CPSC 410/611 : Operating Systems

Threads

Processor Management (Part 1: Threads)

Threads Recap:
- User-Level Threads vs. Kernel-Level Threads vs. Scheduler Activations
Thread-Based vs. Event-Based System Design?
- Event-Based: John Ousterhout, “Why Threads are a Bad Idea (for
most Purposes)”
- Thread-Based: von Beren, Condit, Brewer, "Why Eventsare a Bad Idea
(for high-concurrency Servers)”
Required reading: Doeppner, Ch 5.1

Optional reading: Ousterhout, Beren&Condit&Brewer, Anderson et al.

User-Level vs. Kernel-Level Threads

User-level: kernel not aware of threads
Kernel-level: all thread-management done in kernel

) 1]

threads

Q w

CPSC 410/611 : Operating Systems

Threads

Potential Problems with Threads

General: Several threads run in the same address space:
- Protection must be explicitly programmed (by appropriate thread
synchronization)
- Effects of misbehaving threads limited to task
User-level threads: Some problems at the interface to the kernel: With
a single-threaded kernel, as system call blocks the entire process.

thread is blocked in kernel
(e.g. waiting for 1/0)

W\[\ system call
AN f e Rauy

fask kernel

Singlethreaded vs. Multithreaded Kernel

=555

WA i REEVAVA
WAV & REEVAVA

IVARE T hes

WAVAR = &

e Special protection mechanism is
needed for shared data
structures in kernel.

Protection of kernel data
structures is trivial, since only
one process is allowed to be in
the kernel at any time.

CPSC 410/611 : Operating Systems

Threads

Hybrid Multithreading

processes
Eé; E;E éé__ user-level threads
\ /

N\N_A /4 N_4

XY X i \/ - light-weight

processes

SS 532 S e

=\

CPUs

Scheduler Activations;
Background: User- vs. Kernel-Level Threads

e User-Level Threads:
- Managed by runtime library.
- Management operations require no kernel intervention.
- Low-cost
- Flexible (various possible APIs: POSIX, Actors, ...)
- Implementation requires no change to OS.
e Kernel-Level Threads:
- Avoid system integration problems (see later)
- Too heavyweight
e Dilemma:

- “employ kernel threads, which ‘work right’ but perform poorly, or
employ user-level threads implemented on top of kernel threads or
processes, which perform well but are functionally deficient.”

Ref: Thomas E. Anderson, Brian N. Bershad, Edward D. Lazowska, and Henry M. Levy, “Scheduler Activations:
Effective Kernel Support for the User-level Management of Parallelism”. ACM SIGOPS Operating Systems
Review, Volume 25, Issue 5, Oct. 1991.

CPSC 410/611 : Operating Systems

Threads

User-Level Threads: Limitations

"Kernel threads are the wrong abstraction for supporting user-level
thread management”:

1. Kernel events, such as processor preemption and I/0 blocking
and resumption, are handled by the Kernel invisibly to the user
level.

2. Kernel threads are scheduled obliviously with respect to the
user-level thread state.

Scenario: “When a user-level thread makes a blocking I/0 request or
takes a page fault, the kernel thread serving as its virtual
processor also blocks. As a result, the physical processor is lost to
the address space while the I/0 is pending, ...”

User-Level Threads: Limitations (cont)

Scenario: “When a user-level thread makes a blocking I/0 request or
takes a page fault, the kernel thread serving as its virtual
processor also blocks. As a result, the physical processor is lost to
the address space while the I/0 is pending, ...”

Solution (?): “create more kernel threads than physical processors;
when one kernel thread blocks because its user-level thread
blocks in the kernel, another kernel thread is available to run
user-level threads on that processor.”

However: When the thread unblocks, there will be more runnable
kernel threads than processors. -> The OS now decides on behalf
of the application which user-level threads to run.

CPSC 410/611 : Operating Systems

Threads

User-Level Threads: Limitations (cont)

However: When the thread unblocks, there will be more runnable
kernel threads than processors. -> The OS now decides on behalf
of the application which user-level threads to run.

Solution (?) : “... the operating system could employ some kind of
time-slicing to ensure each thread makes progress.”

However: "When user-level threads are running on top of kernel
threads, time-slicing can lead to problems.”

“For example, a kernel thread could be preempted while its user-level
thread is holding a spin-lock;
any user-level threads accessing the lock will then spin-wait until
the lock holder is re-scheduled.”

Similar problems occur when handling multiple jobs.

User-Level Threads: Limitations (cont)

Logical correctness of user-level thread system built on kernel
threads...

Example: "Many applications, particularly those that require
coordination among multiple address spaces, are free from deadlock
based on the assumption that all runnable threads eventually
receive processor time.”

However: “But when user-level threads are multiplexed across a fixed
number of kernel threads, the assumption may no longer hold:
because a kernel thread blocks when its user-level thread blocks,
an application can run out of kernel threads to serve as execution
contexts, even when there are runnable user-level threads and
available processors.”

