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Multiprocessor Synchronization 
•  Multiprocessor Systems 

•  Memory Consistency 

•  In addition, read Doeppner, 5.1 and 5.2 

(Much material in this section has been freely borrowed from Gernot Heiser 
at UNSW and from Kevin Elphinstone) 

MP Memory Architectures 
•  Uniform Memory-Access (UMA) 

–  Access to all memory locations incurs same 
latency. 

•  Non-Uniform Memory-Access (NUMA) 
–  Memory access latency differs across 

memory locations for each processor. 
•  e.g. Connection Machine, AMD 

HyperTransport, Intel Itanium MPs 
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UMA Multiprocessors: Types 
•  “Classical” Multiprocessor 

–  CPUs with local caches 
–  typically connected by bus 
–  fully separated cache hierarchy -> 

cache coherency problems 
•  Chip Multiprocessor (multicore) 

–  per-core L1 caches 
–  shared lower on-chip caches 
–  cache coherency addressed in HW 

•  Simultaneous Multithreading 
–  interleaved execution of several 

threads 
–  fully shared cache hierarchy 
–  no cache coherency problems 

Cache Coherency 

•  What happens if one CPU writes 
to (cached) address and another 
CPU reads from the same address? 

•  Ideally, a read produces the result of the last write to the same 
memory location. (“Strict Memory Consistency”) 

•  Typically, a hardware solution is used 
–  snooping – for bus-based architectures 
–  directory-based – for non bus-interconnects 
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Snooping 

•  Each cache broadcasts transactions on  
the bus. 

•  Each cache monitors the bus for transactions that affect its 
state. 

•  Conflicts are typically resolved using some cache coherency 
protocol. 

•  Snooping can be easily extended to multi-level caches. 

Memory Consistency: Example 

•  Example: End of Critical Section   

•  Relies on all CPUs seeing update of counter  before 
update of mutex 

•  Depends on assumptions about ordering of stores to 
memory 

   /* lock(mutex) */ 
   <whatever it takes…>   
   /* counter++ */ 
   load  r1, counter 
   add   r1, r1, 1 
   store r1, counter 
   /* unlock(mutex) */  
   store zero, mutex 
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Example of Strong Ordering: Sequential Ordering 

•  Observation: Strict Consistency is impossible to implement. 

•  Sequential Consistency: 
–  Loads and stores execute in program order  
–  Memory accesses of different CPUs are “sequentialised”; i.e., any 

valid interleaving is acceptable, but all processes must see the 
same sequence of memory references. 

•  Traditionally used by many simple architectures   
   CPU 0    CPU 1 
  store  r1, adr1  store  r1, adr2 
  load   r2, adr2  load   r2, adr1  

•  In this example, at least one CPU must load the other's new value. 

Sequential Consistency (cont) 

•  Sequential consistency is programmer-friendly, but 
expensive. 

•  Side note: Lipton & Sandbert (1988) show that 
improving the read performance makes write 
performance worse, and vice versa. 

•  Modern HW features interfere with sequential 
consistency; e.g.: 
–  write buffers to memory (aka store buffer, write-

behind buffer, store pipeline) 
–  instruction reordering by optimizing compilers 
–  superscalar execution 
–  pipelining 
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Weaker Consistency Models: Total Store Order 

•  Total Store Ordering (TSO) guarantees that the 
sequence in which store, FLUSH, and atomic 
load-store instructions appear in memory for a 
given processor is identical to the sequence in which 
they were issued by the processor. 

•  Both x86 and SPARC processors support TSO. 

•  A later load can bypass an earlier store 
operation. (!) 

•  i.e., local load operations are permitted to obtain 
values from the write buffer before they have 
been committed to memory. 
   

Total Store Order (cont) 
•  Example:   

  CPU 0    CPU 1 
  store  r1, adr1  store  r1, adr2 

  load   r2, adr2  load   r2, adr1  

•  Both CPUs may read old value! 
•  Need hardware support to force global ordering of 

privileged instructions, such as: 
–  atomic swap 
–  test & set 
–  load-linked + store-conditional 
–  memory barriers 

•  For such instructions, stall pipeline and flush write 
buffer. 
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It gets weirder: Partial Store Ordering  
•  Partial Store Ordering (PSO) does not guarantee that the 

sequence in which store, FLUSH, and atomic load-store 
instructions appear in memory for a given processor is identical to 
the sequence in which they were issued by the processor.  

•  The processor can reorder the stores so that the sequence of 
stores to memory is not the same as the sequence of stores 
issued by the CPU. 

•  SPARC processors support PSO; x86 processors do not. 
•  Ordering of stores is enforced by memory barrier (instruction 

STBAR for Sparc) : If two stores are separated by memory 
barrier in the issuing order of a processor, or if the instructions 
reference the same location, the memory order of the two 
instructions is the same as the issuing order. 

Partial Store Order (cont) 

•  Example: 

•  Store to mutex can “overtake” store to counter. 
•  Need to use memory barrier to separate issuing 

order. 
•  Otherwise, we have a race condition. 

  load  r1, counter 
  add   r1, r1, 1 
  store r1, counter 
  barrier 
  store zero, mutex 


