
CPSC 410/611 : Operating Systems

Threads 1

Processor Management (Part 1: Threads)!
•  Threads Recap: !

–  User-Level Threads vs. Kernel-Level Threads vs. Scheduler Activations!
•  Thread-Based vs. Event-Based System Design?!

–  Event-Based: John Ousterhout, “Why Threads are a Bad Idea (for

most Purposes)”!
–  Thread-Based: von Beren, Condit, Brewer, “Why Eventsare a Bad Idea

(for high-concurrency Servers)”!
•  Required reading: Doeppner, Ch 5.1 !
•  Optional reading: Ousterhout, Beren&Condit&Brewer, Anderson et al. !

User-Level vs. Kernel-Level Threads!

•  User-level: kernel not aware of threads!
•  Kernel-level: all thread-management done in kernel!

P !

threads !
library !

P !

CPSC 410/611 : Operating Systems

Threads 2

Potential Problems with Threads!
•  General: Several threads run in the same address space: !

–  Protection must be explicitly programmed (by appropriate thread
synchronization)!

–  Effects of misbehaving threads limited to task !
•  User-level threads: Some problems at the interface to the kernel: With

a single-threaded kernel, as system call blocks the entire process.!

task! kernel!

system call!

thread is blocked in kernel!
(e.g. waiting for I/O)!

Singlethreaded vs. Multithreaded Kernel!

•  Protection of kernel data
structures is trivial, since only
one process is allowed to be in
the kernel at any time.!

•  Special protection mechanism is
needed for shared data
structures in kernel.!

CPSC 410/611 : Operating Systems

Threads 3

Hybrid Multithreading !

CPUs!

kernel!

processes!
user-level threads!

light-weight !
processes!
kernel threads!

Scheduler Activations; !
Background: User- vs. Kernel-Level Threads!

•  User-Level Threads: !
–  Managed by runtime library.!
–  Management operations require no kernel intervention.!
–  Low-cost !
–  Flexible (various possible APIs: POSIX, Actors, …)!
–  Implementation requires no change to OS.!

•  Kernel-Level Threads: !
–  Avoid system integration problems (see later)!
–  Too heavyweight !

•  Dilemma: !
–  “employ kernel threads, which ‘work right’ but perform poorly, or

employ user-level threads implemented on top of kernel threads or
processes, which perform well but are functionally deficient.”!

Ref: Thomas E. Anderson, Brian N. Bershad, Edward D. Lazowska, and Henry M. Levy, “Scheduler Activations:
Effective Kernel Support for the User-level Management of Parallelism”. ACM SIGOPS Operating Systems
Review, Volume 25, Issue 5, Oct. 1991.!

CPSC 410/611 : Operating Systems

Threads 4

User-Level Threads: Limitations!
“Kernel threads are the wrong abstraction for supporting user-level

thread management”: !
1.  Kernel events, such as processor preemption and I/0 blocking

and resumption, are handled by the kernel invisibly to the user
level.!

2.  Kernel threads are scheduled obliviously with respect to the
user-level thread state.!

Scenario: “When a user-level thread makes a blocking I/0 request or
takes a page fault, the kernel thread serving as its virtual
processor also blocks. As a result, the physical processor is lost to
the address space while the I/0 is pending, …”!

User-Level Threads: Limitations (cont)!
Scenario: “When a user-level thread makes a blocking I/0 request or

takes a page fault, the kernel thread serving as its virtual
processor also blocks. As a result, the physical processor is lost to
the address space while the I/0 is pending, …”!

Solution (?): “create more kernel threads than physical processors;
when one kernel thread blocks because its user-level thread
blocks in the kernel, another kernel thread is available to run
user-level threads on that processor.”!

However: When the thread unblocks, there will be more runnable
kernel threads than processors. -> The OS now decides on behalf
of the application which user-level threads to run.!

