
CPSC–313 / Summer 2012 Machine Problem 1

Machine Problem 1: A Simple Memory Allocator

100 points
Due date: To Be Announced

Introduction

In this machine problem, you are to develop a simple memory allocator that implements the
functions my malloc() and my free(), very similarly to the UNIX calls malloc() and free().
(Let’s assume that – for whatever reason – you are unhappy with the memory allocator provided
by the system.) The objectives of this Machine Problem are

• Package a simple module with some static data as a separately compiled unit.
• Become deeply familiar with pointer management and array management in the C language

(or C++ for that matter).
• Become familiar with standard methods for handling of command-line arguments in a C/UNIX

environment.
• Become familiar with simple UNIX development tools (compiler, make, debugger, object file

inspector, etc.)

Background: Kernel Memory Management. The kernel is managing the physical memory
both for itself and for the system and user processes. The memory occupied by the kernel code and
its data is reserved and is never used for any other purpose. Other physical memory may be used
as frames for virtual memory, for buffer caches, and so on. Most of this memory must be allocated
and de-allocated dynamically, and an infrastructure must be in place to keep track which physical
memory is in use, and by whom.

Ideally, physical memory should look like a single, contiguous segment from which an allocator
can take memory portions and return them. This is not the case in most systems. Rather, different
segments of physical memory have different properties. For example, DMA may not be able to
address physical memory above 16MB. Similarly, the system may contain more physical memory
than can be directly addressed, and the segments above need to be handled using appropriate
memory space extension mechanisms. For all these reasons, many operating systems (for example
Linux) partition the memory into so-called zones, and treat each zone separately for allocation
purposes. Memory allocation requests then typically come with a list of zones that can be used to
satisfy the request. For example, a particular request may be preferably satisfied from the “normal”
zone. If that fails, from the high-memory zone that needs special access mechanisms. Only if that
fails too, the allocation may attempt to allocation from the DMA zone.

Within each zone, many systems (for example Linux) use a buddy-system allocator to allocate
and free physical memory. This is what you will be providing in this machine problem (for a single
zone, and of course not at physical memory level).

Your Assignment. You are to implement a C module (.h and .c files) that realizes a memory
allocator as defined by the following file my allocator.h:

#ifndef _MY_ALLOCATOR_H_
#define _MY_ALLOCATOR_H_

/* File: my_allocator.h */

Page 1

CPSC–313 / Summer 2012 Machine Problem 1

typedef void * Addr;

unsigned int init_allocator(unsigned int _basic_block_size, unsigned int _length);
/* This function initializes the memory allocator and makes a portion of

’_length’ bytes available. The allocator uses a ’_basic_block_size’ as
its minimal unit of allocation. The function returns the amount of
memory made available to the allocator. If an error occurred, it returns 0. */

int release_allocator();
/* This function returns any allocated memory to the operating system.

After this function is called, any allocation fails. */

Addr my_malloc(unsigned int _length) {};
/* Allocate _length number of bytes of free memory and returns the

address of the allocated portion. Returns 0 when out of memory. */

int my_free(Addr _a) {};
/* Frees the section of physical memory previously allocated

using ’my_malloc’. Returns 0 if everything ok. */

#endif

You are to provide the implementation of the memory allocator in form of the file my allocator.c.
The memory allocator you are supposed to implement is based on the so-called “Buddy-System”
scheme. (A description of this scheme is given in Section 9.8.1 of the Silbershatz et al. textbook. A
more detailed description is given in Section 2.5 of D. Knuth, “The Art of Computer Programming.
Volume 1 / Fundamental Algorithms”. We give a short overview below.)

Buddy-System Memory Allocation:

In our buddy-system memory allocator, memory block sizes are a power of two, starting at the
basic block size. For example, if 9kB of memory are requested, the allocator returns 16kB, and
7kB goes wasted – this is called fragmentation. This restriction on allowable block sizes makes the
management of free memory blocks very easy: The allocator keeps an array of free lists, one for each
allowable block size. Every request is rounded up to the next allowable size, and the corresponding
free list is checked. If there is an entry in the free list, this entry is simply used and deleted from
the free list.

If the free list is empty (i.e. there are no free memory blocks of this size,) a larger block is
selected (using the free list of some larger block size) and split. Whenever a free memory block is
split in two, one block gets either used or further split, and the other – its buddy – is added to its
corresponding free list.

Example: In the example above, there is no 16kB block available (i.e. the free list for 16kB
is empty). The same holds for 32kB blocks. The next-size available block is of size 64kB. The
allocator therefore selects a block, say B, of size 64kB (after deleting it from the free list). It then
splits B into two blocks, BL and BR of 32kB each. Block BR is added to the 32kB free list. Block
BL is further split into BLL and BLR of size 16 kB each. Block BLL is returned by the request,
while BLR is added to the 16kB free list.

Page 2

CPSC–313 / Summer 2012 Machine Problem 1

In this example, the blocks BL and BR are buddies, as are BLL and BLR.
Whenever a memory block is freed, it may be coalesced with its buddy: If the buddy is free

as well, the two buddies can be combined to form a single memory block of twice the size of each
buddy.

Example: Assume that BLL and BR are free, and that we are just freeing BLR. In this case,
BLL and BLR can be coalesced into the single block BL. We therefore delete BLL from its free list
and proceed to insert the newly formed BL into its free list. Before we do that, we check with its
buddy BR. In this example, BR is free, which allows for BL and BR to be coalesced in turn, to form
the 64kB block B. In this process, Block BR is removed from its free list and the newly-formed
block B is added to the 64kB free list.
Finding Buddies: The buddy system performs two operations on (free) memory blocks, splitting
and coalescing. Whenever we split a free memory block of size 2s with start address A, we generate
two buddies: one with start address A, and the other with start address A with the (s − 1)th bit
flipped.

