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Abstract Recently, the field of quantum error-correcting codes has
rapidly emerged as an important discipline. As quantum information
is extremely sensitive to noise, it seems unlikely that any large scale
quantum computation is feasible without quantum error-correction. In
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this paper we give a brief exposition of the theory of quantum stabilizer
codes. We review the stabilizer formalism of quantum codes, establish
the connection between classical codes and stabilizer codes and the main
methods for constructing quantum codes from classical codes. In addi-
tion to the expository part, we include new results that cannot be found
elsewhere. Specifically, after reviewing some important bounds for quan-
tum codes, we prove the nonexistence of pure perfect quantum stabilizer
codes with minimum distance greater than 3. Finally, we illustrate the
general methods of constructing quantum codes from classical codes by
explicitly constructing two new families of quantum codes and conclude
by showing how to construct new quantum codes by shortening.

1.1 Introduction

Quantum error-correcting codes were introduced by Shor [54] in the
wake of serious doubts cast over the practical implementation of quan-
tum algorithms. Since then the field has made rapid progress and
the pioneering works of Gottesman and Calderbank et al., [10, 22] re-
vealed a rich structure underlying the theory of quantum stabilizer codes.
Their work spurred many researchers to study binary quantum codes,
see [5–7,9,11,14–17,21,23,24,26–30,32,37,38,40,47,50,54,56–59]. The
theory was later extended to the nonbinary case [1–3,8,12,13,18,19,25,
31, 33, 36, 39, 45, 48, 49, 51–53]. This paper surveys the theory of nonbi-
nary stabilizer codes – arguably, the most important class of quantum
codes. There exists sufficient machinery to describe them compactly and
make useful connections with classical coding theory. Moreover, they are
very amenable to fault-tolerant implementation which makes them very
attractive from a practical point of view.

We aim to provide an accessible introduction to the theory of non-
binary quantum codes. Section 1.2 gives a brief overview of the main
ideas of stabilizer codes while Section 1.3 reviews the relation between
quantum stabilizer codes and classical codes. This connection makes it
possible to reduce the study of quantum stabilizer codes to the study of
self-orthogonal classical codes, though the definition of self-orthogonality
is a little broader than the classical one. Further, it allows us to use all
the tools of classical codes to derive bounds on the parameters of good
quantum codes. Section 1.4 gives an overview of the important bounds
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for quantum codes. Finally, Section 1.5 illustrates the general ideas be-
hind quantum code construction by constructing the quantum Hamming
codes, some cyclic quantum codes and codes from projective geometry.

While this paper is primarily an exposition of the theory of nonbinary
stabilizer codes, we also included new results. For instance, we prove
the nonexistence of pure perfect quantum codes with distance greater
than 3. Furthermore, we derive two new families of quantum codes, the
quantum projective Reed-Muller codes and the quantum m-adic residue
codes. Finally, we illustrate the key ideas of shortening quantum codes
by taking the newly introduced quantum projective Reed-Muller codes
as an example.

We tried to keep the prerequisites to a minimum, though we assume
that the reader has a minimal background in quantum computing. Some
familiarity with classical coding theory will help; we recommend [34] and
[46] as references. In general, we omitted long proofs of basic material –
readers interested in more details should consult [36]. However, we made
an effort to keep the overlap with [36] to a minimum, although some
material is repeated here to make this chapter reasonably self-contained.

Notations. The finite field with q elements is denoted by Fq, where
q = pm and p is assumed to be a prime. The trace function from Fql to
Fq is defined as trql/q(x) =

∑l−1
k=0 xqk

, and we may omit the subscripts
if Fq is the prime field. The center of a group G is denoted by Z(G) and
the centralizer of a subgroup S in G by CG(S). We denote by H ≤ G the
fact that H is a subgroup of G. The trace Tr(M) of a square matrix M
is the sum of the diagonal elements of M .

1.2 Stabilizer Codes

In this chapter, we use q-ary quantum digits, shortly called qudits, as
the basic unit of quantum information. The state of a qudit is a nonzero
vector in the complex vector space Cq. This vector space is equipped
with an orthonormal basis whose elements are denoted by |x〉, where x
is an element of the finite field Fq. The state of a system of n qudits
is then a nonzero vector in Cqn

. In general, quantum codes are just
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nonzero subspaces1 of Cqn

. A quantum code that encodes k qudits of
information into n qudits is denoted by [[n, k]]q, where the subscript q
indicates that the code is q-ary. More generally, an ((n,K))q quantum
code is a K-dimensional subspace encoding logq K qudits into n qudits.