CPSC 410/611 : Operating Systems

Threads 5

User-Level Threads: Limitations (cont)!
However: When the thread unblocks, there will be more runnable

kernel threads than processors. -> The OS now decides on behalf
of the application which user-level threads to run.!

Solution (?) : “… the operating system could employ some kind of
time-slicing to ensure each thread makes progress.”!

However: “When user-level threads are running on top of kernel
threads, time-slicing can lead to problems.”!

“For example, a kernel thread could be preempted while its user-level
thread is holding a spin-lock; !
any user-level threads accessing the lock will then spin-wait until
the lock holder is re-scheduled.”!

Similar problems occur when handling multiple jobs.!

User-Level Threads: Limitations (cont)!
Logical correctness of user-level thread system built on kernel

threads…!

Example: “Many applications, particularly those that require
coordination among multiple address spaces, are free from deadlock
based on the assumption that all runnable threads eventually
receive processor time.”!

However: “But when user-level threads are multiplexed across a fixed
number of kernel threads, the assumption may no longer hold: !
because a kernel thread blocks when its user-level thread blocks,
an application can run out of kernel threads to serve as execution
contexts, even when there are runnable user-level threads and
available processors.”!

CPSC 410/611 : Operating Systems

Threads 6

Goals of Scheduler Activations!
•  Functionality: !

–  Should mimic behavior of kernel thread management system: !
•  No idling processor in presence of ready threads. !
•  No priority inversion !
•  Multiprogramming within and across address spaces!

•  Performance: !
–  Keep thread management overhead to same as user-level

threads.!

•  Flexibility: !
–  Allow for changes in scheduling policies or even different

concurrency models (workers, Actors, Futures).!

traditional UL thread system

Solution: “Scheduler Activations”!

UL Thread Library!

scheduler activations

P !

UL Thread Library!

P ! P !
kernel support !

Upcalls:
• Add this processor
• Processor has been
preempted
• SA has blocked
• SA has unblocked

“Down”-Calls:
• Add more processors.
• Processor is idle

CPSC 410/611 : Operating Systems

Threads 7

Threads in Practice: !
Issues in Server Software Design [Comer] !

•  Concurrent vs. Iterative Servers: !
The term concurrent server refers to whether the server
permits multiple requests to proceed concurrently, not to
whether the underlying implementation uses multiple,
concurrent threads of execution.!
Iterative server implementations are easier to build and
understand, but may result in poor performance because they
make clients wait for service.!

•  Connection-Oriented vs. Connectionless Access: !
Connection-oriented (TCP, typically) servers are easier to
implement, but have resources bound to connections.!
Reliable communication over UDP is not easy! !

•  Stateful vs. Stateless Servers: !
How much information should the server maintain about clients?
(What if clients crash, and server does not know?)!

Example: Iterative, Connection-Oriented Server!

server

accept()

read() / write()

close()

int passiveTCPsock(const char * service, int backlog) {

 struct sockaddr_in sin; /* Internet endpoint address */
 memset(&sin, 0, sizeof(sin)); /* Zero out address */
 sin.sin_family = AF_INET;
 sin.sin_addr.s_addr = INADDR_ANY;

 /* Map service name to port number */
 if (struct servent * pse = getservbyname(service, “tcp”))
 sin.sin_port = pse->s_port;
 else if ((sin.sin_port = htons((unsigned short)atoi(service))) == 0)
 errexit(“can’t get <%s> service entry\n”, service);

 /* Allocate socket */
 int s = socket(AF_INET, SOCK_STREAM, 0);
 if (s < 0) errexit(“can’t create socket: %s\n”, strerror(errno));

 /* Bind the socket */
 if (bind(s, (struct sockaddr *)&sin, sizeof(sin)) < 0)
 errexit(“can’t bind to …\n”);

 /* Listen on socket */
 if (listen(s, backlog) < 0)
 errexit(“can’t listen on …\n”)

 return s;
}

socket()

bind()

listen()

CPSC 410/611 : Operating Systems

Threads 8

Example: Iterative, Connection-Oriented Server!

