CPSC 410/611: Operating Systems

Virtual Memory

Virtual Memory

Overview / Motivation
Simple Approach: Overlays
Locality of Reference
Demand Paging

Policies

- Placement

- Replacement

- Allocation

Case Studies: Unix SystemV

Reading: Silberschatz, Chapter 9

Demand Paging

0
Process 2 page 1 I:
0| AA table 5 s T
0 N
188 | 3
el HH 2 e8] [cd o
P 1 5
o e my cEH OO@[E
— i
s | EHE] 7 [e][o][e] [F]
| =
2| ¢ ey —U 8 [TF 11000
3| D 3 i IH | logical 9 e
4 E ‘5‘ = \c, memory 10 g
N~
5| F 6 1
6| 6 7 : 12 backing store
7_H |logical physical memory
memory

“Lazy Swapper”: only swap in pages that are needed.

Whenever CPU tries to access a page that is not swapped in, a page
fault occurs.

CPSC 410/611: Operating Systems

Virtual Memory

Mechanics of a Memory Reference

0s
reference
1
cPU ~ [v
C3> page table
complete acces. 5@)
reference memory
some
frame
physical memory
Mechanics of a Page Fault
page is on backing store
©)
0os 2/
exception! O
reference
O—
CPU v
6
‘_rg';ar'r L/
instructi
page table
N frame ©
&) used
update page table load page

physical memory

CPSC 410/611: Operating Systems

Virtual Memory

Locality of Reference

e Page faults are expensive!

e Thrashing: Process spends most of the time paging in
and out instead of executing code.

e Most programs display a pattern of behavior called the
principle of locality of reference.

Locality of Reference

A program that references a location n at some
point in time is likely to reference the same
location n and locations in the immediate
vicinity of nin the near future.

Memory Access Trace

038 AuMbers.

CPSC 410/611: Operating Systems

Architectural Considerations

® Must be able to restart any instruction after a page
fault.

® eg.
ADD A,B TO C

e What about operations that modify several locations in
memory?

- e.g. block copy operations?
e What about operations with side effects?

- e.g. PDP-11, 80x86 auto-decrement, auto-increment
operations?

- Add mechanism for OS to “undo” instructions.

Performance of Demand Paging

e Effective Memory Access time ema:
ema = (I-p) * ma + p * ‘page fault time”
e where
- p = probability of a page fault
- ma = memory access time
e Operations during Page Fault:

page is on backing store

0s)
trap 1. service page fault
interrupt
reference .
cPU | 0 2. swap in page
restart 4 3. restart process

instru ﬁo'bage table

free

m
update page tabjle e load page

Virtual Memory

CPSC 410/611: Operating Systems

Virtual Memory

OS Policies for Virtual Memory

e Fetch Policy
- How/when to get pages into physical memory.
- demand paging vs. prepaging.
e Placement Policy
- Where in physical memory to put pages.
- Only relevant in NUMA machines.
e Replacement Policy
- Physical memory is full. Which frame to page out?
¢ Resident Set Management Policy
- How many frames to allocate to process?
- Replace someone elses frame?
e Cleaning Policy
- When to write a modified page to disk.
e Load Control

Configuring the Win2k Memory Manager

e Registry Values that Affect the Memory Manager:

ClearPageFileAtShutdown
DisablePagingExecutive
IoPageLockLimit
LargePageMinimum
LargeSystemCache
NonPagedPoolQuota
NonPagedPoolSize
PagedPoolQuota
PagedPoolSize
SystemPages

CPSC 410/611: Operating Systems

Virtual Memory

Page Replacement

e Virtual memory allows higher degrees of multiprogramming by
over-dllocating memory.

| 256kB | | 256kB | | 256kB | | 256kB | | 256kB |
e
| 1024kB |
SR —
address ; L é 4 ‘|’ o N
space 1 M 370 Tv 1l ¢
LN 2«
o A ? 3 v 3 A
address 1| B 21 \‘, AL
space 2 2| C 35 |v 5L D ~
3LD page tables frame fable paging store

Mechanics of Page Replacement

e Invoked whenever no free frame can be found.

select swap T

victim T/Z:rﬁm M~

invalidate frame e
vict.frame f| i | d @ entry for @ @ r

victim page I D

victim

\
— [
update
f v]c|® entry for @ Is,;”;’ZW
new page page —
page table

backing store
physical memory

+ Problem: Need two page transfers
Solution: Dirty bit.

CPSC 410/611: Operating Systems

Virtual Memory

Page Replacement Algorithms

e Objective: Minimize page fault rate.
e Why bother?

e Example

for (int i=0; i<10; i++) {

a =X

}

* a;

e Evaluation: Sequence of memory references: reference string.