As the codes are subspaces, it seems natural to describe them by giving
a basis for the subspace. However, in case of quantum codes this turns
out to be an inconvenient description.2 An alternative description of the
quantum error-correcting code that are discussed in this chapter relies
on error operators that act on Cqn

. If we make the assumption that the
errors are independent on each qudit, then each error operator E can
be decomposed as E = E1 ⊗ · · · ⊗ En. Furthermore, linearity of quan-
tum mechanics allows us to consider only a discrete set of errors. The
quantum error-correcting codes that we consider here can be described
as the joint eigenspace of subgroup of error operators. The subgroup of
error operators is called the stabilizer of the code (because it leaves each
state in the code unaffected) and the code is called a stabilizer code.

1.2.1 Error Bases

In general, we can regard any error as being composed of an amplitude
error and a phase error. Let a and b be elements in Fq. We can define
unitary operators X(a) and Z(b) on Cq that generalize the Pauli X and
Z operators to the q-ary case; they are defined as

X(a)|x〉 = |x + a〉, Z(b)|x〉 = ωtr(bx)|x〉,
where tr denotes the trace operation from Fq to Fp, and ω = exp(2πi/p)
is a primitive pth root of unity.

Let E = {X(a)Z(b) | a, b ∈ Fq} be the set of error operators. The
error operators in E form a basis of the set of complex q × q matrices
as the trace Tr(A†B) = 0 for distinct elements A, B of E . Further, we
observe that

X(a)Z(b)X(a′)Z(b′) = ωtr(ba′)X(a + a′)Z(b + b′). (1.1)

1The more recent concept of an operator quantum error-correcting code generalizes
this notion, but can be reduced to traditional error-correcting codes.
2For instance, for the [[7, 1]]2 code the basis is

|0L〉 = |0000000〉+ |1010101〉+ |0110011〉+ |1100110〉
+|0001111〉+ |0111100〉+ |1011010〉+ |1101001〉,

|1L〉 = |0000000〉+ |1010101〉+ |0110011〉+ |1100110〉
+|0001111〉+ |0111100〉+ |1011010〉+ |1101001〉,

.



1.2. STABILIZER CODES 5

The error basis for n q-ary quantum systems can be obtained by ten-
soring the error basis for each system. Let a = (a1, . . . , an) ∈ Fn

q . Let us
denote by X(a) = X(a1)⊗ · · · ⊗X(an) and Z(a) = Z(a1)⊗ · · · ⊗Z(an)
for the tensor products of n error operators. Then we have the following
result whose proof follows from the definitions of X(a) and Z(b).

LEMMA 1.1
The set En = {X(a)Z(b) |a,b ∈ Fn

q } is an error basis on the complex
vector space Cqn

.

1.2.2 Stabilizer Codes

Consider the error group Gn defined as

Gn = {ωcX(a)Z(b) |a,b ∈ Fn
q , c ∈ Fp}.

Gn is simply a finite group of order pq2n generated by the matrices in
the error basis En.

Let S be an abelian subgroup of Gn, then a stabilizer code Q is a
non-zero subspace of Cqn

defined as

Q =
⋂

E∈S

{v ∈ Cqn | Ev = v}. (1.2)

Alternatively, Q is the joint +1 eigenspace of S. A stabilizer code con-
tains all joint eigenvectors of S with eigenvalue 1, as equation (1.2)
indicates. If the code is smaller and does not contain all the joint eigen-
vectors of S with eigenvalue 1, then it is not a stabilizer code for S.

1.2.3 Stabilizer and Error Correction

Now that we have a handle on the quantum code through its stabilizer,
we next need to be able to describe the performance of the code, that
is, we should be able to tell how many errors it can detect (or correct)
and how the error-correction is done.

