
Twisted Filter Banks

Andreas Klappenecker

Texas A&M University, Department of Computer Science

College Station, TX 77843-3112, USA

klappi@cs.tamu.edu

Telephone: ++1 979 458 0608

September 7, 2004

Abstract

The main idea of a filter bank is to transform an input signal by subjecting it to some

convolution operations, possibly followed by sampling rate reductions. We extend this idea

to filter banks that are based on more general twisted convolution operations, which are

not necessarily time invariant. Roughly speaking, a twisted convolution is obtained from

the well-known convolution operations by allowing certain additional scalar factors in the

multiplication operations. We discuss basic properties of these filter banks.

EDICS 1.TFSR

1

1 Introduction

The filter banks in this paper are based on so-called twisted convolutions, which generalize the

usual convolution operations. We motivate this notion by a simple example that shows the

essence of these operations. For simplicity, we confine ourselves to one-dimensional complex

signals and filters (but we discuss this example with a view towards more general situations).

We find it convenient to express the signals and filters as Laurent-polynomials with complex

coefficients, that is, we adopt a z-transform point-of-view.

Suppose that the filter is given by a delay f(z) = z i and the signal s(z) = zj by a delta

sequence. Recall that the usual convolution corresponds to f(z)s(z) = z i+j. The result of a

twisted convolution f(z)#s(z) for this signal and filter is given by

f(z)#s(z) = ω(i, j)zi+j , (1)

where ω(i, j) denotes a nonzero scalar factor. Without further constraints, this would be a rather

unwieldy operation, since it is not necessarily associative. The associativity of # is guaranteed

if the function ω:Z× Z → C× satisfies

ω(i, j)ω(i + j, k) = ω(j, k)ω(i, j + k) (2)

for all i, j, k ∈ Z, as we will see in the next section. In addition, we will assume that ω satisfies

the normalization condition

ω(0, x) = ω(x, 0) = 1 (3)

for all x ∈ Z.

The twisted convolution # is in general a time-varying operation. However, the constraints

(2) ensure that is does not behave completely arbitrary. And this allows us to develop a filter

bank theory for twisted convolutions that closely resembles the traditional theory. There are

some subtle changes, however, since # might fail to be commutative.

This paper is organized as follows. We will extend the twisted convolution operation to more

general one-dimensional signals in the next section. We derive some basic properties of twisted

2

convolutions in section 3. In section 4, we discuss two-channel filter banks based on twisted

convolutions. In particular, we give necessary and sufficient conditions for perfect reconstruction

of the input signals. We derive a simple implementation of a class of twisted convolutions in

section 5. We show in section 6 that actually all twisted convolutions can be implemented with

the method described in section 5; this is a peculiar property of the one-dimensional case.

2 Twisted Convolutions

The signals and filters in this section are Laurent polynomials with complex coefficients. We

extend the twisted convolution (1) by linearity to signals and filters in C[z, 1/z]. Thus, the

twisted convolution of f(z) =
∑

i∈Z
fiz

i by s(z) =
∑

j∈Z
sjz

j is given by

f(z)#s(z) =
∑

i∈Z

∑

j∈Z

ω(i, j)fi sj zi+j, (4)

which can also be written as

f(z)#s(z) =
∑

k∈Z





∑

j∈Z

ω(k − j, j)fk−jsj



zk. (5)

Lemma 1 The twisted convolution # is an associative operation if and only if the condition

(2) holds for all i, j, k ∈ Z.

Proof. Let a(z) = zi, b(z) = zj , and c(z) = zk, then the equation (a(z)#b(z))#c(z) =

a(z)#(b(z)#c(z)) implies that (2) must hold for i, j, k ∈ Z. The converse follows directly

from the definitions. Indeed, applying (4) to arbitrary Laurent polynomials a(z) =
∑

aiz
i,

b(z) =
∑

bjz
j , c(z) =

∑

ckz
k yields

(a(z)#b(z))#c(z) =
∑

i,j,k

ω(i, j)ω(i + j, k)aibjckz
i+j+k

and, using (2), we obtain

∑

i,j,k

ω(j, k)ω(i, j + k)aibjckz
i+j+k = a(z)#(b(z)#c(z))

3

which proves associativity. 2

From now on, we will assume that (2) is satisfied, so that # is always associative. We refer

to the function ω:Z × Z → C× associated with # as its factor set.

