
CPSC-410/611 Operating Systems Multiprocessor Synchronization

1

Multiprocessor Synchronization
•  Multiprocessor Systems

•  Memory Consistency

•  In addition, read Doeppner, 5.1 and 5.2

(Much material in this section has been freely borrowed from Gernot Heiser
at UNSW and from Kevin Elphinstone)

MP Memory Architectures
•  Uniform Memory-Access (UMA)

–  Access to all memory locations incurs same
latency.

•  Non-Uniform Memory-Access (NUMA)
–  Memory access latency differs across

memory locations for each processor.
•  e.g. Connection Machine, AMD

HyperTransport, Intel Itanium MPs

CPSC-410/611 Operating Systems Multiprocessor Synchronization

2

UMA Multiprocessors: Types
•  “Classical” Multiprocessor

–  CPUs with local caches
–  typically connected by bus
–  fully separated cache hierarchy ->

cache coherency problems
•  Chip Multiprocessor (multicore)

–  per-core L1 caches
–  shared lower on-chip caches
–  cache coherency addressed in HW

•  Simultaneous Multithreading
–  interleaved execution of several

threads
–  fully shared cache hierarchy
–  no cache coherency problems

Cache Coherency

•  What happens if one CPU writes
to (cached) address and another
CPU reads from the same address?

•  Ideally, a read produces the result of the last write to the same
memory location. (“Strict Memory Consistency”)

•  Typically, a hardware solution is used
–  snooping – for bus-based architectures
–  directory-based – for non bus-interconnects

CPSC-410/611 Operating Systems Multiprocessor Synchronization

3

Snooping

•  Each cache broadcasts transactions on
the bus.

•  Each cache monitors the bus for transactions that affect its
state.

•  Conflicts are typically resolved using some cache coherency
protocol.

•  Snooping can be easily extended to multi-level caches.

Memory Consistency: Example

•  Example: End of Critical Section

•  Relies on all CPUs seeing update of counter before
update of mutex

•  Depends on assumptions about ordering of stores to
memory

 /* lock(mutex) */
 <whatever it takes…>
 /* counter++ */
 load r1, counter
 add r1, r1, 1
 store r1, counter
 /* unlock(mutex) */
 store zero, mutex

CPSC-410/611 Operating Systems Multiprocessor Synchronization

4

Example of Strong Ordering: Sequential Ordering

•  Observation: Strict Consistency is impossible to implement.

•  Sequential Consistency:
–  Loads and stores execute in program order
–  Memory accesses of different CPUs are “sequentialised”; i.e., any

valid interleaving is acceptable, but all processes must see the
same sequence of memory references.

•  Traditionally used by many simple architectures
 CPU 0 CPU 1
 store r1, adr1 store r1, adr2
 load r2, adr2 load r2, adr1

•  In this example, at least one CPU must load the other's new value.

Sequential Consistency (cont)

•  Sequential consistency is programmer-friendly, but
expensive.

•  Side note: Lipton & Sandbert (1988) show that
improving the read performance makes write
performance worse, and vice versa.

•  Modern HW features interfere with sequential
consistency; e.g.:
–  write buffers to memory (aka store buffer, write-

behind buffer, store pipeline)
–  instruction reordering by optimizing compilers
–  superscalar execution
–  pipelining

CPSC-410/611 Operating Systems Multiprocessor Synchronization

5

Weaker Consistency Models: Total Store Order

•  Total Store Ordering (TSO) guarantees that the
sequence in which store, FLUSH, and atomic
load-store instructions appear in memory for a
given processor is identical to the sequence in which
they were issued by the processor.

•  Both x86 and SPARC processors support TSO.

•  A later load can bypass an earlier store
operation. (!)

•  i.e., local load operations are permitted to obtain
values from the write buffer before they have
been committed to memory.

Total Store Order (cont)
•  Example:

 CPU 0 CPU 1
 store r1, adr1 store r1, adr2

 load r2, adr2 load r2, adr1

•  Both CPUs may read old value!
•  Need hardware support to force global ordering of

privileged instructions, such as:
–  atomic swap
–  test & set
–  load-linked + store-conditional
–  memory barriers

•  For such instructions, stall pipeline and flush write
buffer.

CPSC-410/611 Operating Systems Multiprocessor Synchronization

6

It gets weirder: Partial Store Ordering
•  Partial Store Ordering (PSO) does not guarantee that the

sequence in which store, FLUSH, and atomic load-store
instructions appear in memory for a given processor is identical to
the sequence in which they were issued by the processor.

•  The processor can reorder the stores so that the sequence of
stores to memory is not the same as the sequence of stores
issued by the CPU.

•  SPARC processors support PSO; x86 processors do not.
•  Ordering of stores is enforced by memory barrier (instruction

STBAR for Sparc) : If two stores are separated by memory
barrier in the issuing order of a processor, or if the instructions
reference the same location, the memory order of the two
instructions is the same as the issuing order.

Partial Store Order (cont)

•  Example:

•  Store to mutex can “overtake” store to counter.
•  Need to use memory barrier to separate issuing

order.
•  Otherwise, we have a race condition.

 load r1, counter
 add r1, r1, 1
 store r1, counter
 barrier
 store zero, mutex