server

accept()

read() / write()

close()

socket()

bind()

listen()

int main(int argc, char * argv[]) {
 char * service = “daytime”; /* service name or port number */
 int m_sock, s_sock; /* master and slave socket */
 service = argv[1];

 int m_sock = passiveTCPsock(service, 32);

 for (;;) {
 s_sock = accept(m_sock,(struct sockaddr*)&fsin, sizeof(fsin));
 if (s_sock < 0) errexit(“accept failed: %s\n”, strerror(errno));

 time_t now;
 time(&now);
 char * pts = ctime(&now);
 write(s_sock, pts, strlen(pts));

 close(s_sock);
 }

}

Example: Concurrent, Connection-Oriented Server!

server

accept()

fork()

close()

read() / write()

close()

read() / write()

close()

read() / write()

close()

int passiveTCPsock(const char * service, int backlog);

socket()

bind()

listen()

int main(int argc, char * argv[]) {
 char * service = “daytime”; /* service name or port number */
 int m_sock, s_sock; /* master and slave socket */
 service = argv[1];

 int m_sock = passiveTCPsock(service, 32);

 for (;;) {
 s_sock = accept(m_sock,(struct sockaddr*)&fsin, sizeof(fsin));
 if (s_sock < 0) errexit(“accept failed: %s\n”, strerror(errno));

 if (fork() == 0) { /* child */
 close(m_sock);
 /* handle request here . . . */
 exit(error_code);
 }
 close(s_sock);
 }
}

CPSC 410/611 : Operating Systems

Threads 9

read() / write()

close()

read() / write()

close()

read() / write()

close()

Example: Concurrent, Connection-Oriented Server!

server

accept()

fork()

close()

int passiveTCPsock(const char * service, int backlog);

socket()

bind()

listen()

int main(int argc, char * argv[]) {
 char * service = “daytime”; /* service name or port number */
 int m_sock, s_sock; /* master and slave socket */
 service = argv[1];

 int m_sock = passiveTCPsock(service, 32);

 signal(SIGCHLD, cleanly_terminate_child);

 for (;;) {
 s_sock = accept(m_sock,(struct sockaddr*)&fsin, sizeof(fsin));
 if (s_sock < 0)
 if (errno == EINTR) continue;
 else errexit(“accept failed: %s\n”, strerror(errno));
 if (fork() == 0) { /* child */
 close(m_sock);
 /* handle request here . . . */
 }
 close(s_sock);
 }
}

void cleanly_terminate_child(int sig) {
 int status;
 while (wait3(&status, WNOHANG, NULL) > 0)
}

read() / write()

close()

read() / write()

close()

read() / write()

close()

Example: Concurrent, Connection-Oriented Server!

server

accept()

pthread_create()

close()

int passiveTCPsock(const char * service, int backlog);

socket()

bind()

listen()

int main(int argc, char * argv[]) {
 char * service = “daytime”; /* service name or port number */
 int m_sock, s_sock; /* master and slave socket */
 service = argv[1];

 int m_sock = passiveTCPsock(service, 32);
 pthread_t th; pthread_attr_t ta;
 pthread_attr_init(&ta);
 pthread_attr_setdetachstate(&ta, PTHREAD_CREATE_DETACHED);
 for (;;) {
 s_sock = accept(m_sock,(struct sockaddr*)&fsin, sizeof(fsin));
 if (s_sock < 0)
 if (errno == EINTR) continue;
 else errexit(“accept failed: %s\n”, strerror(errno));

 pthread_create(&th, &ta, handle_request, (void*)s_sock);

 }
} int handle_request(int fd) {

 /* handle the request . . . */
 close(fd);
}

CPSC 410/611 : Operating Systems

Threads 10

read() / write()

close()
read() / write()

close()

read() / write()

close()

Example: Concurrent, Connection-Oriented Server!

