CPSC-313 Machine Problem 1

Machine Problem 1: A Simple Memory Allocator

Introduction

In this machine problem, you are to develop a simple memory allocator that implements the
functions my malloc() and my_free(), very similarly to the UNIX calls malloc() and free().
(Let’s assume that — for whatever reason — you are unhappy with the memory allocator provided
by the system.) The objectives of this Machine Problem are
e Package a simple module with some static data as a separately compiled unit.
e Become deeply familiar with pointer management and array management in the C language
(or C++ for that matter).
e Become familiar with standard methods for handling command-line arguments in a C/UNIX
environment.
e Become familiar with simple UNIX development tools (compiler, make, debugger, object file
inspector, etc.)

Background: Kernel Memory Management. The kernel manages the physical memory both
for itself and for the system and user processes. The memory occupied by the kernel code and its
data is reserved and is never used for any other purpose. Other physical memory may be used as
frames for virtual memory, for buffer caches, and so on. Most of this memory must be allocated and
de-allocated dynamically, and an infrastructure must be in place to keep track of which physical
memory is in use, and by whom.

Ideally, physical memory should look like a single, contiguous segment from which an allocator
can take memory portions and return them. This is not the case in most systems. Rather, different
segments of physical memory have different properties. For example, DMA may not be able to
address physical memory above 16MB. Similarly, the system may contain more physical memory
than what can be directly addressed, and the segments above need to be handled using appropriate
memory space extension mechanisms. For all these reasons, many operating systems (for example
Linux) partition the memory into so-called zones, and treat each zone separately for allocation
purposes. Memory allocation requests typically come with a list of zones that can be used to satisfy
the request. For example, a particular request may be preferably satisfied from the “normal” zone.
If that fails, from the high-memory zone that needs special access mechanisms. Only if that fails
too, the allocation may attempt to allocation from the DMA zone.

Within each zone, many systems (for example Linux) use a buddy-system allocator to allocate
and free physical memory. This is what you will be providing in this machine problem (for a single
zone, and of course not at physical memory level).

Your Assignment. You are to implement a C module (.h and .c files) that realizes a memory
allocator as defined by the following file my_allocator.h:

#ifndef _MY_ALLOCATOR_H_
#define _MY_ALLOCATOR_H_

/* File: my_allocator.h */

typedef void * Addr;
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unsigned int init_allocator(unsigned int _basic_block_size, unsigned int _length);
/* This function initializes the memory allocator and makes a portion of

’_length’ bytes available. The allocator uses a ’_basic_block_size’ as

its minimal unit of allocation. The function returns the amount of

memory made available to the allocator. If an error occurred, it returns 0. */

int release_allocator();
/* This function returns any allocated memory to the operating system.
After this function is called, any allocation fails. */

Addr my_malloc(unsigned int _length) {};
/* Allocate _length number of bytes of free memory and returns the
address of the allocated portion. Returns O when out of memory. */

int my_free(Addr _a) {};
/* Frees the section of physical memory previously allocated
using ’my_malloc’. Returns O if everything ok. */

#endif

You are to provide the implementation of the memory allocator in form of the filemy_allocator.c.
The memory allocator you are supposed to implement is based on the Fibonacci Buddy System,
which in turn is a generalization of the so-called “Buddy-System” scheme. (The Fibonacci Buddy
System scheme is described in D. S. Hirschberg: “A class of dynamic memory allocation algorithms”
in Communications of the ACM, 16(10):615:618, October 1973. A description of the Binary Buddy-
System scheme — so-to-say Buddy System in the narrow sense — is given in Section 9.8.1 of the
Silbershatz et al. textbook. A more detailed description of the Binary Buddy System is given in
Section 2.5 of D. Knuth, “The Art of Computer Programming. Volume 1 / Fundamental Algo-
rithms”. We give a very short overview of the Fibonacci Buddy System below.)

Fibonacci Buddy-System Memory Allocation:

Buddy-system allocators allocate memory in predefined block sizes, which are integer multiples of
a basic block size (powers of two in the case of binary buddy systems, and Fibonacci numbereﬂ in
the case of Fibonacci buddy systems). For example, if 9kB of memory are requested, the allocator
returns 12kB (3 is a Fibonacci number, times a basic block size of 4kB,) and 3kB goes wasted —
this is called fragmentation.

