CPSC-663: Real-Time Systems Common Scheduling Approaches

Common Approaches to Real-Time Scheduling

e Clock-driven (time-driven) schedulers
® Priority-driven schedulers

e Examples of priority driven schedulers
e Effective timing constraints

® The Earliest-Deadline-First (EDF) Scheduler and its optimality

Common Approaches to Real-Time Scheduling

e Clock-driven (time-driven) schedulers

- Scheduling decisions are made at specific time instants, which
are typically chosen a priori.

e Priority-driven schedulers

- Scheduling decisions are made when particular events in the
system occur, e.g.

® a job becomes available
® processor becomes idle

- Work-conserving: processor is busy whenever there is work to
be done.

CPSC-663: Real-Time Systems Common Scheduling Approaches

Clock-Driven (Time-Driven) -- Overview

e Scheduling decision time: point in fime when scheduler decides
which job to execute next.

e Scheduling decision time in clock-driven schedulers is defined a
priori.

e For example: Scheduler periodically wakes up and generates a
portion of the schedule.

/ schedulerjob\
>

I A (B I C | D I C A C

e Special case: When job parameters are known a priori, schedule

can be pre-computed off-line, and stored as a table (table-driven
schedulers).

>

Priority-Driven -- Overview

e Basic rule: Never leave processor idle when there is work to be
done. (such schedulers are also called work conserving)

e Based on list-driven, greedy scheduling.
e Examples: FIFO, LIFO, SET, LET, EDF.

e Possible implementation of preemptive priority-driven scheduling:
- Assign priorities to jobs.
- Scheduling decisions are made when
e Job becomes ready
® Processor becomes idle
e Priorities of jobs change
- At each scheduling decision time, choose ready task with
highest priority.
e In non-preemptive case, scheduling decisions are made only when
processor becomes idle.

CPSC-663: Real-Time Systems

Common Scheduling Approaches

Scheduling Decisions

begins).

e Scheduling decision points:

1. The running process changes from running to waiting (current CPU
burst of that process is over).

2. The running process terminates.
3. A waiting process becomes ready (new CPU burst of that process

4. The current process switches from running to ready .

Example: Priority-Driven Non-Preemptive Schedules

L

Procllle A [4 |J4|'
L

Proc, A []

>

L:(JIJJZJstJ45J55J65J75J8)

L
Proc, A VA AR A .
Proc, Js (] [7] .

LET:(J55J85J25J65J15J35J45J7)

Procll A A

L
Pr002|J1| A

L:(J85J15J25J35J45J55J65J7)

CPSC-663: Real-Time Systems Common Scheduling Approaches

Example: Priority-Driven Non-Preemptive Schedules

Proc, | /1| S | Js | il
Proc, Is s Il
J,:1
O L=(,;, 45,05, 44,5, 5,77, J5)

Example: Priority-Driven Non-Preemptive Schedules

Proc, Js g f |

>

Proc, s /s i

>

LET:(J57J87J25J65J15J37J45J7)

CPSC-663: Real-Time Systems

Common Scheduling Approaches

Example: Priority-Driven Non-Preemptive Schedules

Proc, Js Js J5 | Jy

Proc, | /1| /> Js |Jr

L:(J87J15‘]27‘]35‘]45‘]55‘]65‘]7)

Example:

Priority-Driven Non-Preemptive Schedules

L

Pr0c1|J1| A [4 |J4|'
L

Proc, A []

>

L:(J17J25J37J45J55J65J75J8)

L
Procll AN |J4|_

Proc, s (] [s] .

LET:(J57J87J25J65J15J37J45J7)

Procll A A

L
Pr0c2|J1| A

L:(J87J15‘]27‘]35‘]45‘]55‘]65‘]7)

CPSC-663: Real-Time Systems Common Scheduling Approaches

Effective Timing Constraints

e Timing constraints often inconsistent with precedence constraints.
Example: d, > d,, but J, — J,

e Effective timing constraints on single processor:
o Effective release time: r*" := max {ri, {r;* | J, — J})

o Effective deadline: d¢f := min {di, {r" | T, — J})

e Theorem: | A set of Jobs J can be feasibly scheduled on a
processor if and only if it can be feasibly scheduled
to meet all effective release times and deadlines.

Interlude: The EDF Algorithm

e The EDF (Earliest-Deadline-First) Algorithm:

At any time, execute that available job
with the earliest deadline.

e Theorem: | (Optimality of EDF) In a system one processor and
with preemptions allowed, EDF can produce a feasible
schedule of a job set J with arbitrary release times
and deadlines iff such a schedule exists.

e Proof: by schedule transformation.

CPSC-663: Real-Time Systems Common Scheduling Approaches

Proof of Optimality of EDF

e Assume that arbitrary schedule S meets timing constraints.

e For S to not be an EDF schedule, we must have the following
situation:

S is EDF up to here

interval 4 interval B
portion of J; portion of J,
T f 1
Ty ¥ dl. dj
Proof of Optimality of EDF (2)
® We now have two cases.
e Case I L(A) > L(B)
A B
< —> <>
portion (:jf J; | portion of J;
S t 1
o d

CPSC-663: Real-Time Systems Common Scheduling Approaches

Proof of Optimality of EDF (3)

e We now have two cases.

e Case 2: L(A) <= L(B)

A B
+“—> < >

portion of J; | pufrtion of J; |

‘_T «— T T g
g A d; dj
EDF Not Always Optimal
e Case 1: When preemption is not allowed:
nodoe

J,o= (0, 10, 3) Vs
Jz = (2’ 14’ 6) IJII T le T T J|3 T !_I;
J3 = (45 125 4)

® Case 2: On more than one processor:

(Y
Ry

’i ¢ Proc 1 J J. |
Joo= (0, 4 1) 7 : : >
JZ - (0’ 4’ 1) Proc 2 | J,
J3 = (0’ 5’ 5) T T T T T ™

CPSC-663: Real-Time Systems

Common Scheduling Approaches

Preemptive Scheduling of Jobs with Arbitrary Release Times,

Deadlines, Execution Times

Source

e Determine schedule over a hyperperiod.
e Formulate scheduling problem as network flow problem.

Sink

NP Completeness of Non-Preempt Deadline Scheduling

e Theorem:

The problem of scheduling a non-preemptable set of
jobs 7, ..., 7, ... 7, each with release time r,
deadline d, and execution time e; is NP-complete.

Define a job set J, ..

for i <7 < m, define J; =

e Proof: Transformation from PARTITION [Garey/Johnson,1979]
Given: Finite set A = {A, ..., A, ..., A}, each element of size a.

Let B= 2;’;1 a;
Partition A into two sets, each of same size.
., T, as follows:

Ty = 0 Tm+1 = [B/2]
d'é = B+1 aJm+1 = dm+1 = |—(B + 1)/2]
e = a Em+l = 1

| B/2 L B/2

I~ 1 ©

I A

Ve

S

B/2 B/2+1 B+1

