
!"#!$%&'()&&*+,-./0123++#456.75+ 8697:;+</0250;1925+

1

Atomic Transactions!

•! The Transaction Model / Primitives!

•! Serializability!

•! Implementation!
–! Serialization Graphs!
–! 2-Phase Locking!
–! Optimistic Concurrency Control !

•! Transactional Memory!

•! Reading: Silberschatz et al.: Operating Systems Concepts, 8th ed.,
Chapter 6.9!

Atomic Transactions!
•! Example: Online bank transaction:!

withdraw(amount, account1)

deposit(amount, account2)

•! Q1: What if network fails before deposit?!
•! Q2: What if sequence is interrupted by another sequence?!

•! Solution: Group operations in an atomic transaction.!

•! Primitives:!
–! BEGIN_TRANSACTION

–! END_TRANSACTION

–! ABORT_TRANSACTION

–! READ

–! WRITE

!"#!$%&'()&&*+,-./0123++#456.75+ 8697:;+</0250;1925+

2

ACID Properties !

Atomic: "transactions happen indivisibly!

Consistent: "no violation of system invariants!

Isolated: "no interference between concurrent transactions !

Durable: "after transaction commits, changes are permanent!

Serializability !

BEGIN TRANSACTION

 x := 0;

 x := x + 1;

END TRANSACTION

BEGIN TRANSACTION

 x := 0;

 x := x + 2;

END TRANSACTION

BEGIN TRANSACTION

 x := 0;

 x := x + 3;

END TRANSACTION

Schedule is serial if the steps of each transaction occur consecutively.!

Schedule is serializable if its effect is “equivalent” to some serial schedule..!

schedule 1! x=0! x=x+1! x=0! x=x+2! x=0! x=x+3! legal!

schedule 2! x=0! x=0! x=x+1! x=x+2! x=0! x=x+3! legal!

schedule 3! x=0! x=0! x=x+1! x=0! x=x+2! x=x+3! illegal!

!"#!$%&'()&&*+,-./0123++#456.75+ 8697:;+</0250;1925+

3

Testing for Serializability the hard way: Serialization Graphs!

•! Input: "Schedule S for set of transactions T1, T2, …, Tk.!

•! Output: "Determination whether S is serializable.!
•! Method: "!

–! Create serialization graph G:!
•! Nodes: correspond to transactions!
•! Arcs: G has an arc from Ti to Tj if there is a Ti:UNLOCK(Am)

operation followed by a Tj:LOCK(Am) operation in the schedule.!
–! Perform topological sorting of the graph.!

•! If graph has cycles, then S is not serializable.!
•! If graph has no cycles, then topological order is a serial order for

transactions.!

Theorem:!

This algorithm correctly determines !
if a schedule is serializable.!

Non-Serializable Schedule: Example !

Step! T1! T2! T3!

(1)! LOCK A!

(2)! LOCK B!

(3)! LOCK C!

(4)! UNLOCK B!

(5)! LOCK B!

(6)! UNLOCK A!

(7)! LOCK A!

(8)! UNLOCK C!

(9)! UNLOCK A!

(10)! LOCK A!

(11)! LOCK C!

(12)! UNLOCK B!

(13)! UNLOCK C!

(14)! UNLOCK A!

T1!

T2!

T3!

[ref: J.D. Ullman: Principles of Database and Knowledge-Base Systems]!

!"#!$%&'()&&*+,-./0123++#456.75+ 8697:;+</0250;1925+

4

Transactions: Implementation Issues !

1.! How to maintain information from not-yet committed
transactions: “Prepare for aborts”!
–! private workspace!
–! write-ahead log / “intention lists with rollback !

–! transactions commit data into database!

2.! Concurrency control:!
–! pessimistic -> lock-based: 2-Phase Locking !

–! optimistic -> Timestamp-Based with rollback!

3.! Commit protocol !

–! 2-Phase Commit Protocol. !

Serializability through Two-Phase Locking !
•! We allow for two types of locks:!

–! read locks (non-exclusive)!
–! write locks (require exclusive access)!

•! Enforce serializability through appropriate locking:!
–! release locks (and modify data) items only after lock point !

lock point!

acquire phase! release phase!

