
CPSC 410 / 611 : Operating Systems File Management

1

CPSC 410/611: File Management

•! What is a file?

•! Elements of file management

•! File organization

•! Directories

•! File allocation

•! Reading: Silberschatz, Chapter 10, 11

What is a File?

•! A file is a collection of data elements, grouped together for
purpose of access control, retrieval, and modification

•! Often, files are mapped onto physical storage devices, usually
nonvolatile.

•! Some modern systems define a file simply as a sequence, or
stream of data units.

•! A file system is software responsible for

–! creating, destroying, reading, writing, modifying, moving files

–! controlling access to files

–! management of resources used by files.

CPSC 410 / 611 : Operating Systems File Management

2

The Logical View of File Management

user

•! directory management
•! access control

•! access method
records

file structure

physical blocks in memory

physical blocks on disk

•! blocking

•! disk scheduling
•! file allocation

Logical Organization of a File

•! A file is perceived as an ordered collection of records, R0, R1, ...,
Rn.

•! A record is a contiguous block of information transferred during
a logical read/write operation.

•! Records can be of fixed or variable length.

•! Organizations:

–! Pile

–! Sequential File

–! Indexed Sequential File

–! Indexed File

–! Direct/Hashed File

CPSC 410 / 611 : Operating Systems File Management

3

Pile

•! Variable-length records

•! Chronological order

•! Random access to record by
search of whole file.

•! What about modifying records?

Pile File

Sequential File

•! Fixed-format records

•! Records often stored in order
of key field.

•! Good for applications that
process all records.

•! No adequate support for random
access.

•! What about adding new record?

•! Separate pile file keeps log file
or transaction file.

key field

Sequential File

CPSC 410 / 611 : Operating Systems File Management

4

Indexed Sequential File

•! Similar to sequential file,
with two additions.

–! Index to file supports
random access.

–! Overflow file indexed
from main file.

•! Record is added by
appending it to overflow file
and providing link from
predecessor.

index

main file

overflow file

Indexed Sequential File

Indexed File

•! Multiple indexes

•! Variable-length records

•! Exhaustive index vs. partial
index

index

index

partial
index

CPSC 410 / 611 : Operating Systems File Management

5

File Management

•! What is a file?

•! Elements of file management

•! File organization

•! Directories

•! File allocation

•! UNIX file system

user

•! directory management
•! access control

•! access method records

file structure

physical blocks in memory

physical blocks on disk

•! blocking

•! disk scheduling
•! file allocation

Directories

•! Large amounts of data: Partition and structure for easier access.

•! High-level structure:

–! partitions in MS-DOS

–! minidisks in MVS/VM

–! file systems in UNIX.

•! Directories: Map file name to directory entry (basically a symbol
table).

•! Operations on directories:

–! search for file

–! create/delete file

–! rename file

CPSC 410 / 611 : Operating Systems File Management

6

Directory Structures

•! Single-level directory:

•! Problems:

•! limited-length file names

•! multiple users

directory

file

user3 user4 user2 user1

•! Path names

•! Location of system files
•! special directory

•! search path

master directory

user
directories

file

Two-Level Directories

CPSC 410 / 611 : Operating Systems File Management

7

•! create subdirectories

•! current directory

•! path names: complete vs. relative

xterm xmh xman xinit

... include demo bin

openw netsc mail bin

pub bin user

cp ls count find

xmt gdb gcc

... user3 user2 user1

Tree-Structured Directories

Generalized Tree Structures

•! Links: File name that, when referred, affects file to which it was
linked. (hard links, symbolic links)

•! Problems:
•! consistency, deletion

•! Why links to directories only allowed for system managers?

–! share directories and files

–! keep them easily accessible

xterm xmh xman xinit

... incl demo bin

netsc opwin mail bin

pub bin user

cp ls count find

xmt gdb gcc

... user3 user2 user1 xman

xinit

CPSC 410 / 611 : Operating Systems File Management

8

UNIX Directory Navigation: current directory

#include <unistd.h>

char * getcwd(char * buf, size_t size);
/* get current working directory */

Example:

void main(void) {

 char mycwd[PATH_MAX];

 if (getcwd(mycwd, PATH_MAX) == NULL) {
 perror (“Failed to get current working directory”);
 return 1;