server

accept()

select()/accept()

close()

int passiveTCPsock(const char * service, int backlog);

socket()

bind()

listen()

int main(int argc, char * argv[]) {
 char * service = “daytime”; /* service name or port number */
 int m_sock, s_sock; /* master and slave socket */
 service = argv[1];

 int m_sock = passiveTCPsock(service, 32);
 fd_set rfds, afds;
 int nfds = getdtablesize();
 FD_ZERO(&afds); FD_SET(m_sock, &afds);
 for (;;)
 memcpy(&rfds, &afds, sizeof(rfds));
 select(nfds, &rfds, 0, 0, 0);
 if(FD_ISSET(m_sock, &rfds) {
 s_sock = accept(m_sock,(struct sockaddr*)&fsin, sizeof(fsin));
 FD_SET(s_sock, &afds);
 }
 for(int fd = 0; fd < nfds; fd++)
 if (fd != m_sock && FD_ISSET(fd, &rfds)) {
 /* handle request . . . */
 close(fd);
 FD_CLR(fd, &afds);
 }
 }
}

Threaded vs. Event-Driven Design !
Figures from: M. Welsh, D. Culler, and E. Brewer, SEDA: An Architecture for Well Conditioned, !
Scalable Internet Services!

CPSC 410/611 : Operating Systems

Threads 11

CPSC 410/611 : Operating Systems

Threads 12

CPSC 410/611 : Operating Systems

Threads 13

CPSC 410/611 : Operating Systems

Threads 14

CPSC 410/611 : Operating Systems

Threads 15

CPSC 410/611 : Operating Systems

Threads 16

CPSC 410/611 : Operating Systems

Threads 17

CPSC 410/611 : Operating Systems

Threads 18

A Dissenting Opinion (selected slides)!

CPSC 410/611 : Operating Systems

Threads 19

CPSC 410/611 : Operating Systems

Threads 20

CPSC 410/611 : Operating Systems

Threads 21

CPSC 410/611 : Operating Systems

Threads 22

CPSC 410/611 : Operating Systems

Threads 23

CPSC 410/611 : Operating Systems

Threads 24

CPSC 410/611 : Operating Systems

Threads 25

CPSC 410/611 : Operating Systems

Threads 26

Event-Driven Programming in Practice: !
Completion Ports!

•  Rationale: !
–  Minimize context switches by having threads avoid unnecessary

blocking. !
–  Maximize parallelism by using multiple threads. !
–  Ideally, have one thread actively servicing a request on every

processor.!
–  Do not block thread if there are additional requests waiting when

thread completes a request. !
–  The application must be able to activate another thread when current

thread blocks on I/O (e.g. when it reads from a file)!
•  Resources: !

–  Inside IO Completion Ports: !
http://technet.microsoft.com/en-us/sysinternals/bb963891.aspx!

–  Multithreaded Asynchronous I/O & I/O Completion Ports: !
http://www.ddj.com/cpp/20120292 !

–  Parallel Programming with C++ - I/O Completion Ports: !
http://weblogs.asp.net/kennykerr/archive/2008/01/03/parallel-
programming-with-c-part-4-i-o-completion-ports.aspx!

Completion Ports (CPs): Operation !

•  Whenever operations on files associated with CP’s
complete, a completion packet is queued on the CP. !

•  Threads wait for outstanding I/Os to complete by
waiting for completion packets to be queued on CP.!

•  Application specifies concurrency value associated
with CP.!

•  Whenever active thread finishes processing current
request, it checks for next packet at the port. (If
there is, grabs it without context switch.)!

•  Whenever a thread gets blocked, the number of
active threads drops below concurrency value, and
next thread can start.!

CPSC 410/611 : Operating Systems

Threads 27

Basic Steps for Using Completion Ports!
1.  Create a new I/O completion port object.!
2.  Associate one or more file descriptors with the port.!
3.  Issue asynchronous read/write operations on the file descriptor(s).!
4.  Retrieve completion notifications from the port and handle

accordingly.!

