
CPSC-410/611: Operating Systems Distr Coord

1

Distributed Coordination !
•  What makes a system distributed?!
•  Time in a distributed system !
•  How do we determine the global state of a distributed

system?!
•  Event ordering !
•  Mutual exclusion !

•  Reading: Silberschatz, Chapter 18, Sections 1,2,6 !

Distr. Systems: Fundamental Characteristics!

1. Multiple processors (wlog: assume one process per
processor)!

2. No shared memory!
3. No common clock !
4. Communication delays are not constant !
5. Message ordering may not be maintained by the

underlying communication infrastructure !

CPSC-410/611: Operating Systems Distr Coord

2

Effects of Lack of Common Clock !
Example 1 : Distributed make utility (e.g. pmake)!
•  make goes through all target files and determines (based on timestamps)

which targets need to be “(re)compiled”!
•  Example: !

main : main.o
 cc -o main main.o
main.o : main.c
 cc -c main.c

2144

2144 2145 2146

2148 2147 2146 2145

2143 2142

Time according !
to local clock !

Time according !
to local clock !

Computer on !
which compiler!

runs !

Computer on !
which editor!

runs !

main.o created

main.c created

Effects of Lack of Common Clock !
•  Example 2 : Distributed Checkpointing !
•  “At 3pm everybody writes its state to stable storage.”!
•  Centralized system: !

•  Distributed System:

rriiing!

rriiing!

rriiing!

CPSC-410/611: Operating Systems Distr Coord

3

Distributed Checkpointing (2)!

rriiing!

rriiing!

“transfer $100”

Sb=$100
3:00

Sa=$100
3:00

3:01

2:59

rriiing!

rriiing! “transfer $100”

Sb=$0
3:00

Sa=$0
3:00

2:59

3:01

Consistent vs. Non-Consistent Global States!

inconsistent global state (why?)

consistent global state

CPSC-410/611: Operating Systems Distr Coord

4

Distributed Snapshot Algorithm!
•  Process P starts algorithm: !

–  saves state SP !
–  sends out marker messages to all other processes!

•  Upon receipt of a marker message (from process Q), process P
proceeds as follows (atomically: no messages sent/received in the
meantime): !
–  1. Saves local state SP.!
–  2. Records state of incoming channel from Q to P as empty.!
–  3. Forward marker message on all outgoing channels.!

•  At any time after saving its state, when P receives a marker from
a process R: !
–  Save state SCRP as sequence of messages received from R since

P saved local state SP to when it received marker from R.!

Comments!
•  Any process can start algorithm. Even multiple processes can start

it concurrently. !
•  Algorithm will terminate if message delivery time is finite.!
•  Algorithm is fully distributed.!
•  Once algorithm has terminated, consistent global state can be

collected.!

•  Relies on ordered, reliable message delivery.!

CPSC-410/611: Operating Systems Distr Coord

5

Event Ordering !
•  Absence of central time means: no notion of happened-when (no total

ordering of events)!
•  But can generate a happened-before notion (partial ordering of events)!
•  Happened-Before relation: !

1. Pi

A B
Event A happened-before Event B. (A -> B)

2. Pi

A

Event A happened-before Event B. (A -> B)

Pj

B

message

3. Pi

A

Event A happened-before Event C. (A -> C) (transitivity)

Pj

B

message

C

Concurrent Events!
•  What when no happened-before relation exists between two

events?!

Pi

A

Events X and Y are concurrent.

Pj

B C

D X

Y

?

CPSC-410/611: Operating Systems Distr Coord

6

Happened-Before Ordering: Implementation !
•  Define a Logical Clock LCi at each Process Pi.!
•  Used to timestamp each event: !

–  Each event on Pi is timestamped with current value of logical
clock LCi .!

–  After each event, increment LCi.!
–  Timestamp each outgoing message at Pi with value of LCi.!
–  When receiving a message with timestamp t at process Pj,

set LCj to max(t, LCj)+1. !

Pi

Pj

LCj

LCi 0 1 2 3 4

0 1 2

msg(1)

201

201

msg(200)

160

200

Application to Distributed Checkpointing !

“At logical-clock time 5000 write state !
to stable storage!”!

4999 5000 5001

4890 4891 4892

5002

msg(A,4891) msg(B,5002)

5003
+

5002

Receiving Msg B !
would be inconsistent.!
So, checkpoint first,!
and then receive! !

CPSC-410/611: Operating Systems Distr Coord

7

Distributed Mutual Exclusion !
•  Reminder: Mutual exclusion in shared-memory systems: !

bool lock; /* init to FALSE */

while (TRUE) {

 while (TestAndSet(lock)) no_op;

 critical section;

 lock = FALSE;

 remainder section;

}

D.M.E.: Centralized Approach!

1. Send request message to coordinator to enter C.S.!
2. If C.S. is free, the coordinator sends a reply message. Otherwise it

queues request and delays sending reply message until C.S. becomes
free.!