The central idea of error detection is that a detectable error acting
on Q should either act as a scalar multiplication on the code space (in
which case the error did not affect the encoded information) or it should
map the encoded state to the orthogonal complement of Q (so that one
can set up a measurement to detect the error). Specifically, we say that
Q is able to detect an error E in the unitary group U(qn) if and only if
the condition 〈c1|E|c2〉 = λE〈c1|c2〉 holds for all c1, c2 ∈ Q, see [43].
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We can show that a stabilizer code Q with stabilizer S can detect
all errors in Gn that are scalar multiples of elements in S or that do
not commute with some element of S, see Lemma 1.2. In particular,
an undetectable error in Gn has to commute with all elements of the
stabilizer.

Let S ≤ Gn and CGn
(S) denote the centralizer of S in Gn,

CGn
(S) = {E ∈ Gn |EF = FE for all F ∈ S}.

Let SZ(Gn) denote the group generated by S and the center Z(Gn).
We need the following characterization of detectable errors.

LEMMA 1.2

Suppose that S ≤ Gn is the stabilizer group of a stabilizer code Q of
dimension dim Q > 1. An error E in Gn is detectable by the quantum
code Q if and only if either E is an element of SZ(Gn) or E does not
belong to the centralizer CGn(S).

PROOF See [36]. See also [3]; the interested reader can find a more
general approach in [41,42].

Since detectability of errors is closely associated to commutativity of
error operators, we will derive the following condition on commuting
elements in Gn:

LEMMA 1.3

Two elements E = ωcX(a)Z(b) and E′ = ωc′X(a′)Z(b′) of the error
group Gn satisfy the relation

EE′ = ωtr(b·a′−b′·a)E′E.

In particular, the elements E and E′ commute if and only if the trace
symplectic form tr(b · a′ − b′ · a) vanishes.

PROOF We can easily verify that EE′ = ωtr(b·a′)X(a + a′)Z(b + b′)
and E′E = ωtr(b′·a)X(a + a′)Z(b + b′) using equation (1.1). Therefore,
ωtr(b·a′−b′·a)E′E yields EE′, as claimed.
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1.2.4 Minimum Distance

The symplectic weight swt of a vector (a|b) in F2n
q is defined as

swt((a|b)) = |{ k | (ak, bk) 6= (0, 0)}|.

The weight w(E) of an element E = ωcE1 ⊗ · · · ⊗ En = ωcX(a)Z(b)
in the error group Gn is defined to be the number of nonidentity tensor
components i.e., w(E) = |{Ei 6= I}| = swt((a|b)).

A quantum code Q is said to have minimum distance d if and only if
it can detect all errors in Gn of weight less than d, but cannot detect
some error of weight d. Q is an ((n,K, d))q code if and only if Q is
a K-dimensional subspace of Cqn

that has minimum distance d. An
((n, qk, d))q code is also called an [[n, k, d]]q code.

Due to the linearity of quantum mechanics, a quantum error-correcting
code that can detect a set D of errors, can also detect all errors in the
linear span of D. A code of minimum distance d can correct all errors
of weight t = b(d− 1)/2c or less.

1.2.5 Pure and Impure Codes.

We say that a quantum code Q is pure to t if and only if its stabilizer
group S does not contain non-scalar error operators of weight less than
t. A quantum code is called pure if and only if it is pure to its minimum
distance. We will follow the same convention as in [10], that an [[n, 0, d]]q
code is pure. Impure codes are also referred to as degenerate codes.
Degenerate codes are of interest because they have the potential for
passive error-correction.

1.2.6 Encoding Quantum Codes

Stabilizer also provides a means for encoding quantum codes. The
essential idea is to encode the information into the code space through
a projector. For an ((n,K, d))q quantum code with stabilizer S, the
projector is P is defined as

P =
1
|S|

∑

E∈S

E.

P is an orthogonal projector onto a vector space Q. Further, we have

K = dim Q = TrP = qn/|S|.
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The stabilizer allows us to derive encoded operators, so that we can
operate directly on the encoded data instead of decoding and then op-
erating on them. These operators are in CGn

(S). See [24] and [33] for
more details.

