
CPSC 410/611: Operating Systems

Virtual Memory 1

Virtual Memory!
•  Overview / Motivation !
•  Simple Approach: Overlays!
•  Locality of Reference!
•  Demand Paging !
•  Policies!

–  Placement !
–  Replacement !
–  Allocation !

•  Case Studies: Unix SystemV !

•  Reading: Silberschatz, Chapter 9 !

Process 2 !
AA
BB
CC
DD
EE
FF
GG

0
1
2
3
4
5
6

HH 7 logical
memory

1 v 0
9 v 1

i 2
i 3
i 4
i 5
i 6
i 7

page
table

Demand Paging !

•  “Lazy Swapper”: only swap in pages that are needed.!
•  Whenever CPU tries to access a page that is not swapped in, a page

fault occurs. !

Process 1 !
A
B
C
D
E
F
G

0
1
2
3
4
5
6

H 7 logical
memory

4 v 0
i 1

10 v 2
i 3
i 4

8 v 5
i 6
i 7

page
table

1

6
7

2
3
4
5

0

8
9

10
11
12

physical memory

backing store

AA BB CC DD

A B

C D E F

A

F

C

AA

BB

CPSC 410/611: Operating Systems

Virtual Memory 2

Mechanics of a Memory Reference!

CPU v

page table

OS

some
frame

physical memory

reference
1

complete
reference

3
2

access
memory

Mechanics of a Page Fault !

CPU i

page table

OS

free
frame

physical memory

reference
1

exception! 2

page is on backing store

3

load page

4

update page table
5

restart
instruction

6
v

frame
used

CPSC 410/611: Operating Systems

Virtual Memory 3

Locality of Reference!
•  Page faults are expensive! !
•  Thrashing: Process spends most of the time paging in

and out instead of executing code. !
•  Most programs display a pattern of behavior called the

principle of locality of reference.!

A program that references a location n at some
point in time is likely to reference the same

location n and locations in the immediate
vicinity of n in the near future.

Locality of Reference!

Memory Access Trace!

CPSC 410/611: Operating Systems

Virtual Memory 4

Architectural Considerations!
•  Must be able to restart any instruction after a page

fault.!
•  e.g.!

ADD A,B TO C
•  What about operations that modify several locations in

memory?!
–  e.g. block copy operations?!

•  What about operations with side effects?!
–  e.g. PDP-11, 80x86 auto-decrement, auto-increment

operations?!
–  Add mechanism for OS to “undo” instructions. !

Performance of Demand Paging !
•  Effective Memory Access time ema: !

ema = (1-p) * ma + p * “page fault time”!
•  where!

–  p = probability of a page fault !
–  ma = memory access time!

•  Operations during Page Fault: !

CPU i

page table

OS

free
frame

reference

restart
instruction

trap

page is on backing store

load page update page table

1. service page fault
interrupt

2. swap in page
3. restart process

CPSC 410/611: Operating Systems

Virtual Memory 5

OS Policies for Virtual Memory!
•  Fetch Policy!

–  How/when to get pages into physical memory. !
–  demand paging vs. prepaging.!

•  Placement Policy!
–  Where in physical memory to put pages.!
–  Only relevant in NUMA machines.!

•  Replacement Policy!
–  Physical memory is full. Which frame to page out?!

•  Resident Set Management Policy!
–  How many frames to allocate to process?!
–  Replace someone elses frame?!

•  Cleaning Policy!
–  When to write a modified page to disk.!

•  Load Control!

Configuring the Win2k Memory Manager!
•  Registry Values that Affect the Memory Manager: !

ClearPageFileAtShutdown

DisablePagingExecutive

IoPageLockLimit

LargePageMinimum

LargeSystemCache

NonPagedPoolQuota

NonPagedPoolSize

PagedPoolQuota

PagedPoolSize

SystemPages

CPSC 410/611: Operating Systems

Virtual Memory 6

Page Replacement !
•  Virtual memory allows higher degrees of multiprogramming by

over-allocating memory.!

