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Virtual Memory!
•  Overview / Motivation !
•  Simple Approach: Overlays!
•  Locality of Reference!
•  Demand Paging !
•  Policies!

–  Placement !
–  Replacement !
–  Allocation !

•  Case Studies: Unix SystemV !

•  Reading: Silberschatz, Chapter 9 !
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Demand Paging !

•  “Lazy Swapper”: only swap in pages that are needed.!
•  Whenever CPU tries to access a page that is not swapped in, a page 

fault occurs. !
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Mechanics of a Memory Reference!
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Mechanics of a Page Fault !
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Locality of Reference!
•  Page faults are expensive! !
•  Thrashing: Process spends most of the time paging in 

and out instead of executing code. !
•  Most programs display a pattern of behavior called the 

principle of locality of reference.!

A program that references a location n at some  
point in time is likely to reference the same  

location n and locations in the immediate  
vicinity of n in the near future. 

Locality of Reference!

Memory Access Trace!
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Architectural Considerations!
•  Must be able to restart any instruction after a page 

fault.!
•  e.g.!

ADD A,B TO C 
•  What about operations that modify several locations in 

memory?!
–  e.g. block copy operations?!

•  What about operations with side effects?!
–  e.g. PDP-11, 80x86 auto-decrement, auto-increment 

operations?!
–  Add mechanism for OS to “undo” instructions. !

Performance of Demand Paging !
•  Effective Memory Access time ema: !

ema = (1-p) * ma + p * “page fault time”!
•  where!

–  p = probability of a page fault !
–  ma = memory access time!

•  Operations during Page Fault: !
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OS Policies for Virtual Memory!
•  Fetch Policy!

–  How/when to get pages into physical memory. !
–  demand paging vs. prepaging.!

•  Placement Policy!
–  Where in physical memory to put pages.!
–  Only relevant in NUMA machines.!

•  Replacement Policy!
–  Physical memory is full.  Which frame to page out?!

•  Resident Set Management Policy!
–  How many frames to allocate to process?!
–  Replace someone elses frame?!

•  Cleaning Policy!
–  When to write a modified page to disk.!

•  Load Control!

Configuring the Win2k Memory Manager!
•  Registry Values that Affect the Memory Manager: !

ClearPageFileAtShutdown 

DisablePagingExecutive 

IoPageLockLimit 

LargePageMinimum 

LargeSystemCache 

NonPagedPoolQuota 

NonPagedPoolSize 

PagedPoolQuota 

PagedPoolSize 

SystemPages 
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Page Replacement !
•  Virtual memory allows higher degrees of multiprogramming by 

over-allocating memory.!
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Mechanics of Page Replacement !
•  Invoked whenever no free frame can be found.!

•  Problem:  Need two page transfers 
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Page Replacement Algorithms!
•  Objective:  Minimize page fault rate.!
•  Why bother?!

•  Example!

for(int i=0; i<10; i++) { 
  a = x * a; 
} 

•  Evaluation: Sequence of memory references: reference string.!
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FIFO Page Replacement !
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FIFO Page Replacement (cont.)!
•  Example: !
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! ! ! ! ! 

•  Advantage: simplicity 
•  Disadvantage: Assumes that pages residing the longest in 

memory are the least likely to be referenced in the future 
(does not exploit principle of locality). 

•  Algorithm with lowest page fault rate of all algorithms: !

•  Example: !

Replace that page which will not be used !
for the longest period of time (in the future).!

Optimal Replacement Algorithm!
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Approximation to Optimal: LRU !
•  Least Recently Used:  replace the page that has not been 

accessed for longest period of time (in the past).!

•  Example: !
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! ! ! 

LRU: Implementation !
•  Need to keep chronological history of page references; need to be 

reordered upon each reference.!
•  Stack: !

•  Capacitors: Associate a capacitor with each memory frame.  Capacitor is charged 
with every reference to the frame.  The subsequent exponential decay of the 
charge can be directly converted into a time interval.!

•  Aging registers:  Associate aging register of n bits (Rn-1, ..., R0) with each frame 
in memory.  Set Rn-1 to 1 for each reference.  Periodically shift registers to the 
right.!
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Approximation to LRU: Clock Algorithm!
•  Associate a use_bit with every frame in memory.!

–  Upon each reference, set use_bit to 1.!
–  Keep a pointer to first “victim candidate” page.!
–  To select victim: If current frame’s use_bit is 0, select 

frame and increment pointer.  Otherwise delete use_bit and 
increment pointer. !
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! 

Improvement on Clock Algorithm !
(Second Chance Algorithm)!

•  Consider read/write activity of page: dirty_bit (or modify_bit)!
•  Algorithm same as clock algorithm, except that we scan for 

frame with both use_bit and dirty_bit equal to 0.!
•  Each time the pointer advances, the use_bit and dirty_bit are 

updated as follows: !

•  Called Second Chance because a frame that has been written to 
is not removed until two full scans of the list later.!