Finding the buddy of a block being freed is just as simple when the size of the block is known:
The address of the buddy block is determined by flipping the appropriate bit of the block’s start
address, just as is the case when we split a block. The problem is: How to get hold of the block size?
The easy way is to explicitly store it at the beginning of the allocated block, as part of a header.
This wastes memory. Alternatively, the size can be implicitly infered from other data, typically
stored in the free list. For example, Linux uses a buddy bitmap for each free list. In this bitmap,
each bit represents two adjacent blocks of the same size. The bit is “0” if both the blocks are either
full or free, and is “1” if exactly one block is free and the other is allocated. By comparing these
bits for increasing block sizes we can infer the current block size. This is also not pretty, as the
sizes of the bitmaps depends on the amount of memory available.

Managing the Free List: You want to minimize the amount of space needed to manage the
Free List. For example, you do not want to implement the lists using traditional means, i.e. with
dynamically-created elements that are connected with pointers. An easy solution is to use the
free memory blocks themselves to store the free-list data. For example, the first bytes of each free
memory block would contain the pointer to the previous and to the next free memory block of the
same size. The pointers to the first and last block in each free list can easily be stored in an array
of pointers, two for each allowable block size.

Note on Block Size: If you decide to put management information into allocated blocks (e.g.
the size, as described above), you have to be careful about how this may affect the size of the
allocated block. For example, when you allocate a 4kB block, and add an 8-word header to the
block, you are actually allocating a 4kB+8Word block, which requires an 8kB block! (This is
extremely wasteful.)

Where does my allocator get the memory from? Inside the initializer you will be allocating
the required amount of memory from the run time system, using the malloc() command. Don’t
forget to free this memory when you release the allocator.

What does my malloc() return? In the case above, putting the management information block
in front of the the allocated memory block is as good a place as any. In this case make sure that your
my malloc() routine returns the address of the allocated block, not the address of the management
info block.

Page 3

CPSC–313 / Summer 2012 Machine Problem 1

Initializing the Free List and the Free Blocks: You are given the size of the memory zone as
argument to the init() method. The given memory size is likely not a power-of-two number. You
are to partition the memory into a sequence of power-of-to sized blocks and initialize the blocks
and the free list accordingly.

The Assignment

You are to implement a buddy-system memory manager that allocates memory in blocks with sizes
that are powers of two, starting at a block size that is given as an argument when the allocator is
initialized.

• The memory allocator shall be implemented as a C module my allocator, which consists of
a header file my allocator.h and my allocator.c. [(A copy of the header file and a
rudimentary preliminary version of the .c file are provided.)]

• Evaluate the correctness (up to some point) and the performance of your allocator. For this
you will be given the source code of a function with a strange implementation of a highly-
recursive function (called Ackermann function). In this implementation of the Ackermann
function, random blocks of memory are allocated and de-allocated sometime later, gener-
ating a large combination of different allocation patterns. [The Ackerman function
is provided in form of two files, i.e., the header file ackerman.h with the in-
terface definition of the ackerman function, and the implementation in file
ackerman.c.)]

• You will write a program called memtest, which reads the basic block size and the memory
size (in bytes) from the command line, initializes the memory, and then calls the Ackermann
function. It measures the time it takes to perform the number of memory operations. Make
sure that the program exits cleanly if aborted (using atexit() to install the exit handler.)

• Use the getopt() C library function to parse the command line for arguments. The synopsis
of the memtest program is of the form

memtest [-b <blocksize>] [-s <memsize>]

-b <blocksize> defines the block size, in bytes. Default is 128
bytes.

-s <memsize> defines the size of the memory to be allocated, in
bytes. Default is 512kB.

• Repeatedly invoke the Ackerman function with increasingly larger numbers of values for n
and m (be careful to keep n ≤ 3; the processing time increases very steeply for larger numbers
of n). Identify at least one point that you may modify in the simple buddy system described
above to improve the performance, and argue why it would improve performance.

• [Make sure that the allocator gets de-allocated (and its memory freed) when
the program either exits or aborts (for example, when the user presses Ctrl-
C). Use the atexit library function for this.]

Page 4

CPSC–313 / Summer 2012 Machine Problem 1

What to Hand In

• You are to hand in three files, with names my allocator.h
and my allocator.c, which define and implement your memory allocator, and memtest.c,
which implements the main program. [(The header file my allocator.h will likely not
change from the provided file. If you need to change it, give a compelling
reason in the modified source code.)]

• Hand in a file (called analysis.pdf, in PDF format) with the analysis of the effects on
the performance of the system for increasing numbers of allocate/free operations. Vary this
number by varying the parameters n and m in the Ackerman function. Determine where
the bottlenecks are in the system, or where poor implementation is affecting performance.
Identify at least one point that you would modify in this simple implementation to improve
performance. Argue why it would improve performance. The complete analysis can be made
in 500 words or less, and one or two graphs. Make sure that the analysis file contains your
name.

• Grading of these MPs is a very tedious chore. These handin instructions are meant to mitigate
the difficulty of grading, and to ensure that the grader does not overlook any of your efforts.

• Failure to follow the handing instructions will result in lost points.

Page 5

