CPSC 410/611: Operating Systems Projects, Introduction

Projects: Developing an
OS Kernel for x86

Introduction

+
The boot process

m After the power button has been pressed...

m Power supply certifies that can supply the correct amount of
power to all devices.

= Sends BIOS “power_good” signal.

m Motherboard Control, POST (Power On Self Test)
= Confirms power level, tests memory for corruptions
m Addresses proprietary chips.

m The BIOS (Basic Input Output System) takes over

m Finds and loads boot sector (512). Executes image in the boot
sector.

m Bootsector image loads bootloader
m No size constraint

m ... and off you go

CPSC 410/611: Operating Systems Projects, Introduction

+ The Kernel Entry Point (start.asm)

[BITS 32]
global start
start:
mov esp, _sys_stack ; This points the stack to our new stack area
jmp stublet
; This part MUST be 4byte aligned, so we solve that issue using 'ALIGN 4’
ALIGN 4
mboot:
; Multiboot macros to make a few lines later more readable
MBOOT_ PAGE ALIGN equ 1<<0
MBOOT_MEMORY_INFO equ 1<<1
MBOOT AOUT KLUDGE equ 1<<16
MBOOT_HEADER MAGIC equ 0x1BADB002
MBOOT HEADER FLAGS equ MBOOT PAGE ALIGN | MBOOT MEMORY INFO | MBOOT AOUT_ KLUDGE
MULTIBOOT CHECKSUM equ - (MBOOT_HEADER MAGIC + MBOOT HEADER FLAGS) -

EXTERN code, bss, end

; This is the GRUB Multiboot header. A boot signature
dd MBOOT HEADER MAGIC ; declare 4-byte variables

dd MBOOT_HEADER FLAGS

dd MBOOT_CHECKSUM

; AOUT kludge - must be physical addresses. Make a note of these:
; The linker script fills in the data for these ones!

dd mboot

dd code

dd bss

dd end

dd start

stublet:
; Add code here to call allocators of global objects.
EXTERN _main ; defined in another file

call _main
; Add code here to call destructors for global objects.
jmp $; infinite loop after we return from main. (don’t do this in a real system)

; Here is the definition of our BSS section. We'll use it just to store the stack.
; Remember that a stack grows downwards, so we declare the size of the data before declaring
; the identifier '_sys_stack’
SECTION .bss -
resb 8192 ; This reserves 8KBytes of memory here
_sys_stack:

+ The Linker Script (linker.1d)

OUTPUT FORMAT ("binary")
ENTRY (start)

phys = 0x00100000;
SECTIONS

{

.text phys : AT (phys) {
code = .;
* (. text)
* (.rodata)
. = ALIGN(4096) ;

}
.data : AT (phys + (data - code))
{

data = .;
* (.data)
. = ALIGN(4096) ;

}
.bss : AT (phys + (bss - code))
{
bss = .;
* (.bss)
. = ALIGN (4096) ;
}

end = .;

CPSC 410/611: Operating Systems Projects, Introduction

+
Kernel Development in C++

(see “Writing a Kernel in C++” by David Stout)

m Beware of Run-Time Support!

“Except for the new, delete, typeid, dynamic_cast, and throw
operators and the try-block, individual C++ expressions and
statements need no run-time support.”

Bjarne Stroustrup, “The C++ Programming Language, 3" ed.”

m Features that require run-time support:
m Built-in functions (new, delete)
= Run-Time type information (typeid, dynamic_cast)
= Exception handling (throw, try-block)

Q:What else do we need?

A:If our code refers to it, we need a C++ standard library.

+
Compiling C++ Code ...

m gxx —ffreestanding —fnostdlib —fno-builtin —fno-rtti —-fno-
exceptions —c *.cpp

-ffreestanding: assume that standard libraries & main may not exist.
-fnostdlib:

-fno-builtin: Do not recognize any built in functions (e.g. new, delete).
-fno-rtti: Do not generate run-time type descriptors information.

-fno-exceptions: Do not generate code to support run-time exceptions.

CPSC 410/611: Operating Systems Projects, Introduction

+
We are disabling a lot of functions...

m What happens before and after the main() function?s

m _main() is typically called before main() function
= handles constructors of global and static objects.

m _atexit() is called after main() function exits.
= handles destructors of global and static objects.

=>» Clobal and static objects are off-limits until we add support for
them!(*)

(*) Even then, the implementation of _main() and _atexit() will be
compiler specific.

+ The Kernel Entry Point (start.asm) l._

stublet:
; Initilization of static global objects. This goes through each object
; in the ctors section of the object file, where the global constructors
; created by C++ are put, and calls it. Normally C++ compilers add some code
; to do this, but that code is in the standard library - which we do not include.
; See linker.ld to see where we tell the linker to put them.
extern start_ctors, end ctors, start_dtors, end dtors

static_ctors_loop:

mov ebx, start ctors

jmp .test

dy :

call [ebx]

add ebx,4

.test:
cmp ebx, end_ctors
jb .body

.bo

; Entering the kernel proper.
extern _main
call _main

; Deinitialization of static global objects. This goes through each object
; in the dtors section of the object file, where the global destructors
; created by C++ are put, and calls it. Normally C++ compilers add some code
; to do this, but that code is in the standard library - which we do not include.
; See linker.ld to see where we tell the linker to put them.
static_dtors_loop:
mov ebx, start dtors

jmp .test
.body:
call [ebx]
add ebx, 4
.test:
cmp ebx, end_dtors
jb .body
jmp $

CPSC 410/611: Operating Systems

Projects, Introduction

+ The Linker Script (linker.1d)

OUTPUT_FORMAT ("binary")
ENTRY (start)

phys = 0x00100000;
?ECTIONS

.text phys : AT (phys) {
code = .;
* (. text)
(.gnu.linkonce.t.¥)
(.gnu.linkonce.r.)
* (.rodata)
. = ALIGN(4096) ;

}
.data : AT (phys + (data - code))
{

data = .;

* (.data)

start_ctors = .;

* (.ctor*)

end ctors = .;
start_dtors = .;

* (.dtor¥*)

end dtors = .;
(.gnu.linkonce.d.)
. = ALIGN(4096) ;

}
.bss : AT (phys + (bss - code))
{

bss = .;

* (.bss)
(.gnu.linkonce.b.)
. = ALIGN(4096) ;

end = .;

}

+ Generating the kernel.bin File

/* file ‘kernel.C’ */

void main() {
/* This is where the kernel code would come

*/
m Assume:
.) /* for now we just idle ... */
= File start.asm contains for(;;);
code with multiboot }

header and entry point.
m File kernel.C contains the “kernel” code.

m We compile and link everything using the following simple
makefile:

GCCOPT -nostartfiles -nostdlib -fno-rtti -fno-exceptions
start.o: start.asm
nasm —f aout —o start.o start.asm

kernel.o: kernel.c
gcc $(GCCOPT) —c kernel.c

kernel.bin: loader.o kernel.o
1d -T linker.ld —o kernel.bin start.o kernel.o

CPSC 410/611: Operating Systems Projects, Introduction

=+
Loading the Kernel onto a Floppy
Image

m Download the grub disk image dev_kernel grub.img from
the course web page.

= Bootable floppy image with grub bootloader and demo kernel.
m Callitmy disk.img

m Mount the disk image:
m filedisk /mount 0 my disk.img g:

m Now you can copy your kernel.bin file to the disk.

m Unmount the disk image!
m filedisk /umount g:

®m You now have a bootable floppy disk with your kernel.

m For details on how to run your kernel, see handout for MP1!

