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Lemma 1 A unitary matrix U € U(2) can be expressed in the form

U = ¢ia e 0 cosc —sinc) [e ™ 0
0 ¢®) \sinc cosc 0 ed)’

for some real numbers a,b, c, and d.

Proof. We can write U in the form U = ¢V, where V is some unitary matrix

with determinant 1. The matrix V' has to be of the form V = (g _§> Indeed,

the columns of a unitary matrix are orthogonal, hence the right column of V'
has to be a multiple of (—3,@)!; and the determinant constraint forces V to
be of the given form. We can write o and £ in the form o = e cosc and 3 =
e¢'* sin ¢ for some real numbers h, k, ¢, because a and 3 satisfy |a|? + |3|> = 1;

it follows that
V= e cose —etksine
“\e%*sine e cosc)”

We can find real numbers b and d satisfying h = —d — b and kK = d — b, hence
V= e~ Hbtd) o5 ¢ —eild=D) gin ¢ B e cosc —sinc) (e 0

- b= gine elbtd) cose) — 0 e sinc cosc 0 éd)
which proves the claim. B

Let us denote by S(b) and R(c) the matrices

e 0 cosc —sinc
S5(b) = < 0 eib> and  R(c) = (sinc cos c> ’

The statement of the previous lemma is that a unitary matrix can be written
in the form U = €"*S(b)R(c)S(d) for some a,b,c,d € R. Notice that

XR(c)X = R(—c¢) and XS(b)X = S(-b).



Theorem 1 For each unitary matrix U € U(2) there exist matrices A, B, C,

and E in U(2) such that
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Proof. If U = ¢“S(b)R(c)S(d), choosing the matrices

C =S(b)R(¢c/2),  B=R(—¢/2)S(—(d+b)/2),
A=5((d—-1)/2), E = diag(1, €'),

yields the desired result. Indeed, we have CBA = 1. Therefore, the circuit
on the right hand side yields on input of |00) and |01) the same result as the
controlled-U gate. Using X2 = 1, we obtain for CX BX A the expression

CXBXA = S(B)R(¢/2) X R(—¢/2)XXS(—(d+b)/2) X S((d —b)/2),
C B A
which simplifies to CXBXA = S(b)R(c/2)R(¢/2)S((d + b)/2)S((d —b)/2) =

S(b)R(c)S(d). Tt follows that |1) ® |¢) is transformed by the circuit on the
right hand side to

¢[1) ® S()R(c)S(d)]¢) = [1) ® Ul),

which coincides with the action of the controlled-U gate. B



