, all subtasks in Jij complete by δjpi

time units after their respectively ready times, for all i and
j. Moreover, suppose that δj > 0, and

∑m

j=1
δj ≤ 1. We

can postpone the phase of each subjob Jij on Pj by δjpi

units. This generates a feasible schedule where all prece-
dence constraints and all deadlines are met. Given the
parameters of J , we can compute the set {uj} and use
the existing schedulability bounds given in [11, 12, 13] to
determine whether there is a set of {δj} where δi > 0 and∑m

j=1
δj ≤ 1. The job system J can be feasibly scheduled

in the manner described above if such a set of δj ’ exists.
With a small modification of the required values of δj , this
method can handle the case where the deadline of each task
in a job with period pi is equal to or less than mpi units
from its ready time. Similarly, this method can be used
when the subjobs are scheduled using other algorithms, or
even different algorithms on different processors, so long
as schedulability criteria of the algorithms are known.

Table 4 shows an example of a set of periodic jobs to be
scheduled on a flow shop with 2 processors. We want to

Jobs τi1 τi2 pi

J1 2 1 8
J2 1 2 10
J3 1 2 16

Table 4: Set of periodic jobs on a 2-processor flow shop.

Jobs τi1 τi2 pi

J1 5 5 10
J2 0.5 0.5 10

Table 5: Set of periodic jobs on a 2-processor flow shop.

know if we can guarantee the jobs to complete by the end of
their period. We schedule the jobs on the processors using
the rate-monotone algorithm. The total utilization factors
on P1 and P2 for the job set in Table 4 are u1 = 0.4125 and
u2 = 0.45, respectively. Equation (1) [12] gives the least
upper bound of the total utilization; a set of jobs whose
total utilization is equal to or less than umax(δ) is surely
schedulable by the rate-monotone algorithm to complete
within δpi units after their ready time.

umax(δ) =

{
n((2δ)1/n − 1) + (1− δ), 1

2
≤ δ ≤ 1

δ 0 ≤ δ ≤ 1
2

(1)

We apply this formula to the two processors, and get δ1 =
0.4125 and δ2 = 0.45. Therefore we can guarantee T11(k)
to terminate by time δ1p1 = 3.3 units, T21(k) by time
δ1p2 = 4.125 units, and T31(k) by time δ1p3 = 6.6 units
after their release times. We postpone the phase of the
jobs on P2 by 3.3, 4.125, and 6.6 units for J12, J22, and J32

respectively. On P2 we can guarantee T12(k) to terminate
by time δ2p1 = 3.6 units,T22(k) by time δ2p2 = 3.6 units,
and T32(k) by time δ2p3 = 3.6 units after their respective
release times. Every invocation of J1 is completed at or
before time 6.9 units after its release time and therefore
before the end of its period. Hence, it meets its deadline.
The same holds for J2 and J3.

Table 5 shows an example described in [12] of a job set
that can not always be scheduled so that both jobs meet
their deadlines at the end of their period. When the two
jobs have the same phase, J1 has to be interrupted to let
J2 execute and will miss its deadline. The maximum uti-
lization to schedule the two jobs on a two-processor flow
shop dropped to 0.5 from 0.83 in the single-processor case.
The maximum utilization drops as low as 1/r for r proces-
sors. We can achieve higher utilization bounds if we allow
the deadlines of the jobs to be postponed beyond the end
of the period. The total utilization factors u1 and u2 are
both 0.55 . By solving equation (1) for δ1, given u1, we de-
duce that we can guarantee the subjobs on P1 to complete
within 0.553 times their period. We therefore postpone the
phase of the subjobs Ji2 by 0.553pi. A similar analysis for
P2 shows that we can guarantee all the jobs to complete
within 1.106pi time units. By postponing the deadlines of
the jobs slightly more than 10% beyond the period, we can
guarantee the job set to be schedulable.

6 Summary

We have described ways to schedule task systems in
which tasks execute on different processors in a distributed
system in the same order. Such a task system, called a flow
shop in the deterministic models used here, is modeled as
a routing chain in queuing models. Our scheduling objec-
tive is that all tasks begin execution after their ready times
and complete by their deadlines. We assume that all pa-
rameters of the task system to be scheduled are known to
a centralized scheduler which produces a schedule for each
processor in the flow shop.

Polynomial-time algorithms for flow-shop scheduling,
that never fail to produce feasible schedules, whenever fea-
sible schedules exist, are known only for some special cases.
We have described such algorithms for two special cases
where the tasks have identical processing times. We have
also described two heuristic algorithms for scheduling tasks
with arbitrary processing times on flow shops and periodic
flow shops. The complexity of these algorithms is suffi-
ciently low that they can be used for on-line scheduling.