CPSC 410/611 : Operating Systems

Threads

Goals of Scheduler Activations

e Functionality:
- Should mimic behavior of kernel thread management system:
¢ No idling processor in presence of ready threads.
e No priority inversion
e Multiprogramming within and across address spaces

e Performance:

- Keep thread management overhead to same as user-level
threads.

e Flexibility:
- Allow for changes in scheduling policies or even different
concurrency models (workers, Actors, Futures).

Solution: “Scheduler Activations”

traditional UL thread system

s2222

o]
% 5 % scheduler activations

v UL Thread Library — +Add this processor
“Down’-Calls: .—.—. *Processor has been
S o S

i preempted
Add more ;.)rqcessors. «SA has blocked
*Processor is idle

*SA has unblocked

CPSC 410/611 : Operating Systems

Threads

Threads in Practice:

Issues in Server Software Design [comer]

e Concurrent vs. Iterative Servers:

The term concurrent server refers to whether the server
permits multiple requests to proceed concurrently, not to
whether the underlying implementation uses multiple,
concurrent threads of execution.

Iterative server implementations are easier to build and
understand, but may result in poor performance because they
make clients wait for service.

e Connection-Oriented vs. Connectionless Access:
Connection-oriented (TCP, typically) servers are easier to
implement, but have resources bound to connections.

Reliable communication over UDP is not easy!

e Stateful vs. Stateless Servers:

How much information should the server maintain about clients?
(What if clients crash, and server does not know?)

Example: Iterative, Connection-Oriented Server

int passiveTCPsock (const char * service, int backlog) {

struct sockaddr_in sin; /* Internet endpoint address */
server memset (&sin, 0, sizeof(sin)); /* Zero out address */
- sin.sin_family = AF_INET;
sin.sin_addr.s_addr = INADDR ANY;
SOCkeT() /* Map service name to port number */
l if (struct servent * pse = getservbyname (service, “tcp”))
sin.sin_port = pse->s_port;
biﬂd() else if ((sin.sin port = htons((unsigned short)atoi (service))) ==
errexit(“can’t get <%s> service entry\n”, service);

l /* Allocate socket */
Iis‘l'en() int s = socket (AF_INET, SOCK_STREAM, 0);
if (s < 0) errexit(“can’t create socket: %s\n”, strerror(errno));
/* Bind the socket */

accepf() if (bind(s, (struct sockaddr *)&sin, sizeof(sin)) < 0)
errexit(“can’t bind to ..\n”);

. /* Listen on socket */
read() / write if (listen(s, backlog) < 0)
l errexit(“can’t listen on .\n”)
return s;
close())

0)

CPSC 410/611 : Operating Systems

Threads

Example: Iterative, Connection-Oriented Server

server

socket()
!
bind()
!
listen()
!

accept()
|

read() / write()

!

close()

int main(int argc, char * argv[]) {
char * service = “daytime”; /* service name or port number */
int m_sock, s_sock; /* master and slave socket */
service = argv[1l];

int m_sock = passiveTCPsock(service, 32);

for (;;) {
s_sock = accept(m_sock, (struct sockaddr*)&fsin, sizeof(fsin));
if (s_sock < 0) errexit(“accept failed: %$s\n”, strerror (errno)) ;

time_t now;

time (&now) ;

char * pts = ctime (&now) ;
write(s_sock, pts, strlen(pts));

close (s_sock) ;

Example: Concurrent, Connection-Oriented Server

server

socket()
|
bind()
|
listen()
v
accept()
|
fork()—
|

close()

int passiveTCPsock (const char * service, int backlog);

e(

int main(int argc, char * argv([]) {
char * service = “daytime”; /* service name or port number */
int m_sock, s_sock; /* master and slave socket */
service = argv[l];

int m_sock = passiveTCPsock(service, 32);

for (;;) {
s_sock = accept(m_sock, (struct sockaddr*)&fsin, sizeof(fsin));
if (s_sock < 0) errexit(“accept failed: %s\n”, strerror(errno));

if (fork() == 0) { /* child */
close (m_sock) ;
/* handle request here . . . */
exit(error_code) ;

}

close (s_sock) ;

}
}

cloie() JJ

CPSC 410/611 : Operating Systems

Threads

Example: Concurrent, Connection-Oriented Server

server

socket()
|
bind()
|
listen()
v
accept()

fork()—
|

close()

int passiveTCPsock(const char * service, int backlog);

[
int main(int argc, char * argv[]) {
char * service = “daytime”; /* service name or port number */
int m_sock, s_sock; /* master and slave socket */
service = argv[1];
int m_sock = passiveTCPsock (service, 32);
signal (SIGCHLD, cleanly terminate child);
for (;;) {
s_sock = accept(m_sock, (struct sockaddr*)&fsin, sizeof(fsin));
if (s_sock < 0)
if (errno == EINTR) continue;
else errexit(“accept failed: %s\n”, strerror (errno));
if (fork() == 0) { /* child */
close (m_sock) ;
/* handle request here . . . */
}
close (s_sock) ;
} void cleanly terminate_child(int sig) {
} int status;
ed while (wait3(&status, WNOHANG, NULL) > 0)
7 l \Y }
close()