1024kB

256kB 256kB 256kB 256kB 256kB

K
L
M
N

0
1
2
3

2 v 0
4 v 1

i 2
0 v 3

K 2
A 3

N 0
C 1

L 4
D 5

M

B A
B
C
D

0
1
2
3

3 v 0
i 1

1 v 2
5 v 3

address !
space 1 !

address !
space 2 !

page tables! frame table! paging store !

Mechanics of Page Replacement !
•  Invoked whenever no free frame can be found.!

•  Problem: Need two page transfers

vict.frame f v

nil i

victim

page table

physical memory
backing store

3

5

2

4

swap
out
victim
page

swap
in new
page

invalidate
entry for
victim page

update
entry for
new page

1

select
victim
frame

i

v f

Solution: Dirty bit.

c

d

CPSC 410/611: Operating Systems

Virtual Memory 7

Page Replacement Algorithms!
•  Objective: Minimize page fault rate.!
•  Why bother?!

•  Example!

for(int i=0; i<10; i++) {
 a = x * a;
}

•  Evaluation: Sequence of memory references: reference string.!

a

x

i

FIFO Page Replacement !

f v/i

nil/f i/v

victim

page table

physical memory
backing store

3

5

2

4

swap
out
victim
page

swap
in new
page

invalidate
entry for
victim page

update
entry for
new page

FIFO queue
select
victim

1
6

enter frame in
FIFO queue

CPSC 410/611: Operating Systems

Virtual Memory 8

FIFO Page Replacement (cont.)!
•  Example: !

time

reference
string

frames a

b

c

d

1

c

2

a

3

d

4

b

a

b

c

d

5

e

e

b

c

d

6

b

e

b

c

d

7

a

e

a

c

d

8

b

e

a

b

d

9

c

e

a

b

c

10

d

d

a

b

c

a

b

c

d

a

b

c

d

a

b

c

d

! ! ! ! !

•  Advantage: simplicity
•  Disadvantage: Assumes that pages residing the longest in

memory are the least likely to be referenced in the future
(does not exploit principle of locality).

•  Algorithm with lowest page fault rate of all algorithms: !

•  Example: !

Replace that page which will not be used !
for the longest period of time (in the future).!

Optimal Replacement Algorithm!

time

reference
string

frames a

b

c

d

1

c

2

a

3

d

4

b

a

b

c

d

5

e

a

b

c

e

6

b

a

b

c

e

7

a

a

b

c

e

8

b

a

b

c

e

9

c

a

b

c

e

10

d

d

b

c

e

a

b

c

d

a

b

c

d

a

b

c

d

! !

CPSC 410/611: Operating Systems

Virtual Memory 9

Approximation to Optimal: LRU !
•  Least Recently Used: replace the page that has not been

accessed for longest period of time (in the past).!

•  Example: !

time

reference
string

frames a

b

c

d

1

c

2

a

3

d

4

b

a

b

c

d

5

e

a

b

e

d

6

b

a

b

e

d

7

a

a

b

e

d

8

b

a

b

e

d

9

c

a

b

e

c

10

d

a

b

d

c

a

b

c

d

a

b

c

d

a

b

c

d

! ! !

LRU: Implementation !
•  Need to keep chronological history of page references; need to be

reordered upon each reference.!
•  Stack: !

•  Capacitors: Associate a capacitor with each memory frame. Capacitor is charged
with every reference to the frame. The subsequent exponential decay of the
charge can be directly converted into a time interval.!

•  Aging registers: Associate aging register of n bits (Rn-1, ..., R0) with each frame
in memory. Set Rn-1 to 1 for each reference. Periodically shift registers to the
right.!

stack ?

?

?

?

b

d

a

c

e

b

d

a

b

e

d

a

a

b

e

d

b

a

e

d

c

b

a

e

d

c

b

a

c

?

?

?

a

c

?

?

d

a

c

?

CPSC 410/611: Operating Systems

Virtual Memory 10

Approximation to LRU: Clock Algorithm!
•  Associate a use_bit with every frame in memory.!