3 Twisted Calculus

We collect in this section a few simple rules that are helpful when dealing with twisted convo-

lution operations. We focus only on elements that are useful in the following sections.

Twisted Delays. The operation # is associative, but it is not clear whether it is commutative.

For instance, a(z)#z` might fail to be the same as z`#a(z). However, we can express a(z)#z`

in the form z`#a′(z) as follows. Let a(z) =
∑

i∈Z
aiz

i, then

(

∑

i∈Z
aiz

i
)

z` =
∑

i∈Z

ω(i, `)aiz
i+`

= z`#
(

∑

i∈Z

ω(i, `)

ω(`, i)
aiz

i
)

.

Notice that the coefficients of a′(z) are readily obtained from the coefficients of a(z). This

calculation also shows that # is commutative if and only if ω(x, y) = ω(y, x) holds for all

x, y ∈ Z.

A consequence of this fact is that a(`)(z) := z−`#a(z)#z` is given by

a(`)(z) = ω(−`, `)
∑

i∈Z

ω(i, `)

ω(`, i)
aiz

i

This will be useful in the next section on two-channel filter banks. The somewhat annoying

scalar ω(−`, `) is a result of the simplification z−`#z` = ω(−`, `).

Polyphase Decomposition. A polyphase decomposition of a signal is a very convenient tool

in the analysis of multirate filter banks. For instance, we can write a Laurent polynomial in the

form

a(z) = ae(z
2) + z`#ao(z

2) (6)

4

where ` is an odd integer. Indeed, if a(z) =
∑

k∈Z
akz

k, then the even part is ae(z) =
∑

a2kz
k and

the odd part is ao(z) =
∑

k ω(`, 2k)−1a2k+`z
k; the scalars 1/ω(`, 2k) in the odd part compensate

for the factors introduced by the operation #.

Up- and Downsampling. Sampling rate conversions are done as usual. Reducing the sam-

pling rate by a factor of two is done with the help of the operator [2↓]. The effect of this

operator on a Laurent polynomial a(z) is

[2↓]a(z) = ae(z)

where ae(z) is the Laurent polynomial defined in (6). The effect of the upsampling operator

[2↑] on a Laurent polynomial a(z) is

[2↑]a(z) = a(z2).

Unfortunately, the sampling rate is essential in twisted convolutions. Although [2↓][2↑]a(z) =

a(z) holds, the result of

[2↓]
(

([2↑]a(z))# ([2↑]b(z2))
)

differs in general from a(z)#b(z). Thus, we cannot easily operate twisted convolutions of up-

sampled sequences at a lower sampling rate.

Twisted Laurent Polynomial Ring. Finally, we want to emphasize some properties of the

data structure of twisted Laurent polynomials. We are particularly interested in the operations

+ and #. We note that these operations are connected by the distributive laws

a(z)#(b(z) + c(z)) = a(z)#b(z) + a(z)#c(z),

(a(z) + b(z))#c(z) = a(z)#c(z) + b(z)#c(z).

Let us denote by Cω[z, 1/z] the set of Laurent polynomials equipped with addition + and with

twisted convolution # as a multiplication rule. Then Cω[z, 1/z] is a ring. The multiplicative

identity is 1, since 1#x` = ω(0, `)x` = x` holds, as a result of the normalization condition (3).

5

4 Two-Channel Filter Banks

We describe in this section twisted two-channel filter banks with critical subsampling. Our main

focus will be on the perfect reconstruction property.

Analysis. In the analysis part, an input signal s(z) is subjected to twisted convolutions with

two filters f(z) and g(z), followed by a sampling rate reduction. One obtains two intermediate

signals df (z) = [2↓](f(z)#s(z)) and dg(z) = [2↓](g(z)#s(z)).