•! All Two-Phase-Locking schedules are serializable.!
•! Problems:!

–! deadlock prone!!
–! allows only a subset of all serializable schedules.!

!"#!$%&'()&&*+,-./0123++#456.75+ 8697:;+</0250;1925+

5

Two-Phase Locking (cont)!

Proof:!
Suppose not. Then the serialization graph G for S has a!
cycle,!

Ti1 -> Ti2 -> … -> Tip -> Ti1 !

Therefore, a lock by Ti1 follows an unlock by Ti1,!
contradicting the assumption that Ti1 is two-phase.!

Theorem: "!

If S is any schedule of two-phase transactions,
then S is serializable.!

What when something goes wrong: !
Transactions that Read “Dirty” Data !

(1) LOCK A

(2) READ A

(3) A:=A-1

(4) WRITE A

(5) LOCK B

(6) UNLOCK A

(7) LOCK A

(8) READ A

(9) A:=A*2

(10) READ B

(11) WRITE A

(12) COMMIT

(13) UNLOCK A

(14) B:=B/A

 T1 " "T2 !

Assume that T1 fails after (13). !

1. T1 still holds lock on B.!
2. Value read by T2 at step (8)

is wrong.!

T2 must be rolled back and !
restarted.!

3. Some transaction T3 may
have read value of A
between steps (13) and (14) !

!"#!$%&'()&&*+,-./0123++#456.75+ 8697:;+</0250;1925+

6

Strict Two-Phase Locking!

•! Strict two-phase locking: !
–! A transaction cannot write into the database until it

has reached its commit point.!
–! A transaction cannot release any locks until it has

finished writing into the database; therefore locks
are not released until after the commit point. !

•! pros:!

–! transaction read only values of committed
transactions!

–! no cascaded aborts!

•! cons:!
–! limited concurrency!

–! deadlocks!

Optimistic Concurrency Control !

“Forgiveness is easier to get than permission” !

•! Basic idea:!

–! Process transaction without attention to
serializability.!

–! Keep track of accessed data items. !

–! At commit point, check for conflicts with other
transactions.!

–! Abort if conflicts occurred.!

•! Approach:!
–! Assign timestamp to each transaction. !

–!Make sure that schedule has the same effect of a
serial schedule in order of assigned timestamps. !

!"#!$%&'()&&*+,-./0123++#456.75+ 8697:;+</0250;1925+

7

Timestamp-based Optimistic Concurrency Control !

•! Data items are tagged with read-time and write-time.!

1.! Transaction cannot read value of item if that value has !
"not been written until after the transaction executed. !

Transaction with T.S. t1 cannot read item with write-time t2 if t2 > t1.!
(abort and try with new timestamp) !

2.! Transaction cannot write item if item has value read at !
"later time.!

Transaction with T.S. t1 cannot write item with read-time t2 if t2 > t1. !
(abort and try with new timestamp) !

•! Other possible conflicts:!
–! Two transactions can read the same item at different times.!
–! What about transaction with T.S. t1 that wants to write to item

with write-time t2 and t2>t1?!

Timestamp-Based Conc. Control (cont)!

Rules for preserving serial order using timestamps:!

a) ! Perform the operation X

 if X = READ and t >= tw

 or if X = WRITE and t >= tr and t >= tw.

 if X = READ : set read-time to t if t > tr.
 if X = WRITE: set write-time to t if t > tw.

b) Do nothing if X = WRITE and tr <= t < tw.

c) Abort transaction if X = READ and t < tw
 or X = WRITE and t < tr.

!"#!$%&'()&&*+,-./0123++#456.75+ 8697:;+</0250;1925+

8

Timestamp-based Optimistic Concurrency Control !

•! Accesses to data items are tagged with timestamp!

•! Examples:!

RA ! WA ! RB !

WA ! RA ! RB !

RA !RB !

WA !RB !

WA ! WB !

WA ! TC! WB !

WC!WB !

TC!WB !

1!

2!

3!

4!

5!

6!

7!

8!

Transactional Memory!

•! Transactional Memory borrows the concept of an atomic
transaction from databases. !