Multiple threads may monitor a single I/O completion port and
retrieve completion events—the operating system effectively manages
the thread pool, ensuring that the completion events are distributed
efficiently across threads in the pool.!

Completion Ports: APIs: !
CP creation and association of file descriptor with CP:
HANDLE CreateIoCompletionPort(

HANDLE FileHandle, /* INVALID… when creating new CP*/
HANDLE ExistingCompletionPort, /* NULL when creating new CP */
DWORD CompletionKey, /* NULL when creating new CP */
DWORD NumberOfConcurrentThreads /* Concurrency value */

);

Initiating Asynchronous I/O Request:
BOOL ReadFile(

HANDLE FileHandle,
LPVOID pBuffer,

 DWORD NumberOfBytesToRead,
 LPDWORD pNumberOfBytesRead,
 LPOVERLAPPED pOverlapped /* specify parameters
 and receive results */
};

CPSC 410/611 : Operating Systems

Threads 28

Completion Ports: APIs !
(Remove and Post CP Events)!

Retrieve next completion packet: !
BOOL GetQueuedCompletionStatus(

HANDLE CompletionPort,
LPDWORD lpNumberOfBytesTransferred,
LPDWORD CompletionKey,
LPOVERLAPPED* ppOverlapped, /* pointer to pointer parameter to
 asynch I/O function */
DWORD dwMillisecondTimeout

);

Generate completion packets (send implementation-specific events): !
BOOL PostQueuedCompletionStatus(
 HANDLE CompletionPort,

LPDWORD lpNumberOfBytesTransferred,
LPDWORD CompletionKey,
LPOVERLAPPED lpOverlapped

}

When CP event gets posted on a CP, one of the waiting threads returns from call
to GetQueuedCompletionStatus with copies of parameters as they were posted.!

CP Example: Web Server: Startup !
Tom R. Dial, “Multithreaded Asynchronous I/O & I/O Completion Ports,” Dr. Dobbs, Aug.2007)!

/* Fire.cpp - The Fire Web Server!
 * Copyright (C) 2007 Tom R. Dial tdial@kavaga.com */!
int main(int /*argc*/, char* /*argv*/[]) {!
 // Initialize the Microsoft Windows Sockets Library!
 WSADATA Wsa={0}; !
 WSAStartup(MAKEWORD(2,2), &Wsa); !
 // Get the working directory; this is used when transmitting files back.!
 GetCurrentDirectory(_MAX_PATH, RootDirectory); !
 // Create an event to use to synchronize the shutdown process.!
 StopEvent = CreateEvent(0, FALSE, FALSE, 0); !
 // Setup a console control handler: We stop the server on CTRL-C!
 SetConsoleCtrlHandler(ConsoleCtrlHandler, TRUE); !

 // Create a new I/O Completion port. !
 HANDLE IoPort = CreateIoCompletionPort(INVALID_HANDLE_VALUE, 0, 0, WORKER_THREAD_COUNT); !

 // Set up a socket on which to listen for new connections.!
 SOCKET Listener = WSASocket(PF_INET, SOCK_STREAM, IPPROTO_TCP, 0, 0, WSA_FLAG_OVERLAPPED); !
 struct sockaddr_in Addr={0}; !
 Addr.sin_family = AF_INET; !
 Addr.sin_addr.S_un.S_addr = INADDR_ANY; !
 Addr.sin_port = htons(DEFAULT_PORT); !
 // Bind the listener to the local interface and set to listening state.!
 bind(Listener, (struct sockaddr*)&Addr, sizeof(struct sockaddr_in)); !
 listen(Listener, DEFAULT_LISTEN_QUEUE_SIZE); !