Synthesis. In the synthesis stage, an upsampling operation is applied to the intermediate

signals, twisted convolutions with synthesis filter are applied, and finally the two resulting signals

are added. In other words, the resulting signal r(z) is given by

r(z) = [f̃(z)#[2↑]df (z)] + [g̃(z)#[2↑]dg(z)].

We will now focus on the following question: How do we have to choose the filters such that

r(z) = s(z) for all s(z) ∈ Cω[z, 1/z]?

The polyphase decomposition will be helpful to answer this question. We find it convenient

to write the input signal s(z) in the form

s(z) = se(z
2) + z#so(z

2),

and the analysis filter as

f(z) = fe(z
2) + z−1#fo(z

2),

g(z) = ge(z
2) + z−1#go(z

2).
(7)

Using these polyphase decompositions, the upsampled form of the intermediate signals df (z)

can be written as

A = [2↑][2↓](f(z)#s(z))

= fe(z
2)#se(z

2) + f
(1)
o (z2)#so(z

2),

where f
(1)
o (z2) = z−1#fo(z

2)#z, and the coefficients of this polynomial can be explicitly de-

termined by the formula derived in subsection 3. Note that we used the fact that the terms

6

[2↓]z−1#fo(z
2)#se(z

2) and [2↓]fe(z
2)#z#so(z

2) vanish. A similar calculation shows that the

upsammpled result of the other channel is

B = [2↑][2↓](g(z)#s(z))

= ge(z
2)#se(z

2) + g∗o(z
2)#so(z

2).

We also express the synthesis filters in terms of their polyphase components

f̃(z) = f̃e(z
2) + z#f̃o(z

2),

g̃(z) = g̃e(z
2) + z#g̃o(z

2).
(8)

Applying the distributive law shows that f̃(z)#A is equal to

f̃e(z
2)#

[

fe(z
2)#se(z

2) + f
(1)
o (z2)#so(z

2)
]

+z#f̃o(z
2)#

[

fe(z
2)#se(z

2) + f
(1)
o (z2)#so(z

2)
]

and similarly that g̃(z)#B is equal to

g̃e(z
2)#

[

ge(z
2)#se(z

2) + g
(1)
o (z2)#so(z

2)
]

+z#g̃o(z
2)#

[

ge(z
2)#se(z

2) + g
(1)
o (z2)#so(z

2)
]

.

Thus, we can write r(z) in the form

(1, z)







f̃e(z
2) g̃e(z

2)

f̃o(z
2) g̃o(z

2)













fe(z
2) f

(1)
o (z2)

ge(z
2) g

(1)
o (z2)













se(z
2)

so(z
2)







where the multiplication of the terms is understood to be the twisted convolution #, i.e., the

arithmetic is over the twisted Laurent polynomial ring Cω[z, 1/z].

Summary. We need to introduce some terminology to record our result. Suppose that f and

g are the analysis filters of the filter bank. The twisted analysis polyphase matrix is given by

Hp(z) =







fe(z
2) f

(1)
o (z2)

ge(z
2) g

(1)
o (z2)






,

7

where the entries are determined by (7). Recall that a(1)(z) denotes z−1#a(z)#z, cf. Subsec-

tion 3. The synthesis polyphase matrix of the synthesis filters f̃ and g̃ is given by

Gp(z) =







f̃e(z
2) g̃e(z

2)

f̃o(z
2) g̃o(z

2)






,

where the entries are determined by (8). We can summarize our findings by the following

theorem:

Theorem 2 A critically subsampled twisted 2-channel filter bank is perfect reconstructing if and

only if the synthesis polyphase matrix Gp(z) is the left inverse of the twisted analysis polyphase

matrix Hp(z), that is, if and only if

Gp(z)Hp(z) = 1

where 1 denotes the identity matrix in the matrix ring Mat2(C
ω[z, 1/z]).

5 Implementation with a Twist

We have not yet said anything about the implementation of a twisted convolution. The im-

plementation of a convolution (without twist) is well-understood, so it seems natural to start

from there. We will derive twisted versions with the help of a traditional convolution and some

multipliers.