 }
 printf(“Current working directory: %s\n”, mycwd);
 return 0;
}

UNIX Directory Navigation: directory traversal

#include <dirent.h>

DIR * opendir(const char * dirname);
 /* returns pointer to directory object */
struct dirent * readdir(DIR * dirp);
 /* read successive entries in directory ‘dirp’ */
int closedir(DIR *dirp);
 /* close directory stream */

void rewinddir(DIR * dirp);
 /* reposition pointer to beginning of directory */

CPSC 410 / 611 : Operating Systems File Management

9

Directory Traversal: Example

#include <dirent.h>

int main(int argc, char * argv[]) {

 struct dirent * direntp;
 DIR * dirp;

 if (argc != 2) {
 fprintf(stderr, “Usage: %s directory_name\n”, argv[0]);

 return 1;
 }

 if ((dirp = opendir(argv[1])) == NULL) {
 perror(“Failed to open directory”);

 return 1;
 }

 while ((dirent = readdir(dirp)) != NULL)
 printf(%s\n”, direntp->d_name);
 while((closedir(dirp) == -1) && (errno == EINTR));
 return 0;
}

Unix File System Implementation: inodes

single
indirect

double
indirect

triple
indirect

0

9

10

11

12

d
ir

e
ct

multilevel indexed allocation table

file information:
- size (in bytes)
- owner UID and GID
- relevant times (3)
- link and block counts
- permissions

inode

multilevel
allocation

table

CPSC 410 / 611 : Operating Systems File Management

10

Directory Implementation

file information:
- size (in bytes)
- owner UID and GID
- relevant times (3)
- link and block counts
- permissions

inode

Where is the
filename?!

Name information is contained in separate
Directory File, which contains entries of type:

(name of file , inode1 number of file)

1 More precisely: Number of block that contains inode.

myfile.txt 12345

name inode

…

23567

…

1

…

inode
12345

block 23567

“some text in the
file…”

Hard Links

shell command
ln /dirA/name1 /dirB/name2

is typically implemented using the link system call:

#include <stdio.h>
#include<unistd.h>

if (link(“/dirA/name1”, “/dirB/name2”) == -1)
 perror(“failed to make new link in /dirB”);

name1 12345

name inode

…

23567

…

1

…

inode
12345

block 23567

“some text in the
file…”

directory entry in /dirA

name2 12345

name inode

directory entry in /dirB

2

CPSC 410 / 611 : Operating Systems File Management

11

Hard Links: unlink

#include <stdio.h>
#include<unistd.h>

if (unlink(“/dirA/name1”) == -1)
 perror(“failed to delete link in /dirA”);

…

23567

…

2

…

inode
12345

block 23567

“some text in the
file…”

name1 12345

name inode

directory entry in /dirA

name2 12345

name inode

directory entry in /dirB

1

if (unlink(“/dirB/name2”) == -1)
 perror(“failed to delete link in /dirB”);

0

Symbolic (Soft) Links

shell command
ln -s /dirA/name1 /dirB/name2

is typically implemented using the symlink system call:

#include <stdio.h>
#include<unistd.h>

if (symlink(“/dirA/name1”, “/dirB/name2”) == -1)
 perror(“failed to create symbolic link in /dirB”);

name1 12345

name inode

…

23567

…

1

…

inode
12345

block 23567

“some

text in
the file…”

directory entry in /dirA

name2 13579

name inode

directory entry in /dirB

…

3546

…

1

…

inode
13579

block 3546

“/dirA/
name1”

CPSC 410 / 611 : Operating Systems File Management

12

•! Open file system call: cache information about file in kernel
memory:

–! location of file on disk

–! file pointer for read/write

–! blocking information

•! Single-user system:

•! Multi-user system:

Bookkeeping

process open-file table

file1

file2 file pos

file pos

system open-file table

open cnt

open cnt file pos ...

... file pos

open-file table

file1

file2 file pos file location

file location file pos

Errors:
EACCESS: <various forms of access denied>
EEXIST O_CREAT and O_EXCL set, and file exists already.
EINTR: signal caught during open
EISDIR: file is a directory and O_WRONLY or O_RDWR in flags
ELOOP: there is a loop in the path
EMFILE: to many files open in calling process
ENAMETOOLONG: …

ENFILE: to many files open in system
…

Opening/Closing Files

#include <fcntl.h>
#include <sys/stat.h>

int open(const char * path, int oflag, …);
/* returns open file descriptor */

Flags:
O_RDONLY, O_WRONLY, O_RDWR
O_APPEND, O_CREAT, O_EXCL, O_NOCCTY

O_NONBLOCK, O_TRUNC

CPSC 410 / 611 : Operating Systems File Management

13

Opening/Closing Files

#include <unistd.h>

int close(int fildes);

Errors:
EBADF: fildes is not valid file descriptor
EINTR: signal caught during close

Example:

int r_close(int fd) {
 int retval;

 while (retval = close(fd), ((retval == -1) && (errno == EINTR)));
 return retval;
}