FIFO Page Replacement

enter frame in
FIFO queue

FIFO queue

O]

f v/i
— nil/f_|i/v
page table

invalidate
entry for
victim page

update
entry for
new page

victim

swap
out

@ victim

page

physical memory

@ select

victim

e
A

[

— [

~_

backing store

CPSC 410/611: Operating Systems

FIFO Page Replacement (cont.)

e Example:
time 1123456l 7]8]9]10
reference cla|ld]|ble|bla]b|c]|d
string

frames o] [a] |a| o] [a] [e][e] || |e] [e] [4]
o| {e) o] [e] [e] [e] [<] <] [o] [o] o]

[d] [a] [a] [a] [a] [a] [a] [a] [a] [¢] [c]

! P

 Advantage: simplicity
Disadvantage: Assumes that pages residing the longest in
memory are the least likely to be referenced in the future
(does not exploit principle of locality).

Optimal Replacement Algorithm

e Algorithm with lowest page fault rate of all algorithms:

Replace that page which will not be used
for the longest period of time (in the future).

e Example:
time 123456 7]8]9]10
reference clald|ble|lbla|b]|c]|d
string

frames a| o] [a] |a| [a] [a] [a] || [a] [a] 4]
! !

Virtual Memory

CPSC 410/611: Operating Systems

Virtual Memory

Approximation to Optimal: LRU

e |east Recently Used: replace the page that has not been
accessed for longest period of time (in the past).

e Example:
time 123|456 7]8]9]10
ref_erence cla|ld|ble|b]la|b|c|d
string

frames Ja| Jal|a|lal|a]la||a][a]]a}|a]|a
o) Lol Ll o] fe] [e] [e] fe) o] {e] [4]

(] Lo [a] [a] [a] [a] [a] [a] [a] [c] []

! ! !

LRU: Implementation

e Need to Keep chronological history of page references; need to be

reordered upon each reference.
b le| o] a] [o] o]]d]
[[o] [e] [o] [a] o]
(] [a] [a] [a] [e] [o]

e Stack:

e Capacitors: Associate a capacitor with each memory frame. Capacitor is charged
with every reference to the frame. The subsequent exponential decay of the
charge can be directly converted into a time interval.

e Aging registers: Associate aging register of n bits (R, ..., R,) with each frame
in memory. Set R, to 1 for each reference. Periodically shift registers to the
right.

stack

CPSC 410/611: Operating Systems

Virtual Memory

Approximation to LRU: Clock Algorithm

e Associate a use_bit with every frame in memory.

- Upon each reference, set use_bit to 1.
- Keep a pointer to first “victim candidate” page.

- To select victim: If current frame’s use_bit is O, select
frame and increment pointer. Otherwise delete use_bit and
increment pointer.

time vl 20 3]l4lls|lell7] 8] 9]0
reference c a d b e b a b c d
string

Improvement on Clock Algorithm
(Second Chance Algorithm)

Consider read/write activity of page: dirty_bit (or modify_bit)
Algorithm same as clock algorithm, except that we scan for
frame with both use_bit and dirty_bit equal to O.

Each time the pointer advances, the use_bit and dirty_bit are
updated as follows:

ud ud ud ud
before 11 10 01 00
after o1 00 00* (select)

Called Second Chance because a frame that has been written to
is not removed until two full scans of the list later.

Note: Stallings describes a slightly different algorithm!

10

CPSC 410/611: Operating Systems

Virtual Memory

Improved Clock (cont)

e Example:

time 1 2 3 4 5 6 7 8 9|10
ref.erence c av d b¥ e b av b c d
string

frames |a/10| [a/10] |a/11| [a/11] [a/11] [a/00%| |2/00%| [a/11| |a/11]| |a/11

b/10| [b/10| [b/10| |b/10| |b/11] [b/00*| [b/10%| [b/10% |b/10%| [b/10

c/10| |c/10| |c/10] |c/10| |[c/10| |e/10]| |e/10| |e/10| |e/10| [e/10

d/10| |d/10| |d/10| {d/10| [d/10| |d/00] |d/00| [d/00| |d/00] |c/10

The Macintosh VM Scheme (see Stallings)

e Uses use_bit and modify_bit.

e Step 1: Scan the frame buffer. Select first frame with use_bit

and modify_bit cleared.

e Step 2: If Step 1 fails, scan frame buffer for frame with use_bit

cleared and modify_bit set. During scan, clear use_bit on each
bypassed frame.

e Now all use_bit’s are cleared. Repeat Step 1 and, if necessary,

Step 2.