A convolution operation has two inputs and one output. We modify this convolution op-

eration by pointwise multiplication of each input with a sequence (α(n)) of nonzero complex

coefficients, and pointwise multiplication of the output with the inverse sequence (α−1(n)). We

only require that α(0) = 1. Then, for instance, the input a(z) = z i and b(z) = zj yields the

output

a(z)#b(z) =
α(i)α(j)

α(i + j)
zi+j .

8

In other words, we obtained a twisted convolution with factor set

ω(i, j) =
α(i)α(j)

α(i + j)
. (9)

One readily checks that the conditions (2) and (3) are indeed satisfied for our choice of ω.

6 Untwisting Weirdness

We gave an implementation for twisted convolutions of the form (9) in the previous section. In

this section, we would like to get an idea how restrictive the assumption (9) is. The twisted

convolutions in the previous section seem to be pretty specialized; for instance, if the factor set

ω is of the form (9) then the associated twisted convolution operation # is commutative.

Notice that the method to derive a twisted convolution from an ordinary convolution can

also be applied to twisted convolutions. We then obtain from a twisted convolution #1 with

factor set ω1 a new twisted convolution #2 with factor set ω2 such that

ω2(i, j) =
α(i)α(j)

α(i + j)
ω1(i, j). (10)

We say that the twisted convolutions #1 and #2 are similar, #1 ∼ #2, if and only if the exists a

sequence of nonzero complex coefficients (α(n))n∈Z, with α(0) = 1, such that the corresponding

factor sets satisfy (10). It is easy to see that ∼ is an equivalence relation on the set of twisted

convolutions.

Theorem 3 All twisted convolution operations on one-dimensional complex Laurent polynomi-

als are similar to the traditional convolution operation.

Proof. Note that the factor sets, that is, the functions ω : Z × Z → C× satisfying (2) and (3),

form a group under pointwise multiplication; we denote this group by Z 2(Z). The factor sets

of the form (9) constitute a normal subgroup B2(Z) of the group Z2(Z). The quotient group

9

Z2(Z)/B2(Z) is known as the Schur multiplier of the cyclic group Z, and it is isomorphic to the

second cohomology group

H2(Z,C×) ∼= Z2(Z)/B2(Z).

It is well-known that H2(Z,C×) is trivial, see [1, p. 58]. Thus, all factor sets are of the form

(9). 2

7 Conclusions and Outlook

We have introduced a novel class of filter banks which are based on twisted convolutions instead

of traditional convolutions. The same idea can be applied to higher dimensional filter banks [5],

cyclic filter banks [4], filter banks over finite fields [3], and even filter banks over commutative

rings [2]. Typically, we do not have an analogue of Theorem 3 in these cases. For instance, filter

banks in higher dimensions admit many twisted convolution operations that are not similar to

the traditional convolution. The derivation of the perfect reconstruction conditions, however,

follow the same token as in the simple case presented in this paper. The twisted convolutions

provide interesting examples of time-varying linear systems. We have outlined the basic theory

of these filter banks. It is an interesting question whether the great flexibility of twisted filter

banks can help to improve upon traditional filter bank applications.

References

[1] K.S. Brown. Cohomology of Groups. GTM 87. Springer-Verlag, New York, 1982.

[2] A. Klappenecker, M. Holschneider, and K. Flornes. Two-channel perfect reconstruction FIR
filter banks over commutative rings. Appl. Comp. Harm. Analysis, 8:113–121, 2000.

[3] S.-M. Phoong and P.P. Vaidyanathan. Paraunitary filter banks over finite fields. IEEE
Trans. on Signal Processing, 45:1443–1457, 1997.

[4] P.P. Vaidyanathan and A. Kirac. Cyclic LTI systems in digital signal processing. IEEE
Trans. on Signal Processing, 47:433–447, 1999.

[5] M. Vetterli and J. Kovačević. Wavelets and Subband Coding. Prentice Hall, 1995.

10