•! Rather than locking resources, a code block is marked as atomic,
and when it runs, the reads and writes are done against a
transaction log instead of global memory. !

•! When the code is complete, the runtime re-checks all of the reads
to make sure they are unchanged and then commits all of the
changes to memory at once. !

•! If any of the reads are dirty, the transaction is rolled back and
re-executed. !

•! This, when combined with additional tools for blocking and choice,
allows program to remain simple, correct, and composable while
scaling to many threads without the additional overhead that
course grained locking incurs.!

[Phil Windley, Technometria]!

!"#!$%&'()&&*+,-./0123++#456.75+ 8697:;+</0250;1925+

9

Problems with Locking in OS’s !

[C. J. Rossbach et al. : !
TxLinux: Using and Managing Hardware Transactional Memory in an Operating System, SOSP 2007]!

•!In 2001 study of Linux bugs, 346 of 1025 bugs (34%) involved
synchronization.!

•!2003 study of Linux 2.5 kernel found 4 confirmed and 8 unconfirmed
deadlock bugs. !

•!Linux source file mm/filemap.c has a 50 line comment on the top
of the file describing the lock ordering used in the file. The comment
describes locks used at a calling depth of 4 from functions in the
file. !

•!Locking is not modular; a component must know about the locks
taken by another component in order to avoid deadlocks. !

•!Other known disadvantages: priority inversion, convoys, lack of
composability, and failure to scale with problem size and complexity!

Transactional Memory: Primitives (conceptually)!

[M. Herlihy, J. Eliot, B. Mossin: “Transactional memory: architectural support for lock-
free data structures,” Proceedings of the 20th Annual International Symposium on
Computer Architecture (1993)] !

•! Load-transactional (LT): reads the value of a shared memory
location into a private register. !

•! Load-transactional-exclusive (LTX): reads the value of a shared
memory location into a private register, “hinting” that the location
is likely to be updated. !

•! Store-transactional (ST): tentatively writes a value from a private
register to a shared memory location. This new value does not
become visible to other processors until the transaction
successfully commits.!

!"#!$%&'()&&*+,-./0123++#456.75+ 8697:;+</0250;1925+

10

Transactional Memory: Primitives (conceptually)!

•! Commit (COMMIT): attempts to make the transaction’s tentative
changes permanent. It succeeds only if no other transaction has
updated any location in the transaction’s data set, and no other
transaction has read any location in this transaction’s write set. !
–! Successful: The transaction’s changes to its write set become

visible to other processes. !
–! Unsuccessful: All changes to the write set are discarded. !
Either way, COMMIT returns an indication of success or failure. !

•! Abort (ABORT): discards all updates to the write set. !

•! Validate (VALIDATE): tests the current transaction status. !
–! Successful: The current transaction has not aborted (although

it may do so later). !
–! Unsuccessful: The current transaction has aborted, and

VALIDATE discards the transaction’s tentative updates. !

Transactional Memory in Practice: MetaTM !

Over 2000 static occurrences of spinlocks in Linux!!

!"#!$%&'()&&*+,-./0123++#456.75+ 8697:;+</0250;1925+

11

Transactional Memory in Practice !

•! In order to ensure isolation, TM systems must be able to roll back
the effects of a transaction that has lost a conflict. !

•! TM can only roll back processor state and the contents of physical
memory.!
–! e.g., the effects of I/O cannot be rolled back! !
–! Executing I/O operations as part of a transaction can break

the atomicity and isolation.!
–! This is known as the “output commit problem”. !

•! Critical sections protected by locks will not restart and so may
freely perform I/O.!

•! In practice, therefore, transactions have to run besides lock-based
portions.!
–! This must be supported by the system.!

Simple SW Transactions: Sequence Locks !

•! Sequence locks (seqlocks) are a form of software transaction in
the Linux kernel. !

•! Readers loop reading the seqlock counter at the start of the loop,
performing any read of the data structure that they need, and
then read the seqlock counter at the end of the loop. !

•! If the counter values match, the read loop exits. !
•! Writers lock each other out and they increment the counter both

before they start updating the data and after they end. !
•! Readers fail if they read an odd counter value as it means a

writer was doing an update concurrent with their reading. !