1.3 Quantum Codes and Classical Codes

In this section we show how stabilizer codes are related to classical
codes (additive codes over Fq or over Fq2). The central idea behind this
relation is the fact insofar as the detectability of an error is concerned
the phase information is irrelevant. This means we can factor out the
phase defining a map from Gn onto F2n

q and study the images of S and
CGn(S). We will denote a classical code C ≤ Fn

q with K codewords and
distance d by (n, K, d)q. If it is linear then we will also denote it by
[n, k, d]q where k = logq K. The dual code C⊥ is the set of vectors in
Fn

q orthogonal to C i.e., C⊥ = {x ∈ Fn
q | x · c = 0 for all c ∈ C}. For

more details on classical codes see [34] or [46].

1.3.1 Codes over Fq.

If we associate with an element ωcX(a)Z(b) of Gn an element (a|b)
of F2n

q , then the group SZ(Gn) is mapped to the additive code

C = {(a|b) |ωcX(a)Z(b) ∈ SZ(Gn)} = SZ(Gn)/Z(Gn).

To relate the images of the stabilizer and its centralizer, we need the
notion of a trace-symplectic form of two vectors (a|b) and (a′|b′) in
F2n

q ,
〈(a|b) | (a′|b′)〉s = trq/p(b · a′ − b′ · a).

Let C⊥s be the trace-symplectic dual of C defined as

C⊥s = {x ∈ F2n
q | 〈x| c〉s = 0 for all c ∈ C}.

The centralizer CGn(S) contains all elements of Gn that commute with
each element of S; thus, by Lemma 1.3, CGn(S) is mapped onto the
trace-symplectic dual code C⊥s of the code C,

C⊥s = {(a|b) |ωcX(a)Z(b) ∈ CGn(S)}.
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The next theorem crystallizes this connection between classical codes
and stabilizer code and generalizes the well-known connection to sym-
plectic codes [10,22] of the binary case.

THEOREM 1.1

An ((n,K, d))q stabilizer code exists if and only if there exists an additive
code C ≤ F2n

q of size |C| = qn/K such that C ≤ C⊥s and swt(C⊥s\C) =
d if K > 1 (and swt(C⊥s) = d if K = 1).

PROOF See [3] or [36] for the proof.

In 1996, Calderbank and Shor [11] and Steane [58] introduced the
following method to construct quantum codes. It is perhaps the simplest
method to build quantum codes via classical codes over Fq.

LEMMA 1.4

[CSS Code Construction] Let C1 and C2 denote two classical linear codes
with parameters [n, k1, d1]q and [n, k2, d2]q such that C⊥2 ≤ C1. Then
there exists a [[n, k1 + k2−n, d]]q stabilizer code with minimum distance
d = min{wt(c) | c ∈ (C1 \C⊥2 )∪ (C2 \C⊥1 )} that is pure to min{d1, d2}.

PROOF Let C = C⊥1 × C⊥2 ≤ F2n
q . Clearly C ≤ C2 × C1. If

(c1 | c2) ∈ C and (c′1 | c′2) ∈ C2 × C1, then we observe that

tr(c2 · c′1 − c′2 · c1) = tr(0− 0) = 0.

Therefore, C ≤ C2 × C1 ≤ C⊥s . Since |C| = q2n−k1−k2 , |C⊥s | =
q2n/|C| = qk1+k2 = |C2 × C1|. Therefore, C⊥s = C2 × C1. By Theo-
rem 1.1 there exists an ((n, K, d))q quantum code with K = qn/|C| =
qk1+k2−n. The claim about the minimum distance and purity of the
code is obvious from the construction.

COROLLARY 1.1

If C is a classical linear [n, k, d]q code containing its dual, C⊥ ≤ C,
then there exists an [[n, 2k − n,≥ d]]q stabilizer code that is pure to d.
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1.3.2 Codes over Fq2.

Sometimes it is more convenient to extend the connection of the quan-
tum codes to codes over Fq2 , especially as it allows us the use of codes
over quadratic extension fields. The binary case was done in [10] and par-
tial generalizations were done in [39,48] and [49]. We provide a slightly
alternative generalization using a trace-alternating form. Let (β, βq) de-
note a normal basis of Fq2 over Fq. We define a trace-alternating form
of two vectors v and w in Fn

q2 by

〈v|w〉a = trq/p

(
v · wq − vq · w

β2q − β2

)
. (1.3)

The argument of the trace is an element of Fq as it is invariant under
the Galois automorphism x 7→ xq.