3. When leaving C.S., send a release message to inform coordinator. !

•  Characteristics: !
–  ensures mutual exclusion !
–  service is fair!
–  small number of messages required!
–  fully dependent on coordinator!

coordinator!

P1 ! P2 ! P3 !

1 !
2 !

3 !

CPSC-410/611: Operating Systems Distr Coord

8

D.M.E.: Fully Distributed Approach!
•  Basic idea: Before entering C.S., ask and wait until you get

permission from everybody else.!

request(Pi,TS) !
reply ! Pi!

•  Upon receipt of a message request(Pj, TSj) at node Pi: !
•  if Pi does not want to enter C.S., immediately send a reply to

Pj.!
•  if Pi is in C.S., defer reply to Pj. !
•  if Pi is trying to enter C.S., compare TSi with TSj. If TSi > TSj

(i.e. “Pj asked first”), send reply to Pj; otherwise defer reply.!

Fully Distributed Approach:Example!
•  P1 and P3 want to enter C.S. !

P1 ! P2 ! P3 !
req(P1,10) !

req(P1,10) !

req(P3,4) !
req(P3,4) !

reply!
reply!

reply!
Enter C.S.!reply!

Enter C.S.!

CPSC-410/611: Operating Systems Distr Coord

9

D.M.E. Fully Distributed Approach!
•  The Good: !

–  ensures mutual exclusion !
–  deadlock free!
–  starvation free!
–  number of messages per critical section: 2(n-1) !

•  The Bad: !
–  The processes need to know identity of all other processes

involved (join & leave protocols needed)!

•  The Ugly: !
–  One failed process brings the whole scheme down! !

D.M.E.: Token-Passing Approach!

•  Token is passed from process to process (in logical ring)!
•  Only processes owning a token can enter C.S.!
•  After leaving the C.S., token is forwarded!

Pi!

token !

•  Characteristics:
•  mutual exclusion guaranteed
•  no starvation
•  number of messages per C.S.

varies

•  Problems:
•  Process failure (new logical

ring must be constructed)
•  Loss of token (new token

must be generated)

CPSC-410/611: Operating Systems Distr Coord

10

Recovering Lost Tokens!
•  Solution: use two tokens! !

–  When one token reaches Pi, the other token has been lost if !
the token has not met the other token since last visit !

and !
Pi has not been visited by other token since last visit.!

•  Algorithm: !
–  uses two tokens, called “ping” and “pong”!

int nping = 1; /*invariant: nping+npong = 0 */
int npong = -1;

–  each process keeps track of value of last token it has seen.!
int m = 0; /* value of last token seen by Pi */

“Ping-Pong” Algorithm!

if (m == nping) {
 /* “pong” is lost!
 generate new one. */
 nping = nping + 1;
 pong = - nping;
}
else {
 m = nping;
}

upon arrival of (“ping”, nping)!

if (m == npong) {
 /* “ping” is lost!
 generate new one. */
 npong = npong - 1;
 ping = - npong;
}
else {
 m = npong;
}

upon arrival of (“pong”, npong)!

 nping = nping + 1;
 npong = npong - 1;

when tokens meet !

CPSC-410/611: Operating Systems Distr Coord

11

Election Algorithms!
•  Many distributed algorithms rely on coordinator.!
•  Coordinator may fail. Then system must start a new coordinator!
•  Election algorithms determine where the new coordinator will be

located.!
•  Remarks: !

–  Each process has a priority number (wlog Pi has priority i)!
–  Election algorithm picks active process with highest priority

and informs all active processes about new coordinator.!
–  Newly recovered process should be able to identify current

coordinator.!

Election: The Bully Algorithm (Garcia-Molina)!

•  Process Pi times out during a request to coordinator; assumes
that coordinator has failed.!

•  Pi proceeds to elect itself as coordinator by sending elect(i)
message to higher-priority processes. !
–  If receives no response, considers itself elected and informs

all lower-priority processes with a is_elected(i) message.!
–  If receives reply, waits to hear who has been elected. If

times out, assumes that something went wrong (processes
failed), and restarts from scratch. !

•  At process Pi: !
–  message is_elected(j) comes in (j > i): record information !
–  message elect(j) comes in: !

•  if (i < j) wait and see!
•  if (i > j) send response to Pj and start own election

campaign.!
•  If process recovers from failure, starts new election campaign.!

CPSC-410/611: Operating Systems Distr Coord

12

Bully Algorithm: Example !
P1 ! P2 ! P3 ! P4 !
fails ! fails !

elect(2)!
response !

elect(3)!

is_elected(3)!
is_elected(3)!

P1 recovers !
elect(1)!

elect(1)!
elect(1)!

response !

response !

elect(2)!
elect(2)!

elect(3)!

is_elected(3)!
is_elected(3)!

X

Election: Ring Algorithm!

•  Basic version: !
–  Each process Pi sends its own election message elect(i) around the ring. !
–  All processes send their own number before passing on election messages of

other processes.!
–  When its own message returns, Pi knows it has seen all the messages.!

•  How many messages are needed per election round?!

Pi!

elect(i)!