We will see that the restriction to allowable block sizes makes the management of free memory
blocks very easy. The allocator keeps an array of free lists, one for each allowable block size. Every
request is rounded up to the next allowable block size, and the corresponding free list is checked.
If there is an entry in the free list, this entry is simply used and deleted from the free list.
Splitting Free Blocks: If the free list is empty (i.e. there are no free memory blocks of this size,)
a larger block is selected (using the free list of some larger block size) and split. Whenever a free
memory block is split in two, one block gets either used or further split, and the other — its buddy
— is added to its corresponding free list.

'Reminder: Fibonacci numbers satisfy the recursive relation F(k) = F(k — 1) + F(k — 2). The numbers 1, 2, 3,
5, 8, 13, 21, ... are Fibonacci numbers.
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Example: In the example above, there is no block of size 3 available (i.e. the free list for size 3 is
empty). The same holds for size-5 blocks. The next-size available block is of size 13. The allocator
therefore selects a block, say B, of size 13 (after deleting it from the free list). It then splits B into
two blocks, By, of size 5 and Bp of size 8. Block Bpg is added to the size-8 free list. Block By, is
further split into By, of size 2 and By of size 3. Block By, is returned by the request, while B r
is added to the size-2 free list.

In this example, the blocks By, and Bpr are buddies, as are By, and Bpg.

Coalescing Free Blocks: As more blocks get allocated and freed, the process above leads to
lots of small free blocks, with no large free blocks left. Large free blocks are created by coalescing
buddies: Two buddies — which by construction are neighboring — can be coalesced into a large free
block if both buddies are free.

Coalescing can happen at different points in time, but is done most conveniently whenever a
memory block is freed: If the buddy is free as well, the two buddies can be combined to form a
single free memory block.

Example: Assume that By and Bg are free, and that we are just freeing Brr. In this case,
Brr and Brg can be coalesced into the single block By. We therefore delete By from its free
list and proceed to insert the newly formed By, into its free list. Before we do that, we check with
its buddy Bg. In this example, Bpg is free, which allows for By and Bg to be coalesced in turn,
to form the block B of size 13. In this process, Block Bpg is removed from its free list and the
newly-formed block B is added to the size-13 free list.

Finding and Coalescing Buddies: The buddy system performs two operations on (free) memory
blocks, splitting and coalescing. Whenever we split a free memory block of size F;, (where F,, denotes
the n:h Fibonacci number), with start address A, we generate two buddies: a left buddy with start
address A and size F,_o, and a right one with start address A 4+ F,,_» and size F;,_1.

Right Buddy or Left Buddy? When attempting to coalesce a free block, say Bx with its buddy,
it is first necessary to know (a) what size the free block is, and (b) whether the free block is a right
or a left block. Once this is known, the size and the start point of the buddy can be determined.
If the buddy is free as well, the two blocks can be coalesced into a single, larger block. Note that
we need to be able to infer whether the larger block is a right or a left block if it ever needs to be
coalesced with its own buddy.

All this information can be maintained with the following trick: The size of the block (or
better, its Fibonacci number index) is stored with the block. In order to maintain the Left/Right
information of blocks ( In addition, two bits are stored with each block. We call them the Left/Right
bit and the Inheritance bit.

Whenever we split a block, the left child’s Left/Right bit is set to Left, and the right child’s bit
is set to Right. In addition, we set the left child’s Inheritance bit to be the Left/Right bit of the
parent. The right child’s Inheritance bit is set to the Inheritance bit of the parent.

Whenever we coalesce two blocks, the Left/Right bit of the new block is equal to the Inheritance
bit of the left child, and the Inheritance bit of the new block is equal to the Inheritance bit of the
right child.

In this fashion, information about buddies can be maintained across splits and merges.

Managing the Free List: You want to minimize the amount of space needed to manage the
Free List. For example, you do not want to implement the lists using traditional means, i.e. with
dynamically-created elements that are connected with pointers. An easy solution is to use the
free memory blocks themselves to store the free-list data. For example, the first bytes of each free
memory block would contain the pointer to the previous and to the next free memory block of the
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same size. The pointers to the first and last block in each free list can easily be stored in an array
of pointers, two for each allowable block size.