–  Upon each reference, set use_bit to 1.!
–  Keep a pointer to first “victim candidate” page.!
–  To select victim: If current frame’s use_bit is 0, select

frame and increment pointer. Otherwise delete use_bit and
increment pointer. !

time

reference
string

frames a/1

b/1

c/1

d/1

1

c

2

a

3

d

4

b

5

e

6

b

7

a

8

b

9

c

10

d

! ! !

a/1

b/1

c/1

d/1

a/1

b/1

c/1

d/1

a/1

b/1

c/1

d/1

a/1

b/1

c/1

d/1

e/1

b/0

c/0

d/0

e/1

b/1

c/0

d/0

e/1

b/0

a/1

d/0

e/1

b/1

a/1

d/0

e/1

b/1

a/1

c/1

d/1

b/0

a/0

c/0

!

Improvement on Clock Algorithm !
(Second Chance Algorithm)!

•  Consider read/write activity of page: dirty_bit (or modify_bit)!
•  Algorithm same as clock algorithm, except that we scan for

frame with both use_bit and dirty_bit equal to 0.!
•  Each time the pointer advances, the use_bit and dirty_bit are

updated as follows: !

•  Called Second Chance because a frame that has been written to
is not removed until two full scans of the list later.!

•  Note: Stallings describes a slightly different algorithm! !

ud! ud! ud! ud!
before! 11 ! 10 ! 01 ! 00 !
after! 01 ! 00 ! 00* ! (select)!

CPSC 410/611: Operating Systems

Virtual Memory 11

Improved Clock (cont)!
•  Example: !

time

reference
string

frames a/10

b/10

c/10

d/10

1

c

2

aw

3

d

4

bw

5

e

6

b

7

aw

8

b

9

c

10

d

a/10

b/10

c/10

d/10

a/11

b/10

c/10

d/10

a/11

b/10

c/10

d/10

a/11

b/11

c/10

d/10

a/00*

b/00*

e/10

d/00

a/00*

b/10*

e/10

d/00

a/11

b/10*

e/10

d/00

a/11

b/10*

e/10

d/00

a/11

b/10*

e/10

c/10
! ! !

The Macintosh VM Scheme (see Stallings)!
•  Uses use_bit and modify_bit.!

•  Step 1: Scan the frame buffer. Select first frame with use_bit
and modify_bit cleared.!

•  Step 2: If Step 1 fails, scan frame buffer for frame with use_bit
cleared and modify_bit set. During scan, clear use_bit on each
bypassed frame.!

•  Now all use_bit’s are cleared. Repeat Step 1 and, if necessary,
Step 2.!

CPSC 410/611: Operating Systems

Virtual Memory 12

The Macintosh Scheme (cont)!

•  Example: !

time

reference
string

frames a/10

b/10

c/10

d/10

1

c

2

aw

3

d

4

bw

5

e

6

b

7

aw

8

b

9

c

10

d

a/10

b/10

c/10

d/10

a/11

b/10

c/10

d/10

a/11

b/10

c/10

d/10

a/11

b/11

c/10

d/10

a/01

b/01

e/10

d/00

a/01

b/11

e/10

d/00

a/11

b/11

e/10

d/00

a/11

b/11

e/10

d/00

a/11

b/11

e/10

c/10
! ! !

Resident Set Management !
•  Local vs. Global replacement policy: !

–  The page to be replaced is selected from the
resident set of pages of the faulting process. (local)!

–  The page to be replaced may belong to any of the
processes in memory.!

•  Each program requires a certain minimum set of pages
to be resident in memory to run efficiently. !

•  The size of this set changes dynamically as a program
executes.!

•  This leads to algorithms that attempt to maintain an
optimal resident set for each active program. (Page
replacement with variable number of frames.)!

CPSC 410/611: Operating Systems

Virtual Memory 13

The Working Set Model!
•  Working Set W(t,!) : set of pages referenced by process during

time interval (t-!, t) !