Let φ : F2n
q → Fn

q2 take (a|b) 7→ βa + βqb. The map φ is isometric in
the sense that the symplectic weight of (a|b) is equal to the Hamming
weight of φ((a|b)). This map allows us to transform the trace-symplectic
duality into trace-alternating duality. In particular it can be easily ver-
ified that if c, d ∈ F2n

q , then 〈c | d〉s = 〈φ(c) |φ(d)〉a. If D ≤ Fn
q2 , then

we denote its trace-alternating dual by D⊥a = {v ∈ Fn
q2 | 〈v|w〉a =

0 for all w ∈ D}. Now Theorem 1.1 can now be reformulated as:

LEMMA 1.5
Suppose that c and d are two vector of F2n

q . Then

〈c | d〉s = 〈φ(c) |φ(d)〉a.

In particular, c and d are orthogonal with respect to the trace-symplectic
form if and only if φ(c) and φ(d) are orthogonal with respect to the
trace-alternating form.

PROOF Let c = (a|b) and d = (a′|b′). We calculate

φ(c) · φ(d)q = βq+1 a · a′ + β2 a · b′ + β2q b · a′ + βq+1 b · b′
φ(c)q · φ(d) = βq+1 a · a′ + β2q a · b′ + β2 b · a′ + βq+1 b · b′

Therefore, the trace-alternating form of φ(c) and φ(d) is given by

〈φ(c)|φ(d)〉a = trq/p

(
φ(c) · φ(d)q − φ(c)q · φ(d)

β2q − β2

)
= trq/p(b · a′− a ·b′),
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which is precisely the trace-symplectic form 〈c | d〉s.

THEOREM 1.2
An ((n,K, d))q stabilizer code exists if and only if there exists an ad-

ditive subcode D of Fn
q2 of cardinality |D| = qn/K such that D ≤ D⊥a

and wt(D⊥a \D) = d if K > 1 (and wt(D⊥a) = d if K = 1).

PROOF From Theorem 1.1 we know that an ((n,K, d))q stabilizer
code exists if and only if there exists a code C ≤ F2n

q such that |C| =
qn/K, C ≤ C⊥s , and swt(C⊥s \ C) = d if K > 1 (and swt(C⊥s) = d if
K = 1). The theorem follows simply by applying the isometry φ.

If we restrict our attention to linear codes over Fq2 , then the hermitian
form is more useful. The hermitian inner product of two vectors x and y
in Fn

q2 is given by xq ·y. From the definition of the trace-alternating form
it is clear that if two vectors are orthogonal with respect to the hermitian
form they are also orthogonal with respect to the trace-alternating form.
Consequently, if D ≤ Fn

q2 , then D⊥h ≤ D⊥a , where D⊥h = {v ∈ Fn
q2 |

vq · w = 0 for all w ∈ D}.

LEMMA 1.6
If two vectors x and y in Fn

q2 satisfy x⊥h y, then they satisfy x⊥a y.
In particular, if D ≤ Fn

q2 , then D⊥h ≤ D⊥a .

PROOF It follows from xq · y = 0 that x · yq = 0 holds, whence

〈x|y〉a = trq/p

(
x · yq − xq · y

β2q − β2

)
= 0,

as claimed.

Therefore, any self-orthogonal code with respect to the hermitian in-
ner product is self-orthogonal with respect to the trace-alternating form.
In general, the two dual spaces D⊥h and D⊥a are not the same. How-
ever, if D happens to be Fq2-linear, then the two dual spaces coincide.

COROLLARY 1.2
If there exists an Fq2-linear [n, k, d]q2 code D such that D⊥h ≤ D, then
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there exists an [[n, 2k − n,≥ d]]q quantum code that is pure to d.

PROOF Let q = pm, p prime. If D is a k-dimensional subspace of
Fn

q2 , then D⊥h is a (n − k)-dimensional subspace of Fn
q2 . We can also

view D as a 2mk-dimensional subspace of F2mn
p , and D⊥a as a 2m(n−k)-

dimensional subspace of F2mn
p . Since D⊥h ⊆ D⊥a and the cardinalities

of D⊥a and D⊥h are the same, we can conclude that D⊥a = D⊥h . The
claim follows from Theorem 1.2.