Note on Block Size: If you decide to put management information into allocated blocks (e.g.
the size, as described above), you have to be careful about how this may affect the size of the
allocated block. For example, when you allocate a block of size 5, and add an 8-word header to
the block, you are actually allocating a 5 blocks +8 Word, which requires a block of size 8! (This
is extremely wasteful.)

Where does my allocator get the memory from? Inside the initializer you will be allocating
the required amount of memory from the run time system, using the malloc() command. Don’t
forget to free this memory when you release the allocator.

What does my malloc() return? In the case above, putting the management information block
in front of the the allocated memory block is as good a place as any. In this case make sure that your
my_malloc () routine returns the address of the allocated block, not the address of the management
info block.

Initializing the Free List and the Free Blocks: You are given the size of the available memory
as argument to the init () method. The given memory size is likely not a Fibonacci number. You
are to partition the memory into a sequence of Fibonacci-number sized blocks and initialize the
blocks and the free list accordingly.

The Assignment

You are to implement a buddy-system memory manager that allocates memory in blocks with sizes
that are Fibonacci-number multiples of a basic block size. The basic block size is given as an
argument when the allocator is initialized.

e The memory allocator shall be implemented as a C module my_allocator, which consists
of a header file my_allocator.h and my_allocator.c. (A copy of the header file and a
rudimentary preliminary version of the .c file are provided.)

e Evaluate the correctness (up to some point) and the performance of your allocator. For this
you will be given the source code of a function with a strange implementation of a highly-
recursive function (called Ackermann function). In this implementation of the Ackermann
function, random blocks of memory are allocated and de-allocated sometime later, generating
a large combination of different allocation patterns. The Ackerman function is provided in
form of two files, i.e., the header file ackerman.h with the interface definition of the ackerman
function, and the implementation in file ackerman.c.

e You will write a program called memtest, which reads the basic block size and the memory
size (in bytes) from the command line, initializes the memory, and then calls the Ackermann
function. It measures the time it takes to perform the number of memory operations. Make
sure that the program exits cleanly if aborted (using atexit() to install the exit handler.)

e Use the getopt () C library function to parse the command line for arguments. The synopsis
of the memtest program is of the form
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memtest [-b <blocksize>] [-s <memsize>]

-b <blocksize> defines the block size, in bytes. Default is 128
bytes.

-s <memsize> defines the size of the memory to be allocated, in
bytes. Default is 512kB.

e Repeatedly invoke the Ackerman function with increasingly larger numbers of values for n
and m (be careful to keep n < 3; the processing time increases very steeply for larger numbers
of n). Identify at least one point that you may modify in the simple buddy system described
above to improve the performance, and argue why it would improve performance.

e Make sure that the allocator gets de-allocated (and its memory freed) when the program
either exits or aborts (for example, when the user presses Ctrl-C). Use the atexit library
function for this.

What to Hand In

e You are to hand in three files, with names my_allocator.h
and my_allocator.c, which define and implement your memory allocator, and memtest.c,
which implements the main program. [(THE HEADER FILE my_allocator.h WILL LIKELY NOT
CHANGE FROM THE PROVIDED FILE. IF YOU NEED TO CHANGE IT, GIVE A COMPELLING
REASON IN THE MODIFIED SOURCE CODE.)]

e Hand in a file (called analysis.pdf, in PDF format) with the analysis of the effects on
the performance of the system for increasing numbers of allocate/free operations. Vary this
number by varying the parameters n and m in the Ackerman function. Determine where
the bottlenecks are in the system, or where poor implementation is affecting performance.
Identify at least one point that you would modify in this simple implementation to improve
performance. Argue why it would improve performance. The complete analysis can be made
in 500 words or less, and one or two graphs. Make sure that the analysis file contains your
name.

e Grading of these MPs is a very tedious chore. These handin instructions are meant to mitigate
the difficulty of grading, and to ensure that the grader does not overlook any of your efforts.

e Failure to follow the handing instructions will result in lost points.
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