Example: Concurrent, Connection-Oriented Server

server

socket()
|
bind()
|
listen()
v
accept()
|
pthread_crea
_\

|

close()

int passiveTCPsock (const char * service, int backlog);

int main(int argc, char * argv[]) {
char * service = “daytime”; /* service name or port number */
int m_sock, s_sock; /* master and slave socket */
service = argv[1];

int m_sock = passiveTCPsock(service, 32);
pthread t th; pthread attr_t ta;
pthread attr init(&ta);
pthread attr_ setdetachstate(&ta, PTHREAD CREATE DETACHED) ;
for (;;) {
s_sock = accept(m_sock, (struct sockaddr*)&fsin, sizeof(fsin));
if (s_sock < 0)
if (errno == EINTR) continue;
else errexit(“accept failed: %s\n”, strerror (errno));

pthread create(&th, &ta, handle request, (void*)s_sock);

} } int handle_request(int £d) {
ry /* handle the request . . . */
7 \Y, close (£d) ;
! }
close()

CPSC 410/611 : Operating Systems

Threads

Example: Concurrent, Connection-Oriented Server

int passiveTCPsock(const char * service, int backlog); |

I

server int main(int argc, char * argv[]) {
char * service = “daytime”; /* service name or port number */
int m_sock, s_sock; /* master and slave socket */
service = argv[1l];
socket()
int m_sock = passiveTCPsock (service, 32);
l fd_set rfds, afds;
bind() int nfds = getdtablesize();
FD_ZERO(&afds); FD_SET(m_sock, &afds);
l for (;;)
memcpy (&rfds, &afds, sizeof (rfds));
/ select (nfds, &rfds, 0, 0, 0);
|IS1'eI'I() if (FD_ISSET (m_sock, &rfds) {
i s_sock = accept(m_sock, (struct sockaddr*)&fsin, sizeof (fsin));

FD_SET (s_sock, &afds);
accept())
for(int f£d = 0; fd < nfds; fd++)
if (fd4d !'= m_sock && FD_ISSET(fd, &rfds)) {
/* handle request . . . */

select()/accep close (£d) ;
— FD_CLR(fd, safds);
¢ e(}
close() .

close() | |

Threaded vs. Event-Driven Design

Figures from: M. Welsh, D. Culler, and E. Brewer, SEDA: An Architecture for Well Conditioned,
Scalable Internet Services 30000

25000

20000

15000

Throughput, tasks/sec

10000

5000

- 0
4 16 64 1024
Number of threads

Figure 2: Threaded server on: This k mea-
sures a simple threaded server which creates a single thread for each task in the
pipeline. After receiving a task, each thread performs an 8 KB read from a disk
Jile; all threads read from the same file, so the data is always in the buffer cache.

I}

Figure 3: Event-driven server design: This figure shows the flow of events

Figure 1: Threaded server design: Each incoming request is dispatched to a
separate thread, which processes the request and returns a result to the client.
Edges represent control flow between components. Note that other I/O opera-
tions, such as disk access, are not shown here, but would be incorporated into
each threads’ request processing.

through an event-driven server. The main thread processes incoming events from
the network, disk, and other sources, and uses these to drive the execution of
many finite state machines. Each FSM represents a single request or flow of
execution through the system. The key source of complexity in this design is the
event scheduler, which must control the execution of each FSM.

10

CPSC 410/611 : Operating Systems

Threads

Why Threads Are A Bad Idea
(for most purposes)

John OQusterhout
Sun Microsystems Laboratories

john.ousterhout@eng.sun.com
http://www.sunlabs.com/~ouster

Introduction

¢ Threads:

— Grew up in OS world (processes).

— Evolved into user-level tool.

— Proposed as solution for a variety of problems.

— Every programmer should be a threads programmer?
& Problem: threads are very hard to program.
¢ Alternative: events.

¢ Claims:

— For most purposes proposed for threads, events are
better.
— Threads should be used only when true CPU
concurrency is needed.
Why Threads Are A Bad Idea September 28, 1995, slide 2

11

CPSC 410/611 : Operating Systems

Threads

What Are Threads?

Shared state
(memory, files, etc.)

<5 0 0 O O e

¢ General-purpose solution for managing concurrency.

¢ Multiple independent execution streams.
¢ Shared state.
¢ Pre-emptive scheduling.

¢ Synchronization (e.g. locks, conditions).

Why Threads Are A Bad Idea September 28, 1995, slide 3

What Are Threads Used For?

¢ Operating systems: one kernel thread for each user
process.

¢ Scientific applications: one thread per CPU (solve
problems more quickly).

¢ Distributed systems: process requests concurrently
(overlap I/Os).

