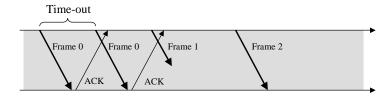

ARQ Error Control

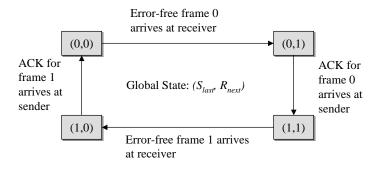
- Two types of errors
 - Lost frames
 - Errors in frames
- Most Error Control techniques are based on
 - 1. Error detection scheme (e.g. parity checks, CRC), and
 - 2. Retransmission Scheme
- Error Control schemes that rely on error detection and retransmission of lost or corrupted frames are called Automatic Repeat Request (ARQ) error control

Basic Elements of ARQ

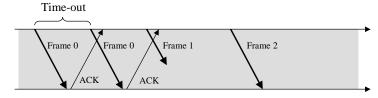

All ARQ retransmission schemes use a combination of the following components:

- Receiver sends an acknowledgement (ACK) to notify sender that frame is correctly received
- Receiver sends a negative acknowledgement
 (NACK) to notify sender that frame is incorrectly received
- Sender sends **enquiry** (ENQ) to trigger the receiver to transmit current state (in form of an ACK)
- Sender retransmits packet if ACK is not received within a **timeout** interval

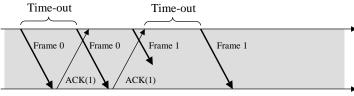
Other Ambiguities in ARQ

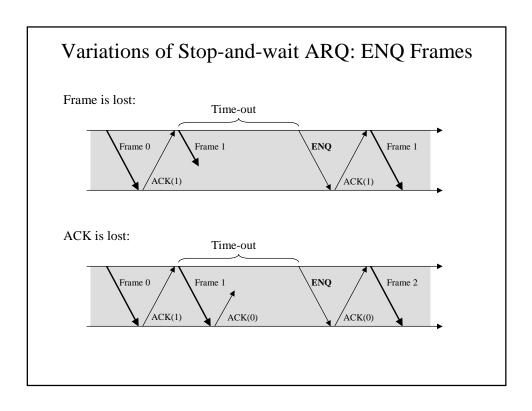

ACKs must be numbered, otherwise:

ACKs need sequence numbers in order for senders to match ACKs to frames that have been sent!

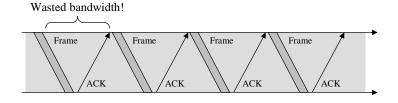

Sequence Numbers

- Sequence Numbers avoid ambiguities, but need to be limited in size (avoid overflows!)
- Example: One-bit sequence numbers in Stop-and-Wait ARQ
 - S_{last} : Sequence number of <u>last sent</u> frame at sender
 - R_{next} : Sequence number of <u>next expected</u> frame at receiver




One-bit Sequence Numbers Solve Problem of Misinterpreted Duplicate ACKs

No sequence numbers:


One-bit sequence numbers:

Inefficiency of Stop-and-wait ARQ

• **Efficiency** of a protocol is the maximum fraction of time when the protocol is transmitting data.

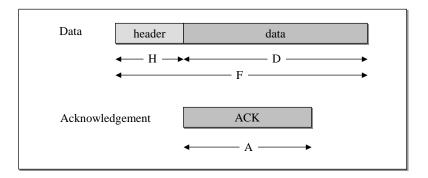
Analysis of Stop-and-wait

• Notation:

C = Channel capacity (in bits/sec)

I = Propagation delay

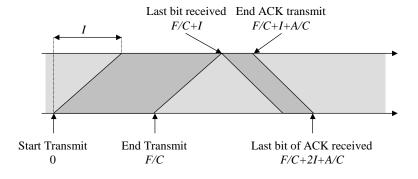
H = Number of bits in a frame header


D = Number of data bits in a frame

F = Total length of a frame (F = D+H)

A = Total length of an ACK frame

F/C = Transmission delay for a frame


Analysis of Stop-and-wait (2)

$$a = \frac{propagation_delay}{transmission_delay} = \frac{I}{F/C}$$

Analysis of Stop-and-wait (3)

Transmission of a frame (in Stop-and-wait):

Analysis of Stop-and-wait (4)

• Efficiency of Stop-and-Wait (error-free case):

efficiency =
$$\frac{D/C}{F/C + A/C + 2I} = \frac{D}{F + A + 2IC}$$

• Assuming that H and A are negligible, we obtain:

$$normalized_efficiency = \frac{D}{D+2IC} = \frac{1}{1+2a}$$

Example 1: Satellite Link

Satellite link:

Roundtrip propagation delay: 270msData rate: 56kbps

- Frame length: 4000bit (including header)

Length of ACK frames is negligible

- What is the value of *a*?
- What is the efficiency of the satellite link if Stopand-Wait is used?