•  Note: Stallings describes a slightly different algorithm! !

ud! ud! ud! ud!
before! 11 ! 10 ! 01 ! 00 !
after! 01 ! 00 ! 00* ! (select)!
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Improved Clock (cont)!
•  Example: !
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! ! ! 

The Macintosh VM Scheme (see Stallings)!
•  Uses use_bit and modify_bit.!

•  Step 1: Scan the frame buffer.  Select first frame with use_bit 
and modify_bit cleared.!

•  Step 2: If Step 1 fails, scan frame buffer for frame with use_bit 
cleared and modify_bit set.  During scan, clear use_bit on each 
bypassed frame.!

•  Now all use_bit’s are cleared.  Repeat Step 1 and, if necessary, 
Step 2.!
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The Macintosh Scheme (cont)!

•  Example: !
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! ! ! 

Resident Set Management !
•  Local vs. Global replacement policy: !

–  The page to be replaced is selected from the 
resident set of pages of the faulting process. (local)!

–  The page to be replaced may belong to any of the 
processes in memory.!

•  Each program requires a certain minimum set of pages 
to be resident in memory to run efficiently. !

•  The size of this set changes dynamically as a program 
executes.!

•  This leads to algorithms that attempt to maintain an 
optimal resident set for each active program. (Page 
replacement with variable number of frames.)!
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The Working Set Model!
•  Working Set W(t,!) : set of pages referenced by process during 

time interval (t-!, t) !

•  The storage management strategy follows two rules: !
–  At each reference, the current working set is determined and 

only those pages belonging to the working set are retained in 
memory.!

–  A program may run only if its entire current working set is in 
memory.!

•  Underlying Assumption: cardinality of working set remains constant 
over small time intervals.!

Working Set Model (cont.)!
•  Example:  (! = 4) !

time 

reference 
string 

working 
set 

1 

c 

2 

c 

3 

d 

4 

b 

5 

c 

6 

e 

7 

c 

8 

e 

9 

a 

10 

d 

•  Problems: 
•  Difficulty in keeping track of working set. 
•  Estimation of appropriate window size !. 
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Improve Paging Performance: Page Buffering !

•  Victim frames are not overwritten directly, but are 
removed from page table of process, and put into: !
–  free frame list (clean frames)!
– modified frame list (modified frames)!

•  Victims are picked from the free frame list in FIFO 
order.!

•  If referenced page is in free or modified list, simply 
reclaim it.!

•  Periodically (or when running out of free frames) write 
modified frame list to disk.!

Page Buffering and Page Stealer!
•  Kernel process (e.g., pageout in Solaris) swaps out memory frames that 

are no longer part of a working set of a process.!
•  Periodically increments age field in valid pages.!

page out  
of memory 

1 2 3 4 page in 
memory 

n 

•  Page stealer wakes up when available free memory is below low-water 
mark. Swaps out frames until available free memory exceeds high-
water mark. 

•  Page stealer collects frames to swap and swaps them out in a single 
run.  Until then, frames still available for reference. 

page referenced 

age page ... not referenced 

ready to  
swap out 

swap out swap in 
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Implementation of Demand Paging !
in UNIX SVR4!

frame address! age! cp/wrt ! mod! ref ! val ! prot !

page table entry!

swap!
dev! block num! type (swap,file, !

fill 0, demand fill)!

disk block descriptor!

page state! ref count ! logical device!

frame table 
entry!

block number! pfdata pointer!

Linux Frame Table!
•  Every"page"is"represented"by:"!
struct"page { !

ulong" flags; # #// dirty, locked, etc.!
atomic_t" count; # #// reference counter!
struct"list_head" list; !
struct"AS" *mapping; #// address space associated with page !
ulong" index; !
struct"list_head lru; !
(pte)!
(private)!
void"* virtual; " # #// virtual"address"(could"be"null)!
/* … etc. */!

} !
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Demand Paging on !
Less-Sophisticated Hardware !

•  Demand paging most efficient if hardware sets the reference and dirty 
bits and causes a protection fault when a process writes a page whose 
copy_on_write bit is set.!

•  Can duplicate valid bit by a software-valid bit and have the kernel turn 
off the valid bit. The other bits can then be simulated in software.!

•  Example: Reference Bit: !
–  If process references a page, it incurs a page fault because valid bit 

is off.  Page fault handler then checks software-valid bit.  !
–  If set, kernel knows that page is really valid and can set software-

reference bit. !

Off!

Hardware!
Valid!

On !

Software!
Valid!

Off!

Software!
Reference!

On !

Hardware!
Valid!

On !

Software!
Valid!

On !

Software!
Reference!

before referencing page! after referencing page!

fork() System Call in Paging Systems!
•  Naive:  fork() makes a physical copy of parent address 

space.  However, fork()  mostly followed by an exec() 
call, which overwrites the address space. !

•  System V:  Use copy_on_write bit: !
–  During fork() system call, all copy_on_write bits of 

pages of process are turned on.  If either process writes to 
the page, incurs protection fault, and, in handling the fault, 
kernel makes a new copy of the page for the faulting 
process.!

•  BSD: Offers  vfork() system call, which does not copy 
address space. Tricky! (May corrupt process memory.)!