11

CPSC 410/611: Operating Systems

Virtual Memory

The Macintosh Scheme (cont)

e Example:

time 1 2 3 4 5 6 7 8 9|10

reference
string

frames |a/10[[a/10] |a/11| |a/11] |a/11| [a/01| |a/01]| |a/11| |a/11]| |a/11

b/10| |b/10| |b/10| |b/10| [b/11| |b/O1| |b/11| |b/11] |b/11]| |b/11

c/10| |c/10| |c/10| |c/10]| [c/10| |e/10] [e/10| [e/10]| /10| [e/10

d/10| (d/10] |d/10| |d/10| |d/10| |d/00| |d/00| |d/00| |d/00] |c/10

Resident Set Management

e Local vs. Global replacement policy:
- The page to be replaced is selected from the
resident set of pages of the faulting process. (local)
- The page to be replaced may belong to any of the
processes in memory.

e Each program requires a certain minimum set of pages
to be resident in memory to run efficiently.

e The size of this set changes dynamically as a program
executes.

e This leads to algorithms that attempt to maintain an
optimal resident set for each active program. (Page
replacement with variable number of frames.)

12

CPSC 410/611: Operating Systems

Virtual Memory

The Working Set Model

Working Set W(%,A): set of pages referenced by process during
time interval (-4, t)

W (t, 1)) =1 1< ||W(t,A)| < min(A,N)

The storage management strategy follows two rules:

- At each reference, the current working set is determined and
only those pages belonging to the working set are retained in
memory.

- A program may run only if its entire current working set is in
memory.

Underlying Assumption: cardinality of working set remains constant
over small time intervals.

Working Set Model (cont.)

e Example: (A = 4)

time 112314567 18]9]10
wingdefafafefelafofefefe]e]ald
working ___EEEE_____EE

set TTTT
o Lol [e] [e] [e] [e] [e] [e] [e] []
oja|nio|alojololsislsi
L] L] Le] L] LI L L L fed [e] fe] [e] [e]
' ! ! ! 1!

Problems:

Difficulty in keeping track of working set.
+ Estimation of appropriate window size A.

13

CPSC 410/611: Operating Systems

Improve Paging Performance: Page Buffering

Victim frames are not overwritten directly, but are
removed from page table of process, and put into:

- free frame list (clean frames)
- modified frame list (modified frames)

e Victims are picked from the free frame list in FIFO
order.

e If referenced page is in free or modified list, simply
reclaim it.

Periodically (or when running out of free frames) write
modified frame list to disk.

Page Buffering and Page Stealer

e Kernel process (e.g., pageout in Solaris) swaps out memory frames that
are no longer part of a working set of a process.

e Periodically increments age field in valid pages.

page referenced ready to

l swap out
pagein | — | 1 2 3 4 e » n

memor
Y age page ... not referenced
page out
swap in of memory swap out

Page stealer wakes up when available free memory is below /low-water
mark. Swaps out frames until available free memory exceeds high-
water mark.

Page stealer collects frames to swap and swaps them out in a single
run. Until then, frames still available for reference.

Virtual Memory

CPSC 410/611: Operating Systems

Implementation of Demand Paging
in UNIX SVR4

frame address |age|cp/wrt| mod [ref| val |prot

+«— page table entry ———

swap type (swap,file,
o block num fill 0, demand fill)

«— disk block descriptor ———

page state ref count logical device block number pfdata pointer

frame table
entry

Linux Frame Table

e Every page is represented by:
struct page {

ulong flags; // dirty, locked, etc.

atomic_t count; // reference counter

struct list_head list;

struct AS *mapping; // address space associated with page

ulong index;

struct list_head lru;

(pte)

(private)

void * virtual; // virtual address (could be null)
/* .. etc. */

Virtual Memory

15

CPSC 410/611: Operating Systems

Virtual Memory

Demand Paging on
Less-Sophisticated Hardware

Demand paging most efficient if hardware sets the reference and dirty
bits and causes a protection fault when a process writes a page whose
copy_on_write bit is set.

Can duplicate valid bit by a software-valid bit and have the kernel turn
off the valid bit. The other bits can then be simulated in software.
Example: Reference Bit:

- If process references a page, it incurs a page fault because valid bit
is off. Page fault handler then checks software-valid bit.

- If sef, Kernel knows that page is really valid and can set software-
reference bit.

Hardware Software Software Hardware Software Software
Valid Valid Reference Valid Valid Reference
| Off | On | Off | | On | On | On |
before referencing page after referencing page

fork () System Call in Paging Systems

e Naive: fork () makes a physical copy of parent address

space. However, fork () mostly followed by an exec ()
call, which overwrites the address space.

e System V: Use copy_on_write bit:

- During fork () system call, all copy_on_write bits of
pages of process are turned on. If either process writes to
the page, incurs protection fault, and, in handling the fault,
kernel makes a new copy of the page for the faulting
process.

e BSD: Offers vfork () system call, which does not copy
address space. Tricky! (May corrupt process memory.)

16