¢ GUIs:
— Threads correspond to user actions; can service
display during long-running computations.
— Multimedia, animations.

Why Threads Are A Bad Idea September 28, 1995, slide 4

12

CPSC 410/611 : Operating Systems

Threads

What's Wrong With Threads?

casual all programmers wizards

Visual Basic programmers
C programmers —
+«— C++ programmers —

“« >

Threads programmers

¢ Too hard for most programmers to use.

¢ Even for experts, development is painful.

Why Threads Are A Bad Idea September 28, 1995, slide 5

Why Threads Are Hard

¢ Synchronization:
— Must coordinate access to shared data with locks.

— Forget a lock? Corrupted data.

¢ Deadlock:
— Circular dependencies among locks.
— Each process waits for some other process: system

hangs.

thread 1—~ thread 2
N

Why Threads Are A Bad Idea September 28, 1995, slide 6

13

CPSC 410/611 : Operating Systems

Threads

Why Threads Are Hard. cont'd

¢ Hard to debug: data dependencies, timing dependencies.

¢ Threads break abstraction: can't design modules
independently.

¢ Callbacks don't work with locks.

T1 T2 1

T
| deadlock! | catts

Module A

deadlock!

Module B Module B
callbacks
sleep wakeup T2

Why Threads Are A Bad Idea September 28, 1995, slide 7

Why Threads Are Hard, cont'd

¢ Achieving good performance is hard:
— Simple locking (e.g. monitors) yields low concurrency.
— Fine-grain locking increases complexity, reduces
performance in normal case.

— OSes limit performance (scheduling, context switches).
A MThaunnds send wornll coeenen bl
¥ 11ITaud 1nuL ywceu auppux wwu.

— Hard to port threaded code (PCs? Macs?).
— Standard libraries not thread-safe.

— Kernel calls, window systems not multi-threaded.
— Few debugging tools (LockLint, debuggers?).

¢ Often don't want concurrency anyway (e.g. window
events).

Why Threads Are A Bad Idea September 28, 1995, slide 8

14

CPSC 410/611 : Operating Systems

Threads

Event-Driven Programming

4 One execution stream: no CPU
concurrency.

¢ Register interest in events
(callbacks).

¢ Event loop waits for events,
invokes handlers.

No preemption of event Event Handlers
handlers.

¢ Handlers generally short-lived.

Why Threads Are A Bad Idea September 28, 1995, slide 9

What Are Events Used For?

¢ Mostly GUIs:
— One handler for each event (press button, invoke menu

entry, etc.).

— Handler implements behavior (undo, delete file, etc.).

¢ Distributed systems:
— One handler for each source of input (socket, etc.).
— Handler processes incoming request, sends response.
— Event-driven I/O for I/O overlap.

Why Threads Are A Bad Idea September 28, 1995, slide 10

15

CPSC 410/611 : Operating Systems

Threads

Problems With Events

¢ Long-running handlers make application non-
responsive.
— Fork off subprocesses for long-running things (e.g.
multimedia), use events to find out when done.
— Break up handlers (e.g. event-driven I/O).

— Periodically call event loop in handler (reentrancy adds

LAl DVSL

complexity).

¢ Can't maintain local state across events (handler must
return).

¢ No CPU concurrency (not suitable for scientific apps).

¢ Event-driven I/O not always well supported (e.g. poor
write buffering).
Why Threads Are A Bad Idea September 28, 1995, slide 11

Events vs. Threads

¢ Events avoid concurrency as much as possible, threads
embrace:
— Easy to get started with events: no concurrency, no
preemption, no synchronization, no deadlock.
— Use complicated techniques only for unusual cases.
— With threads, even the simplest application faces the
full complexity.

¢ Debugging easier with events:
— Timing dependencies only related to events, not to
internal scheduling.
— Problems easier to track down: slow response to button

vs. corrupted memory.
Why Threads Are A Bad Idea September 28, 1993, slide 12

16

CPSC 410/611 : Operating Systems

Threads

Events vs. Threads, cont'd

¢ Events faster than threads on single CPU:
— No locking overheads.
— No context switching.

¢ Events more portable than threads.
¢ Threads provide true concurrency:
— Can have long-running stateful handlers without

freezes.
— Scalable performance on multiple CPUs.

Why Threads Are A Bad Idea September 28, 1995, slide 13

Should You Abandon Threads?

¢ No: important for high-end servers (e.g. databases).

¢ But, avoid threads wherever possible:

— Use events, not threads, for GUISs,
distributed systems, low-end servers.

— Only use threads where true CPU Event-Driven Handlers
concurrency is needed.

— Where threads needed, isolate usage H H H H H
in threaded application kernel: keep
most of code single-threaded. Threaded Kemel

Why Threads Are A Bad Idea September 28, 1993, slide 14

17

CPSC 410/611 : Operating Systems

Threads

Conclusions

¢ Concurrency is fundamentally hard; avoid whenever
possible.