CPSC 410/611 : Operating Systems

Threads 29

CP Example: Web Server: Start Threads!
 // Create worker threads!
 HANDLE Workers[WORKER_THREAD_COUNT] = 0; !
 unsigned int WorkerIds[WORKER_THREAD_COUNT] = 0 ; !

 for (size_t i=0; i<WORKER_THREAD_COUNT; i++) !
 Workers[i] = (HANDLE)_beginthreadex(0, 0, WorkerProc, IoPort, 0, WorkerIds+i); !

 // Associate the Listener socket with the I/O Completion Port. !
 CreateIoCompletionPort((HANDLE)Listener, IoPort, COMPLETION_KEY_IO, 0); !

 // Allocate an array of connections; constructor binds them to the port.!
 Connection* Connections[MAX_CONCURRENT_CONNECTIONS]={0}; !
 for (size_t i=0; i<MAX_CONCURRENT_CONNECTIONS; i++)!
 Connections[i] = new Connection(Listener, IoPort); !

 // Print instructions for stopping the server.!
 printf("Fire Web Server: Press CTRL-C To shut down.\n"); !
 // Wait for the user to press CTRL-C...!
 WaitForSingleObject(StopEvent, INFINITE); !

 // … !

CP Example: Web Server: Shutdown !
 // Deregister console control handler: We stop the server on CTRL-C!
 SetConsoleCtrlHandler(NULL, FALSE); !
 // Post a quit completion message, one per worker thread. !
 for (size_t i=0; i<WORKER_THREAD_COUNT; i++) !
 PostQueuedCompletionStatus(IoPort, 0, COMPLETION_KEY_SHUTDOWN, 0); !
 // Wait for all of the worker threads to terminate...!
 WaitForMultipleObjects(WORKER_THREAD_COUNT, Workers, TRUE, INFINITE); !
 // Close worker thread handles. !
 for (size_t i=0; i<WORKER_THREAD_COUNT; i++) !
 CloseHandle(Workers[i]); !
 // Close stop event. !
 CloseHandle(StopEvent); !
 // Shut down the listener socket and close the I/O port.!
 shutdown(Listener, SD_BOTH); !
 closesocket(Listener); !
 CloseHandle(IoPort); !
 // Delete connections.!
 for (size_t i=0; i<MAX_CONCURRENT_CONNECTIONS; i++)!
 delete(Connections[i]); !
 WSACleanup(); !
 return 0; !
} !

CPSC 410/611 : Operating Systems

Threads 30

CP Example: Web Server: Worker Threads!
// Worker thread procedure.!
unsigned int __stdcall WorkerProc(void* IoPort) {!
 for (;;) {!
 BOOL Status = 0; !
 DWORD NumTransferred = 0; !
 ULONG_PTR CompKey = COMPLETION_KEY_NONE; !
 LPOVERLAPPED pOver = 0; !
 Status = GetQueuedCompletionStatus(reinterpret_cast<HANDLE>(IoPort), !
 &NumTransferred, &CompKey, &pOver, INFINITE); !
 Connection* pConn = reinterpret_cast<Connection*>(pOver); !
 if (FALSE == Status) {!
 // An error occurred; reset to a known state.!
 if (pConn) pConn->IssueReset(); !
 } else if (COMPLETION_KEY_IO == CompKey) {!
 pConn->OnIoComplete(NumTransferred); !
 } else if (COMPLETION_KEY_SHUTDOWN == CompKey) {!
 break; !
 } !
 } !
 return 0; !
} !

CP Example: Web Server: Connections!
// Class representing a single connection.!

class Connection : public OVERLAPPED {!
 enum STATE { WAIT_ACCEPT = 0, WAIT_REQUEST = 1, !
 WAIT_TRANSMIT = 2, WAIT_RESET = 3 }; !
public: !
 Connection(SOCKET Listener, HANDLE IoPort) : myListener(Listener) {!
 myState = WAIT_ACCEPT; !
 // […] !
 mySock = WSASocket(PF_INET, SOCK_STREAM, IPPROTO_TCP, !
 0, 0, WSA_FLAG_OVERLAPPED); !
 // Associate the client socket with the I/O Completion Port. !
 CreateIoCompletionPort(reinterpret_cast<HANDLE>(mySock), !
 IoPort, COMPLETION_KEY_IO, 0); !
 IssueAccept(); !
 } !
 ~Connection() {!
 shutdown(mySock, SD_BOTH); !