Example 2: LAN

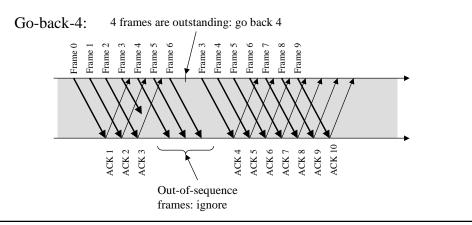
Local Area Network:

Data rate: 10 Mbps (100Mbps)Propagation rate: 200,000 km/sec

Length of LAN: 10km

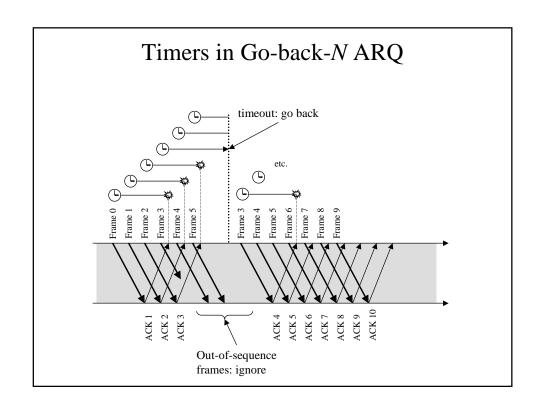
Frame size: 500 bit (including header)

- Length of ACK frames is negligible

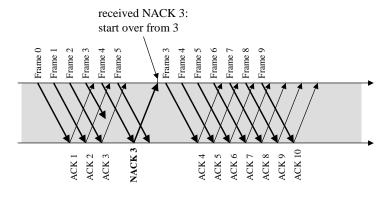

- What is the value for a for the LAN?
- How efficient is the LAN?
- What is the minimum frame size in the LAN to reach an efficiency of at least 80%?

Go-back-N ARQ

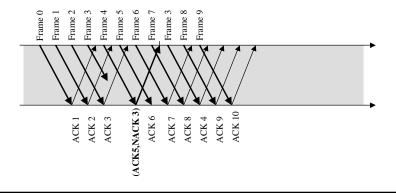
- Problem with Stop-and-Wait ARQ:
 - Only one frame can be in transit at a time
 - This is inefficient when a > 1
- Solution:
 - Pipeline transmission by allowing multiple (W_s = window size) frames to be in transit, with ACKs outstanding
 - Choose W_s to be larger than bandwidth product, in order to keep channel busy


Basic Go-back-N ARQ

Idea of <u>basic</u> Go-back-N ARQ: Allow for $W_s = N$ outstanding packets at any given time. Whenever number of outstanding packets exceeds W_s , assume that something went wrong, and retransmit <u>all</u> of them.


Go-back-N with Timers

- Problem with basic Go-back-N:
 - Sender needs to keep sending in order to have outstanding frames, and so detect missing ACK.
- Alternative:
 - Associate timer with every outstanding frame.
 - Timeout triggers re-transmission from affected frame on.


Go-back-N ARQ with NACKs

- Receiver sends NACK *i* if frame *i* is in error. After that, the receiver discards all incoming frames until it correctly receives frame *i*.
- If sender receives a NACK i it will retransmit frame i and all frames i+1, i+2, ... that have not been acknowledged.

Selective-Repeat ARQ

- The sender only retransmits frames for which NACK is received.
- Receiver buffers frames that come out of sequence. Receiver maintains a **receiver window**.

Analysis of ARQ

- Earlier: Analysis of Stop-and-Wait ARQ for noerror case.
- Assumptions:
 - Channel can experience frame errors.
 - Control frames (ACKs, NACKs) have no errors.
 - Sizes of control frames are negligible.

Review: Analysis of Stop-and-Wait ARQ

• Notation:

C = Channel capacity (in bits/sec)

I = Propagation delay

F = Total length of a frame (F = D+H)

T = F/C = Transmission delay for a frame P = Probability that frame is erroneous

U = Efficiency

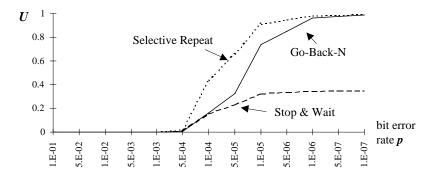
• Stop-and-Wait with no error:

$$U = \frac{T}{T + 2I}$$

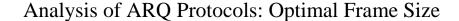
Stop-and-Wait ARQ: Error Case

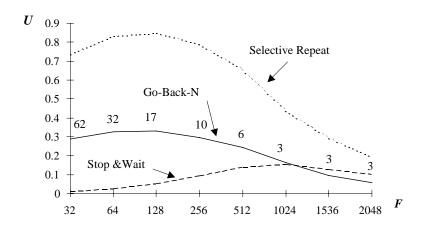
• Probability that k transmission attempts are needed to successfully transmit a frame:

$$P[k \text{ attempts needed}] = P^{k-1} \cdot (1-P)$$


• Expected number of attempts (= E[A])