Multiplexing: select()

#include <sys/select.h>

int select(int nfds,
 fd_set * readfds,
 fd_set * writefds,
 fd_set * errorfds,
 struct timeval timeout);
 /* timeout is relative */

void FD_CLR (int fd, fd_set * fdset);
int FD_ISSET(int fd, fd_set * fdset);
void FD_SET (int fd, fd_set * fdset);
void FD_ZERO (fd_set * fdset);

Errors:
EBADF: fildes is not valid for one

 or more file descriptors
EINVAL: <some error in parameters>
EINTR: signal caught during select

 before timeout or selected event

CPSC 410 / 611 : Operating Systems File Management

14

select() Example: Reading from multiple fd’s

while (!done) {
 numready = select(maxfd, &readset, NULL, NULL, NULL);
 if ((numready == -1) && (errno == EINTR))

 /* interrupted by signal; continue monitoring */
 continue;
 else if (numready == -1)
 /* a real error happened; abort monitoring */
 break;

 for (int i = 0; i < numfds; i++) {
 if (FD_ISSET(fd[i], &readset)) { /* this descriptor is ready*/
 bytesread = read(fd[i], buf, BUFSIZE);
 done = TRUE;

 }
}

FD_ZERO(&readset);
maxfd = 0;
for (int i = 0; i < numfds; i++) {

 /* we skip all the necessary error checking */
 FD_SET(fd[i], &readset);
 maxfd = MAX(fd[i], maxfd);
}

select() Example: Timed Waiting on I/O

int waitfdtimed(int fd, struct timeval end) {
 fd_set readset;
 int retval;

 struct timeval timeout;

 FD_ZERO(&readset);
 FDSET(fd, &readset);
 if (abs2reltime(end, &timeout) == -1) return -1;

 while (((retval = select(fd+1,&readset,NULL,NULL,&timeout)) == -1)
 && (errno == EINTR)) {
 if (abs2reltime(end, &timeout) == -1) return -1;
 FD_ZERO(&readset);
 FDSET(fd, &readset);
 }
 if (retval == 0) {errno = ETIME; return -1;}
 if (retval == -1) {return -1;}
 return 0;
}

CPSC 410 / 611 : Operating Systems File Management

15

File Representation to User

3

file descriptor
table

UNIX File Descriptors:

int myfd;

myfd = open(“myfile.txt”, O_RDONLY);

myfd

system file
 table

in-memory
inode table

[0]

[1]

[2]

[3]

[4]

user space kernel space

file descriptor
table

myfp

[0]

[1]

[2]

[3]

[4]

user space kernel space

ISO C File Pointers:

FILE *myfp;

myfp = fopen(“myfile.txt”, “w”);

file structure

3

File Descriptors and fork()

•! With fork(), child inherits
content of parent’s address
space, including most of parent’s
state:

–! scheduling parameters

–! file descriptor table

–! signal state

–! environment

–! etc.

parent’s file desc table

child’s file desc table

[0]

[1]

[2]

[3]

[4]

[5]

[0]

[1]

[2]

[3]

[4]

[5]

A(SFT)

B(SFT)

C(SFT)

D(SFT)

A(SFT)

B(SFT)

C(SFT)

D(SFT)

A

B

C

D (“myf.txt”)

system file table (SFT)

CPSC 410 / 611 : Operating Systems File Management

16

File Descriptors and fork() (II)

parent’s file desc table

child’s file desc table

[0]

[1]

[2]

[3]

[4]

[5]

[0]

[1]

[2]

[3]

[4]

[5]

A(SFT)

B(SFT)

C(SFT)

D(SFT)

A(SFT)

B(SFT)

C(SFT)

D(SFT)

A

B

C

D (“myf.txt”)

system file table (SFT)

int main(void) {
 char c = ‘!’;
 int myfd;

 myfd = open(‘myf.txt’, O_RDONLY);

 fork();

 read(myfd, &c, 1);

 printf(‘Process %ld got %c\n’,
 (long)getpid(), c);

 return 0;
}

File Descriptors and fork() (III)

parent’s file desc table

child’s file desc table

[0]

[1]

[2]

[3]

[4]

[5]

[0]

[1]

[2]

[3]

[4]

[5]

A(SFT)

B(SFT)

C(SFT)

D(SFT)

A(SFT)

B(SFT)

C(SFT)

E(SFT)

A

B

C

D (“myf.txt”)

system file table (SFT)
int main(void) {
 char c = ‘!’;
 int myfd;

 fork();

 myfd = open(‘myf.txt’, O_RDONLY);

 read(myfd, &c, 1);

 printf(‘Process %ld got %c\n’,
 (long)getpid(), c);

 return 0;
}

E (“myf.txt”)

CPSC 410 / 611 : Operating Systems File Management

17

Duplicating File Descriptors: dup2()

•! Want to redirect I/O from well-known file descriptor to
descriptor associated with some other file?