¢ Threads more powerful than events, but power is
rarely needed.

¢ Threads much harder to program than events; for
experts only.

¢ Use events as primary development tool (both GUIs
and distributed systems).

¢ Use threads only for performance-critical kernels.

Why Threads Are A Bad Idea September 28, 1995, slide 15

A Dissenting Opinion (selected slides)

Why Events Are A Bad Idea

* (for high-concurrency servers)

Rob von Behren, Jeremy Condit and Eric Brewer
University of California at Berkeley
{jrvb,jcondit,brewer}@cs.berkeley.edu
http://capriccio.cs.berkeley.edu

A Talk HotOS 2003

18

CPSC 410/611 : Operating Systems

Threads

iThe Stage

= Highly concurrent applications
= Internet servers (Flash, Ninja, SEDA)
= Transaction processing databases

= Workload 1deal
= Operate “near the knee” Beak: some
= Avoid thrashing! resource at max

= What makes concurrency hard?

Performance

[] Race Conditions Overload: some
= Scalability (no O(n) operations) resource thrashing
= Scheduling & resource sensitivity Load (concurrent tasks)

= Inevitable overload
= Code complexity

iThe Debate

= Performance vs. Programmability
= Current threads pick one

= Events somewhat better
= Questions o ‘
= Threads vs. Events? £
= How do we get performance and g
o1 o Current Events
programmability? s

Performance

19

CPSC 410/611 : Operating Systems

= Observations

= Major concepts are analogous
= Program structure is similar

= Performance should be similar
= Given good implementations!

eb Servr *The Duality Argument

= General assumption: follow “good practices”

Threads Events
= Monitors = Event handler & queue
= Exported functions = Events accepted

= Call/return and fork/join = Send message / await reply

O u r POSItlon = Wait on condition variable | = Wait for new messages

= Thread-event duality still holds

= But threads are better anyway
= More natural to program
= Better fit with tools and hardware

= Compiler-runtime integration is key

= Recent arguments for events
= Lower runtime overhead
= Better live state management
= Inexpensive synchronization
= More flexible control flow
= Better scheduling and locality

= All true but...
= No /inherent problem with threads!
= Thread implementations can be improved

“But Events Are Better!”

Threads

20

CPSC 410/611 : Operating Systems

Threads

Runtime Overhead

» Criticism. Threads don't perform
well for high concurrency
= Response |
= Avoid O(n) operations
= Minimize context switch overhead
= Simple scalability test
= Slightly modified GNU Pth

= Thread-per-task vs.
single thread

= Same performance!

90000 =

30000 >

70000 o

Threaded Server m—
60000 =

50000 o Event-Based Server e

Requests / Second

40000 =

30000

" " " " "
1 10 100 1000 10000 100000 le=06

Concurrent Tasks

i Synchronization

w Criticism: Thread synchronization is heavyweight
= Response

= Cooperative multitasking works for threads, too!

= Also presents same problems
= Starvation & fairness
= Multiprocessors
= Unexpected blocking (page faults, etc.)

= Compiler support helps

21

CPSC 410/611 : Operating Systems

B iControI Flow

control flow

= Response

= Programmers use simple patterns
= Call / return

= Complicated patterns are unnatural
= Hard to understand
= Likely to cause bugs

= Criticism: Threads have restricted O

= Parallel calls m
= Pipelines

iScheduIing

» Criticism. Thread schedulers are too generic
= Can't use application-specific information

= Response

= 2D scheduling: task & program location
= Threads schedule based on task only
= Events schedule by location (e.g. SEDA)
Allows batching
Allows prediction for SRCT
= Threads can use 2D, too!
= Runtime system tracks current location
= Call graph allows prediction

Task

Threads

Threads

22

CPSC 410/611 : Operating Systems

$Our Big But...

= More natural programming model
= Control flow is more apparent
= Exception handling is easier
= State management is automatic
= Better fit with current tools & hardware
= Better existing infrastructure
= Allows better performance?

: * Control Flow

= Events obscure control flow
= For programmers and tools

Web Server

. I = |
thr Threads Events
thread_main(int sock) { CacheHandler(struct session *s) {
struct session s; pin(s);
accept_conn(sock, &s); if(lin_cache(s)) ReadFileHandler.enqueue(s);
read_request(&s); else ResponseHandler.enqueue(s);
pin_cache(&s); }
write_response(&s); RequestHandler(struct session *s) {
b unpin(&s); ...; CacheHandler.enqueue(s);
17 ¥
pir
pin_cache(struct session *s) { ExitHandlerr(struct session *s) {
pin(&s); ...; unpin(&s); free_session(s);
if(lin_cache(&s)) }
¥ read_file(&s); AcceptHandler(event e) {
I struct session *s = new_session(e);

RequestHandler.enqueue(s); }

Threads

23

CPSC 410/611 : Operating Systems

: * Exceptions

Exceptions complicate control flow
= Harder to understand program flow
= Cause bugs in cleanup code