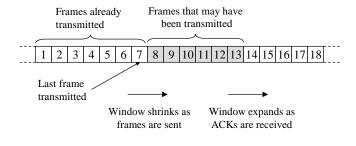
$$E[A] = \sum_{i=1}^{\infty} i \cdot P^{i-1} \cdot (1-P) = \frac{1}{1-P}$$


• Expected efficiency with errors:


$$U = \frac{T}{E[A] \cdot (T+2I)} = \frac{(1-P) \cdot T}{T+2I} = \frac{1-P}{1+2a}$$

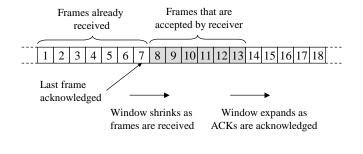
Efficiency of ARQ Protocols

1024 bit frames, 1.5 Mbps, 5msec prop delay, window size 4.

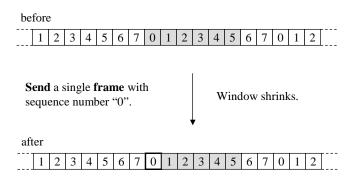


Flow Control

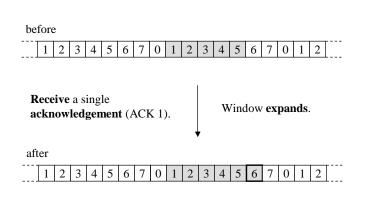
- Flow control is needed in order to match the speed of the sender to that of the receiver. This makes sure that data does not overflow at the receiving node.
- We assume (for simplicity) that there are no errors between sender and receiver.
- **Stop-and-Wait** Flow Control: receiver indicates readiness to receiver data for each frame.
- **Sliding Window** Flow Control allows for transmission of multiple frames.

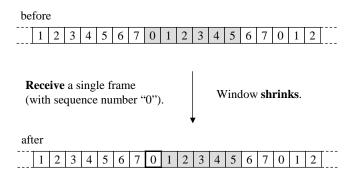

Operation of Sliding Window: Sender Window

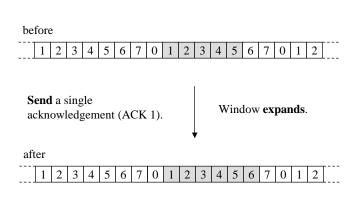
- At any time, sender is permitted to transmit frames with sequence number is a certain range.
- This range of numbers is called the **sender window**.

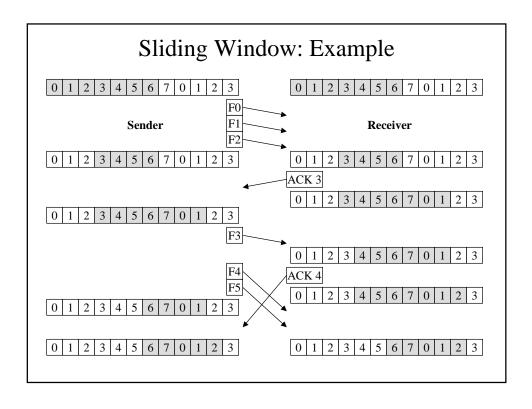


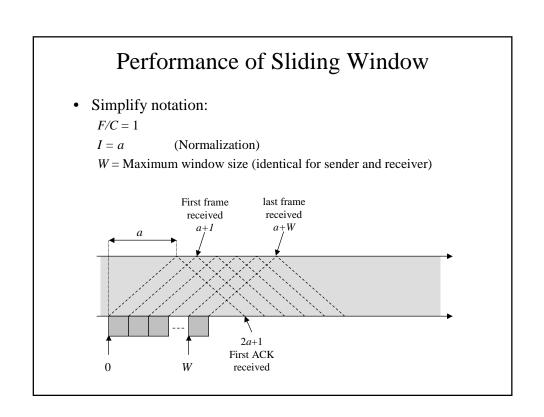
Operation of Sliding Window: Receiver Window


• The receiver maintains a **receiving window** of sequence numbers of frames that are accepted.


Operations at the Sender: Send Frame


Operations at the Sender: Receive ACK




Operation at Receiver: Receive Frame

Operation at Receiver: Send ACK

Performance of Sliding Window

- Window must be sufficiently large in order for sender to send continuously.
- $W \ge 2a+1$: Sender can send continuously:

$$U = 1$$

• W < 2a+1: Sender can transmit W frames every 2a+1 time units:

$$U = \frac{W}{1 + 2a}$$