A typical distributed system contains many flow shops.
We assume that, when two or more flow shops share a
processor, the processor time is allocated to the task sets
on different flow shops on a round robin basis, thus creating
a virtual processor for each flow shop. Tasks in each flow
shop are scheduled by one of the algorithms described here
on its virtual processor independently of the tasks on the
virtual processors for the other flow shops.

A problem that remains to be addressed is what frac-
tions of (physical) processor time should be allocated to
the different flow shops sharing one processor. For peri-
odic flow shops, it is reasonable to make the fraction of
processor time allocated to a task set on a flow shop pro-
portional to the total utilization of its subtasks executed
on the processor. Suppose that on processor Pj , the total
utilization of the subtasks in the periodic task set T on a
flow shop is u. The total utilization of the subtasks in the
periodic task sets on all the flow shops that share Pj is U .
The fraction of Pj allocated to the task set T is u/U . The
processing time of the subtasks in T on this processor is
increased by a factor of U/u.

For traditional flow shops, we can define the utilization
of a subtask in a analogous way to be the ratio of its pro-
cessing time to the length of the time interval between its
ready time and deadline. This definition allow us to use
the strategy described above to determine the fraction of
processor time allocated to the task set on each flow shop.
The performance of this strategy and other processor time
allocation strategies need to be determined. This is a part
of our future work on end-to-end scheduling.

Acknowledgements

This work was partially supported by the Navy ONR
Contract No.NVY N00014 89-J-1181.

References

[1] R. Bettati and J. W.-S. Liu. Algorithms for end-to-
end scheduling to meet deadlines. In Proceedings of

the 2nd IEEE Conference on Parallel and Distributed
Systems, Dallas, Texas, December 1990.

[2] R. Bettati and J. W.-S. Liu. Algorithms for end-to-
end scheduling to meet deadlines. Technical Report
UIUCDCS-R-1594, Department of Computer Science,
University of Illinois, 1990.

[3] M. R. Garey and D. S. Johnson. Scheduling tasks with
nonuniform deadlines on two processors. J. Assoc.
Comput. Mach., 23:461–467, 1976.

[4] M. R. Garey and D. S. Johnson. Two-processor
scheduling with start-times and deadlines. SIAM J.
Comput., 6:416–426, 1977.

[5] M. R. Garey and D. S. Johnson. Computers
and Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman and Company, New
York, 1979.

[6] M. R. Garey, D. S. Johnson, and R. Sethi. The com-
plexity of flowshop and jobshop scheduling. Math.
Oper. Res., 1:117–129, 1976.

[7] M. R. Garey, D. S. Johnson, B. Simons, and R. E. Tar-
jan. Scheduling unit-time tasks with arbitrary release
times and deadlines. SIAM J. Comput., 10-2:256–269,
1981.

[8] D. D. Kandlur, K. G. Shin, and D. Ferrari. Real-time
communication in multi-hop networks. In Proceedings
of the 11th International Conference on Distributed
Computing Systems, May 1991.

[9] E. Lawler, J. K. Lenstra, C. Martel, B. Simons, and
L. Stockmeyer. Pipeline scheduling: A survey. Tech-
nical Report RJ 5738, IBM Research Division, San
Jose, CA, 1987.

[10] E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan,
and D. B. Shmoys. Sequencing and scheduling: Al-
gorithms and complexity. Technical report, Centre
for Mathematics and Computer Science, Amsterdam,
1989.

[11] J. P. Lehoczky and L. Sha. Performance of real-time
bus scheduling algorithms. ACM Performance Eval-
uation Review, 1986.

[12] J. P. Lehoczky, L. Sha, J. K. Strosnider, and
H. Tokuda. Fixed priority scheduling theory for hard
real-time systems. In A. M. Tilborg and G. M.
Koob, editors, Foundations of Real-Time Comput-
ing, Scheduling and Resource Management, chapter 1.
Kluwer Academic Publishers, 1991.

[13] C. L. Liu and J. W. Layland. Scheduling algorithms
for multiprogramming in a hard real-time environ-
ment. J. Assoc. Comput. Mach., 20:46–61, 1973.

[14] K. V. Palem and B. Simons. Scheduling time-critical
instructions on risc machines. In ACM Symposium
on Principles of Programming Languages, pages 270–
280, 1990.

[15] L. Sha, J. P. Lehoczky, and R. Raikumar. Solutions
for some practical problems in prioritized preemp-
tive scheduling. In Proceedings of Real-Time Systems
Symposium, December 1986.