Threads

thread_main(int sock) {
struct session s;
accept_conn(sock, &s);
if('read_request(&s))

return;

pin_cache(&s);
write_response(&s);
unpin(&s);

}

pin_cache(struct session *s) {
pin(&s);
if(lin_cache(&s))
read_file(&s);

Events

CacheHandler(struct session *s) {
pin(s);
if(lin_cache(s)) ReadFileHandler.enqueue(s);
else ResponseHandler.enqueue(s);
}
RequestHandler(struct session *s) {
...; ifC error) return; CacheHandler.enqueue(s);

¥

ExitHandlerr(struct session *s) {
...; unpin(&s); free_session(s);

}

AcceptHandler(event e) {
struct session *s = new_session(e);
RequestHandler.enqueue(s); }

Web Server

Management

B i State

Events require manual state management
Hard to know when to free
= Use GC or risk bugs

Threads

thread_main(int sock) {
struct session s;
accept_conn(sock, &s);
if(!read_request(&s))

return;

pin_cache(&s);
write_response(&s);
unpin(&s);

}

pin_cache(struct session *s) {
pin(&s);
if(lin_cache(&s))
read_file(&s);

Events
CacheHandler(struct session *s) {
pin(s);
if(lin_cache(s)) ReadFileHandler.enqueue(s);
else ResponseHandler.enqueue(s);

}
RequestHandler(struct session *s) {
...; if(error) return; CacheHandler.enqueue(s);

}

ExitHandlerr(struct session *s) {
...; unpin(&s); free_session(s);

AcceptHandler(event e) {
struct session *s = new_session(e);
RequestHandler.enqueue(s); }

Web Server

Threads

24

CPSC 410/611 : Operating Systems

Threads

—i Existing Infrastructure

= Lots of infrastructure for threads
= Debuggers
= Languages & compilers
= Consequences
= More amenable to analysis
= Less effort to get working systems

Better Performance?

= Function pointers & dynamic dispatch
= Limit compiler optimizations
= Hurt branch prediction & I-cache locality

= More context switches with events?
= Example: Haboob does 6x more than Knot
= Natural result of queues

= More investigation needed!

The Future:

— ¥ompiler-Runtime Integration™

= Insight
= Automate things event programmers do by hand
= Additional analysis for other things
= Specific targets
= Dynamic stack growth*
= Live state management
= Synchronization
= Scheduling*
= Improve performance and decrease comblexitv

Ease of Programming

Performance

25

CPSC 410/611 : Operating Systems

Threads

Event-Driven Programming in Practice:
Completion Ports

e Rationale:
- Minimize context switches by having threads avoid unnecessary
blocking.
- Maximize parallelism by using multiple threads.
- Ideally, have one thread actively servicing a request on every
processor.
- Do not block thread if there are additional requests waiting when
thread completes a request.
- The application must be able to activate another thread when current
thread blocks on I/0 (e.g. when it reads from a file)
e Resources:
- Inside I0 Completion Ports:
http://technet.microsoft.com/en-us/sysinternals/bb963891.aspx
- Multithreaded Asynchronous I/0 & I/O Completion Ports:
http://www.ddj.com/cpp/20120292
- Parallel Programming with C++ - I/O Completion Ports:
http://weblogs.asp.net/kennykerr/archive/2008/01/03/parallel-
programming-with-c-part-4-i-o-completion-ports.aspx

Completion Ports (CPs): Operation

Incoming client request

N

Completion Port

Threads blocked on the
Completion Port

® Whenever operations on files associated with CP’s
e Threads wait for outstanding I/0s to complete by

e Application specifies concurrency value associated
with CP.

e Whenever active thread finishes processing current
request, it checks for next packet at the port. (If
there is, grabs it without context switch.)

e Whenever a thread gets blocked, the number of
active threads drops below concurrency value, and
next thread can start.

complete, a completion packet is queued on the CP.

waiting for completion packets to be queued on CP.

26

CPSC 410/611 : Operating Systems

Threads

Basic Steps for Using Completion Ports

Create a new I/0 completion port object.
Associate one or more file descriptors with the port.
Issue asynchronous read/write operations on the file descriptor(s).

Retrieve completion notifications from the port and handle
accordingly.

N w -

Multiple threads may monitor a single I/0 completion port and
retrieve completion events—the operating system effectively manages
the thread pool, ensuring that the completion events are distributed
efficiently across threads in the pool.