–! e.g. stdout to file?

#include <unistd.h>

int dup2(int fildes, int fildes2);

Example: redirect standard output to file.

int main(void) {

 int fd = open(‘my.file’, <some_flags>, <some_mode>);

 dup2(fd, STDOUT_FILENO);

 close(fd);

 write(STDOUT_FILENO, ‘OK’, 2);
}

Errors:

EBADF: fildes or fildes2 is not valid
EINTR: dup2 interrupted by signal

Duplicating File Descriptors: dup2() (II)

•! Want to redirect I/O from well-known file descriptor to
descriptor associated with some other file?

–! e.g. stdout to file?

#include <unistd.h>

int dup2(int fildes, int fildes2);

Errors:

EBADF: fildes or fildes2 is not valid
EINTR: dup2 interrupted by signal

after open

file descriptor table

[0] standard input

[1] standard output

[2] standard error

[3] write to file.txt

after dup2

file descriptor table

[0] standard input

[1] write to file.txt

[2] standard error

[3] write to file.txt

after close

file descriptor table

[0] standard input

[1] write to file.txt

[2] standard error

CPSC 410 / 611 : Operating Systems File Management

18

File System Architecture: Virtual File System

system call layer !
(file system interface)!

virtual file system layer (v-nodes) !

local UNIX file!
system (i-nodes)!

Example: Linux Virtual File System
(VFS)!

•! Provides generic file-system interface (separates
from implementation)!

•! Provides support for network-wide identifiers
for files (needed for network file systems).!

Objects in VFS:!

•! inode objects (individual files)!

•! file objects (open files)!

•! superblock objects (file systems)!

•! dentry objects (individual directory entries)!

File System Architecture: Virtual File System

system call layer !
(file system interface)!

virtual file system layer (v-nodes) !

local UNIX file!
system (i-nodes)!

Example: Linux Virtual File System
(VFS)!

•! Provides generic file-system interface (separates
from implementation)!

•! Provides support for network-wide identifiers
for files (needed for network file systems).!

Objects in VFS:!

•! inode objects (individual files)!

•! file objects (open files)!

•! superblock objects (file systems)!

•! dentry objects (individual directory entries)!

NFS client!
(r-nodes)!

RPC client stub!

CPSC 410 / 611 : Operating Systems File Management

19

File System Architecture: Virtual File System

system call layer !
(file system interface)!

virtual file system layer (v-nodes) !

local UNIX file!
system (i-nodes)!

Example: Linux Virtual File System
(VFS)!

•! Provides generic file-system interface (separates
from implementation)!

•! Provides support for network-wide identifiers
for files (needed for network file systems).!

Objects in VFS:!

•! inode objects (individual files)!

•! file objects (open files)!

•! superblock objects (file systems)!

•! dentry objects (individual directory entries)!

Flash Memory!
File system!

Sun’s Network File System (NFS)

•! Architecture:
–! NFS as collection of protocols the provide clients with a distributed

file system.
–! Remote Access Model (as opposed to Upload/Download Model)
–! Every machine can be both a client and a server.
–! Servers export directories for access by remote clients (defined in

the /etc/exports file).
–! Clients access exported directories by mounting them remotely.

•! Protocols:

–! file and directory access
•! Servers are stateless (no OPEN/CLOSE calls)

CPSC 410 / 611 : Operating Systems File Management

20

NFS: Basic Architecture

system call layer

virtual file system layer (v-nodes) virtual file system layer

NFS client
(r-nodes)

local operating
system (i-nodes)

RPC client stub RPC server stub

NFS server
local file

system interface

client server

system call layer

NFS Implementation: Issues

•! File handles:

–! specify filesystem and i-node number of file

–! sufficient?

•! Integration:

–! where to put NFS on client?

–! on server?

•! Server caching:

–! read-ahead

–! write-delayed with periodic sync vs. write-through

•! Client caching:

–! timestamps with validity checks

CPSC 410 / 611 : Operating Systems File Management

21

NFS: File System Model

•! File system model similar to UNIX file system model

–! Files as uninterpreted sequences of bytes

–! Hierarchically organized into naming graph

–! NSF supports hard links and symbolic links

–! Named files, but access happens through file handles.