•  The storage management strategy follows two rules: !
–  At each reference, the current working set is determined and

only those pages belonging to the working set are retained in
memory.!

–  A program may run only if its entire current working set is in
memory.!

•  Underlying Assumption: cardinality of working set remains constant
over small time intervals.!

Working Set Model (cont.)!
•  Example: (! = 4) !

time

reference
string

working
set

1

c

2

c

3

d

4

b

5

c

6

e

7

c

8

e

9

a

10

d

•  Problems:
•  Difficulty in keeping track of working set.
•  Estimation of appropriate window size !.

a d e

e

d

e

a

d

e

a

c

d

a

c

d

a

c

d

b

c

d

b

c

d

b

c

d

e

b

c

e

c

e

a

c

e

a

c

d

e e
! ! ! ! !

CPSC 410/611: Operating Systems

Virtual Memory 14

Improve Paging Performance: Page Buffering !

•  Victim frames are not overwritten directly, but are
removed from page table of process, and put into: !
–  free frame list (clean frames)!
– modified frame list (modified frames)!

•  Victims are picked from the free frame list in FIFO
order.!

•  If referenced page is in free or modified list, simply
reclaim it.!

•  Periodically (or when running out of free frames) write
modified frame list to disk.!

Page Buffering and Page Stealer!
•  Kernel process (e.g., pageout in Solaris) swaps out memory frames that

are no longer part of a working set of a process.!
•  Periodically increments age field in valid pages.!

page out
of memory

1 2 3 4 page in
memory

n

•  Page stealer wakes up when available free memory is below low-water
mark. Swaps out frames until available free memory exceeds high-
water mark.

•  Page stealer collects frames to swap and swaps them out in a single
run. Until then, frames still available for reference.

page referenced

age page ... not referenced

ready to
swap out

swap out swap in

CPSC 410/611: Operating Systems

Virtual Memory 15

Implementation of Demand Paging !
in UNIX SVR4!

frame address! age! cp/wrt ! mod! ref ! val ! prot !

page table entry!

swap!
dev! block num! type (swap,file, !

fill 0, demand fill)!

disk block descriptor!

page state! ref count ! logical device!

frame table
entry!

block number! pfdata pointer!

Linux Frame Table!
•  Every"page"is"represented"by:"!
struct"page { !

ulong" flags; # #// dirty, locked, etc.!
atomic_t" count; # #// reference counter!
struct"list_head" list; !
struct"AS" *mapping; #// address space associated with page !
ulong" index; !
struct"list_head lru; !
(pte)!
(private)!
void"* virtual; " # #// virtual"address"(could"be"null)!
/* … etc. */!

} !

CPSC 410/611: Operating Systems

Virtual Memory 16

Demand Paging on !
Less-Sophisticated Hardware !

•  Demand paging most efficient if hardware sets the reference and dirty
bits and causes a protection fault when a process writes a page whose
copy_on_write bit is set.!

•  Can duplicate valid bit by a software-valid bit and have the kernel turn
off the valid bit. The other bits can then be simulated in software.!

•  Example: Reference Bit: !
–  If process references a page, it incurs a page fault because valid bit

is off. Page fault handler then checks software-valid bit. !
–  If set, kernel knows that page is really valid and can set software-

reference bit. !

Off!

Hardware!
Valid!

On !

Software!
Valid!

Off!

Software!
Reference!

On !

Hardware!
Valid!

On !

Software!
Valid!

On !

Software!
Reference!

before referencing page! after referencing page!

fork() System Call in Paging Systems!
•  Naive: fork() makes a physical copy of parent address

space. However, fork() mostly followed by an exec()
call, which overwrites the address space. !

•  System V: Use copy_on_write bit: !
–  During fork() system call, all copy_on_write bits of

pages of process are turned on. If either process writes to
the page, incurs protection fault, and, in handling the fault,
kernel makes a new copy of the page for the faulting
process.!

•  BSD: Offers vfork() system call, which does not copy
address space. Tricky! (May corrupt process memory.)!