Completion Ports: APIs:

CP creation and association of file descriptor with CP:
HANDLE CreateIoCompletionPort (

HANDLE FileHandle, /* INVALID.. when creating new CP*/
HANDLE ExistingCompletionPort, /* NULL when creating new CP */
DWORD CompletionKey, /* NULL when creating new CP */

DWORD NumberOfConcurrentThreads /* Concurrency value */

Initiating Asynchronous I/0 Request:
BOOL ReadFile (

HANDLE FileHandle,

LPVOID pBuffer,

DWORD NumberOfBytesToRead,
LPDWORD pNumberOfBytesRead,
LPOVERLAPPED pOverlapped /* specify parameters

and receive results */

27

CPSC 410/611 : Operating Systems

Threads

Completion Ports: APIs

(Remove and Post CP Events)

Retrieve next completion packet:
BOOL GetQueuedCompletionStatus (

HANDLE CompletionPort,
LPDWORD lpNumberOfBytesTransferred,
LPDWORD CompletionKey,

LPOVERLAPPED* ppOverlapped, /* pointer to pointer parameter to
asynch I/O function */
DWORD dwMillisecondTimeout

)

Generate completion packets (send implementation-specific events):
BOOL PostQueuedCompletionStatus (

HANDLE CompletionPort,
LPDWORD lpNumberOfBytesTransferred,
LPDWORD CompletionKey,

LPOVERLAPPED 1lpOverlapped

When CP event gets posted on a CP, one of the waiting threads returns from call
to GetQueuedCompletionStatus with copies of parameters as they were posted.

CP Example: Web Server: Startup

Tom R. Dial, "Multithreaded Asynchronous 1/0 & I/O Completion Ports,” Dr. Dobbs, Aug.2007)

/* Fire.cpp - The Fire Web Server

* Copyright (C) 2007 Tom R. Dial */

int main(int /*argc*/, char* /*argv*/[l) {
// Tnitialize the Microsoft Windows Sockets Library
WSADATA Wsa={0};
WSAStartup(MAKEWORD(2,2), &Wsa);
// Get the working directory; this is used when transmitting files back.
GetCurrentDirectory(_MAX_PATH, RootDirectory);
// Create an event to use to synchronize the shutdown process.
StopEvent = CreateEvent(O, FALSE, FALSE, 0);
// Setup a console control handler: We stop the server on CTRL-C
SetConsoleCtriHandler{ ConsoleCtriHandler, TRUE);

// Create a new 1/0 Completion port.
HANDLE IoPort = CreateloCompletionPort(INVALID_HANDLE_VALUE, O, 0, WORKER_THREAD_COUNT);

// Set up a socket on which to listen for new connections.

SOCKET Listener = WSASocket(PF_INET, SOCK_STREAM, IPPROTO_TCP, 0, 0, WSA_FLAG_OVERLAPPED);
struct sockaddr_in Addr={0};

Addr.sin_family = AF_INET;

Addr.sin_addr.S_un.S_addr = INADDR_ANY;

Addr.sin_port = htons(DEFAULT_PORT);

// Bind the listener to the local interface and set to listening state.

bind(Listener, (struct sockaddr*)&Addr, sizeof(struct sockaddr_in));

listen(Listener, DEFAULT_LISTEN_QUEUE_SIZE);

28

CPSC 410/611 : Operating Systems

Threads

CP Example: Web Server: Start Threads

// Create worker threads
HANDLE Workers[WORKER_THREAD_COUNT] = 0;
unsigned int WorkerIds[WORKER_THREAD_COUNT] = 0 ;

for (size_t i=0; ikWORKER_THREAD_COUNT; i++)
Workers[i] = (HANDLE)_beginthreadex(0, 0, WorkerProc, IoPort, 0, WorkerIds+i);

// Associate the Listener socket with the I/O Completion Port.
CreateloCompletionPort((HANDLE)Listener, IoPort, COMPLETION_KEY_IO, O);

// Allocate an array of connections; constructor binds them to the port.

Connection* Connections[MAX_CONCURRENT_CONNECTIONS]={0};

for (size_t i=0; i<MAX_CONCURRENT_CONNECTIONS; i++)
Connections[i] = new Connection(Listener, IoPort);

// Print instructions for stopping the server.

printf("Fire Web Server: Press CTRL-C To shut down.\n");
// Wait for the user to press CTRL-C...
WaitForSingleObject(StopEvent, INFINITE);

/™

CP Example: Web Server: Shutdown

// Deregister console control handler: We stop the server on CTRL-C
SetConsoleCtriHandler(NULL, FALSE);
// Post a quit completion message, one per worker thread.
for (size_t i=0; iKWORKER_THREAD_COUNT; i++)
PostQueuedCompletionStatus(IoPort, 0, COMPLETION_KEY_SHUTDOWN, O);
// Wait for all of the worker threads to terminate...
WoaitForMultipleObjects(WORKER_THREAD_COUNT, Workers, TRUE, INFINITE);
// Close worker thread handles.
for (size_t i=0; i<kWORKER_THREAD_COUNT; i++)
CloseHandle(Workers[i]);
// Close stop event.
CloseHandle(StopEvent);
// Shut down the listener socket and close the 1/0 port.
shutdown(Listener, SD_BOTH);
closesocket(Listener);
CloseHandle(IoPort);
// Delete connections.
for (size_t i=0; i<MAX_CONCURRENT_CONNECTIONS; i++)
delete(Connections[i]);
WSACleanup();
return O;