•! File system operations

–! NFS Version 3 aims at statelessness of server

–! NFS Version 4 is more relaxed about this

•! Lots of details at http://nfs.sourceforge.net/

NFS: Client Caching

•! Potential for inconsistent versions at different clients.

•! Solution approach:

–! Whenever file cached, timestamp of last modification on server is
cached as well.

–! Validation: Client requests latest timestamp from server
(getattributes), and compares against local timestamp. If fails, all
blocks are invalidated.

•! Validation check:

–! at file open

–! whenever server contacted to get new block

–! after timeout (3s for file blocks, 30s for directories)

•! Writes:

–! block marked dirty and scheduled for flushing.

–! flushing: when file is closed, or a sync occurs at client.

•! Time lag for change to propagate from one client to other:

–! delay between write and flush

–! time to next cache validation

CPSC 410 / 611 : Operating Systems File Management

22

File Management

•! What is a file?

•! Elements of file management

•! File organization

•! Directories

•! File allocation

•! UNIX file system

user

•! directory management
•! access control

•! access method records

file structure

physical blocks in memory

physical blocks on disk

•! blocking

•! disk scheduling
•! file allocation

Allocation Methods

•! File systems manage disk resources

•! Must allocate space so that

–! space on disk utilized effectively

–! file can be accessed quickly

•! Typical allocation methods:

–! contiguous

–! linked

–! indexed

•! Suitability of particular method depends on

–! storage device technology

–! access/usage patterns

CPSC 410 / 611 : Operating Systems File Management

23

file start length

Contiguous Allocation

•! Logical file mapped onto a sequence of adjacent
physical blocks.

•! Advantages:

–! minimizes head movements

–! simplicity of both sequential and direct
access.

–! Particularly applicable to applications where
entire files are scanned.

•! Disadvantages:

–! Inserting/Deleting records, or changing
length of records difficult.

–! Size of file must be known a priori.
(Solution: copy file to larger hole if
exceeds allocated size.)

–! External fragmentation

–! Pre-allocation causes internal
fragmentation

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

16 17 18 19

20 21 22 23

24 25 26 27

file1 0 5

file2 10 2

file3 16 10

file start end

Linked Allocation

•! Scatter logical blocks throughout secondary
storage.

•! Link each block to next one by forward pointer.

•! May need a backward pointer for backspacing.

•! Advantages:

–! blocks can be easily inserted or deleted

–! no upper limit on file size necessary a
priori

–! size of individual records can easily
change over time.

•! Disadvantages:

–! direct access difficult and expensive

–! overhead required for pointers in blocks

–! reliability

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

16 17 18 19

20 21 22 23

24 25 26 27

file 1 9 23
… … …
… … …

CPSC 410 / 611 : Operating Systems File Management

24

Variations of Linked Allocation

•! Maintain all pointers as a separate linked list, preferably in main
memory.

file start end

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

16 17 18 19

20 21 22 23

24 25 26 27

file1 9 23

...

...

0

24

10

-1

10

26

16

9

16

10

23

26

24

0

•! Example: File-Allocation Tables (FAT)
in MS-DOS, OS/2.

file index block

Indexed Allocation

•! Keep all pointers to blocks in one location:
index block (one index block per file) 0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

16 17 18 19

20 21 22 23

24 25 26 27

file1 7

... ...

... ...

9 0 16 24 26 10 23 -1 -1 -1

•! Advantages:

–! supports direct access

–! no external fragmentation

–! therefore: combines best of continuous
and linked allocation.

•! Disadvantages:

–! internal fragmentation in index blocks

•! Problem:

–! what is a good size for index block?

–! fragmentation vs. file length

CPSC 410 / 611 : Operating Systems File Management

25

Solutions for the Index-Block-Size Dilemma

•! Linked index blocks:

•! Multilevel index scheme:

Index Block Scheme in UNIX

single
indirect
double

indirect
triple

indirect

0

9

10

11

12

d
ir

e
ct

CPSC 410 / 611 : Operating Systems File Management

26

UNIX (System V) Allocation Scheme

367

9156

8

11

Example:
block size: 1kB
access byte offset 9000
access byte offset 350000

367

808

331

3333

816
3333

331

75 0

9156

Free Space Management
•! Must keep track where unused blocks are.

•! Can keep information for free space management in
unused blocks.

•! Bit vector:

•! Linked list: Each free block contains pointer to next
free block.

•! Variations:

•! Grouping: Each block has more than on pointer to
empty blocks.

•! Counting: Keep pointer of first free block and
number of contiguous free blocks following it.

free used

#1 #2

used

#3

used

#4

free

#5

used

#6

free

#7

free

#8

... used

#
0