" closesocket(mySock); !
 } !

CPSC 410/611 : Operating Systems

Threads 31

CP Example: Web Server: State Machines (I)!
// ACCEPT OPERATION !

// Issue an asynchronous accept.!

void Connection::IssueAccept() { !
 myState = WAIT_ACCEPT; !
 DWORD ReceiveLen = 0; // This gets thrown away, but must be passed.!
 AcceptEx(myListener, mySock, myAddrBlock, 0, ACCEPT_ADDRESS_LENGTH, !
 ACCEPT_ADDRESS_LENGTH, &ReceiveLen, (OVERLAPPED*)this); !
} !

// Complete the accept and update the client socket's context.!

void Connection::CompleteAccept() {!
 setsockopt(mySock, SOL_SOCKET, SO_UPDATE_ACCEPT_CONTEXT, !
 (char*)&myListener, sizeof(SOCKET)); !
 // Transition to "reading request" state.!
 IssueRead(); !
} !

CP Example: Web Server: State Machines (II)!
// READ OPERATION !
// Issue an asynchronous read operation. !
void Connection::IssueRead(void) {!
 myState = WAIT_REQUEST; !
 ReadFile((HANDLE)mySock, myReadBuf, DEFAULT_READ_BUFFER_SIZE, !
 0, (OVERLAPPED*)this); !
} !

// Complete the read operation, appending the request with the latest data.!
void Connection::CompleteRead(size_t NumBytesRead) {!
 // […]!
 // Has the client finished sending the request?!
 if (IsRequestComplete(NumBytesRead)) {!
 // Yes. Transmit the response. !
 IssueTransmit(); !
 } else {!
 // The client is not finished. If data was read this pass, we assume the connection !
 // is still good and read more. If not, we assume that the client closed the socket !
 // prematurely.!
 if (NumBytesRead) IssueRead(); !
 else IssueReset(); !

 } !
 } !

CPSC 410/611 : Operating Systems

Threads 32

CP Example: Web Server: State Machines (III)!
 // Parse the request, and transmit the response.!
 void Connection::IssueTransmit() {!
 myState = WAIT_TRANSMIT; !
 // Simplified parsing of the request: just ignore first token.!
 char* Method = strtok((&myRequest[0]), " "); !
 if (!Method) {!
 IssueReset(); !
 return; !
 } !
 // Parse second token, create file, transmit file ..!
 // […] !
 myFile = CreateFile(/* … */); !
 TransmitFile(mySock, myFile, !
 Info.nFileSizeLow, 0, this, !
 &myTransmitBuffers, 0); !
} !
void Connection::CompleteTransmit() {!
 // Issue the reset; this prepares the !
 // socket for reuse.!
 IssueReset(); !
 } !

 void Connection::IssueReset()!
 {!
 myState = WAIT_RESET; !
 TransmitFile(mySock, 0, 0, 0, this, 0, !
 TF_DISCONNECT | TF_REUSE_SOCKET); !
 } !

 void Connection::CompleteReset(void) !
 {!
 ClearBuffers(); !
 IssueAccept(); // Continue to next request! !
 } !

CP Example: Web Server: Dispatching !
 // The main handler for the connection, responsible for state transitions. !

 void Connection::OnIoComplete(DWORD NumTransferred) {!

 switch (myState) {!
 case WAIT_ACCEPT: !
 CompleteAccept(); !
 break; !
 case WAIT_REQUEST: !
 CompleteRead(NumTransferred); !
 break; !
 case WAIT_TRANSMIT: !
 CompleteTransmit(); !
 break; !
 case WAIT_RESET: !
 CompleteReset(); !
 break; !
 } !

 } !