29

CPSC 410/611 : Operating Systems

Threads

CP Example: Web Server: Worker Threads

// Worker thread procedure.
unsigned int __stdcall WorkerProc(void* IoPort) {

for (::) {
BOOL Status =0;
DWORD NumTransferred = 0;
ULONG_PTR CompKey = COMPLETION_KEY_NONE;
LPOVERLAPPED pOver =0;

Status = GetQueuedCompletionStatus(reinterpret_cast<HANDLE>(IoPort),
&NumTransferred, &CompKey, &pOver, INFINITE);
Connection* pConn = reinterpret_cast<Connection*>(pOver);
if (FALSE == Status) {
// An error occurred; reset to a known state.
if (pConn) pConn->IssueReset();
} else if (COMPLETION_KEY_IO == CompKey) {
pConn->OnloComplete(NumTransferred);
} else if (COMPLETION_KEY_SHUTDOWN == CompKey) {
break;
}
}

return 0;

CP Example: Web Server: Connections

// Class representing a single connection.

class Connection : public OVERLAPPED {

enum STATE { WAIT_ACCEPT = 0, WAIT_REQUEST = 1,
WAIT_TRANSMIT = 2, WAIT_RESET = 3};

public:

Connection(SOCKET Listener, HANDLE IoPort) : myListener(Listener) {
myState = WAIT_ACCEPT;
/7 [.]
mySock = WSASocket(PF_INET, SOCK_STREAM, IPPROTO_TCP,
0, 0, WSA_FLAG_OVERLAPPED);
// Associate the client socket with the I/0O Completion Port.
CreateloCompletionPort(reinterpret_cast<HANDLE>(mySock),
IoPort, COMPLETION_KEY_IO, 0);
IssueAccept();
}
~Connection() {
shutdown(mySock, SD_BOTH);
closesocket(mySock);

30

CPSC 410/611 : Operating Systems

Threads

CP Example: Web Server: State Machines (I)

// ACCEPT OPERATION

// Issue an asynchronous accept.

void Connection::IssueAccept() §
myState = WAIT_ACCEPT;
DWORD ReceivelLen = 0; // This gets thrown away, but must be passed.
AcceptEx(myListener, mySock, myAddrBlock, O, ACCEPT_ADDRESS_LENGTH,
ACCEPT_ADDRESS_LENGTH, &ReceivelLen, (OVERLAPPED*)this);

// Complete the accept and update the client socket's context.

void Connection::CompleteAccept()
sefsockop’r(mySock, SOL_SOCKET, SO_UPDATE_ACCEPT_CONTEXT,
(char*)&myListener, sizeof(SOCKET));
// Transition to "reading request” state.
IssueRead();

CP Example: Web Server: State Machines (II)

// READ OPERATION

// Issue an asynchronous read operation.
void Connection::IssueRead(void) §

myState = WAIT_REQUEST;

ReadFile((HANDLE)mySock, myReadBuf, DEFAULT_READ_BUFFER_SIZE,
) 0, (OVERLAPPED*)this);

// Complete the read operation, appending the request with the latest data.
void Connection::CompleteRead(size_t NumBytesRead) {
/1]
// Has the client finished sending the request?
if (IsRequestComplete(NumBytesRead)) {
// Yes. Transmit the response.
IssueTransmit();
} else
// The client is not finished. If data was read this pass, we assume the connection
// is still good and read more. If not, we assume that the client closed the socket
// prematurely.
if (NumBytesRead) IssueRead();
else IssueReset();

31

CPSC 410/611 : Operating Systems

Threads

CP Example: Web Server: State Machines (III)

// Parse the request, and transmit the response.

void Connection::IssueTransmit() {
myState = WAIT_TRANSMIT;
// simplified parsing of the request: just ignore first token.
char* Method = strtok((&myRequest[0]), " “);

if (Method) {
IssueReset();
return;
}
// Parse second token, create file, transmit file ..
/7 1]
myFile = CreateFile(/* .. */) void Connection::IssueReset()
TransmitFile(mySock, myFile, { myState = WAIT_RESET;
Info.nFileSizeLow, O, this, TransmitFile(mySock, 0, O, O, this, O,
&myTransmitBuffers, 0); TF_DISCONNECT | TF_REUSE_SOCKET);
} }

void Connection::CompleteTransmit() {
// Issue the reset; this prepares the
// socket for reuse. ClearBuffers();
IssueReset(); IssueAccept(); // Continue to next request!

void Connection::CompleteReset(void)

CP Example: Web Server: Dispatching

// The main handler for the connection, responsible for state transitions.
void Connection::OnIoComplete(DWORD NumTransferred) {

switch (myState) {

case WAIT_ACCEPT:
CompleteAccept();
break;

case WAIT_REQUEST:
CompleteRead(NumTransferred);
break;

case WAIT_TRANSMIT:
CompleteTransmit();
break;

case WAIT_RESET:
CompleteReset();
break;

32