So it is sufficient to consider the hermitian form in case of Fq2 -linear
codes. For additive codes (that are not linear) over Fq2 we have to use
the rather inconvenient trace-alternating form.

1.4 Bounds on Quantum Codes

We need some bounds on the achievable minimum distance of a quan-
tum stabilizer code. Perhaps the simplest one is the Knill-LaFlamme
bound, also called the quantum Singleton bound. The binary version of
the quantum Singleton bound was first proved by Knill and Laflamme
in [43], see also [4, 6], and later generalized by Rains using weight enu-
merators in [49].

THEOREM 1.3 Quantum Singleton Bound
An ((n, K, d))q stabilizer code with K > 1 satisfies

K ≤ qn−2d+2.

Codes which meet the quantum Singleton bound are called quantum
MDS codes. In [36] we showed that these codes cannot be indefinitely
long and showed that the maximal length of a q-ary quantum MDS
codes is upper bounded by 2q2 − 2. This could probably be tightened
to q2 + 2. It would be interesting to find quantum MDS codes of length
greater than q2 + 2 since it would disprove the MDS Conjecture. A
related open question is regarding the construction of codes with lengths
between q and q2 − 1. At the moment there are no analytical methods
for constructing a quantum MDS code of arbitrary length in this range
(see [31] for some numerical results).
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Another important bound for quantum codes is the quantum Ham-
ming bound. The quantum Hamming bound states (see [20,22]) that:

THEOREM 1.4 Quantum Hamming Bound
Any pure ((n,K, d))q stabilizer code satisfies

b(d−1)/2c∑

i=0

(
n

i

)
(q2 − 1)i ≤ qn/K.

While the quantum Singleton bound holds for all quantum codes, it
is not known if the quantum Hamming bound is of equal applicability.
So far no degenerate quantum code has been found that that beats
this bound. Gottesman showed that impure single and double error-
correcting binary quantum codes cannot beat the quantum Hamming
bound [24].

Perfect Quantum Codes. A quantum code that meets the quantum
Hamming bound with equality is known as a perfect quantum code. In
fact the famous [[5, 1, 3]]2 code [44] is one such. We will show that
there do not exist any pure perfect quantum codes other than the ones
mentioned in the following theorem. It is actually a very easy result and
follows from known results on classical perfect codes, but we had not
seen this result earlier in the literature.

THEOREM 1.5

There do not exist any pure perfect quantum codes with distance greater
than 3.

PROOF Assume that Q is a pure perfect quantum code with the
parameters ((n, K, d))q. Since it meets the quantum Hamming bound
we have

K

b(d−1)/2c∑

j=0

(
n

j

)
(q2 − 1)j = qn.

By Theorem 1.2 the associated classical code C is such that C⊥a ≤
C ≤ Fn

q2 and has parameters (n, qnK, d)q2 . Its distance is d because
the quantum code is pure. Now C obeys the classical Hamming bound
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(see [34, Theorem 1.12.1] or any textbook on classical codes). Hence

|C| = qnK ≤ q2n

∑b(d−1)/2c
j=0

(
n
j

)
(q2 − 1)j

.

Substituting the value of K we see that this implies that C is a perfect
classical code. But the only perfect classical codes with distance greater
than 3 are the Golay codes and the repetition codes [34]. The perfect
Golay codes are over F2 and F3 not over a quadratic extension field
as C is required to be. The repetition codes are of dimension 1 and
cannot contain their duals as C is required to contain. Hence C cannot
be anyone of them. Therefore, there are no pure quantum codes of
distance greater than 3 that meet the quantum Hamming bound.

Since it is not known if the quantum Hamming bound holds for degen-
erate quantum codes, it would be interesting to find degenerate quantum
codes that either meet or beat the quantum Hamming bound.

1.5 Families of Quantum Codes

We shall now restrict our attention to linear quantum codes and derive
several families of quantum codes from classical linear codes. We make
use of the CSS construction given in Lemma 1.4. Hence, we need to look
for classical codes that are self-orthogonal with respect to the euclidean
product or for families of nested codes.

1.5.1 Quantum m-adic Residue Codes

In this section we will construct a family of quantum codes based
on the m-adic residue codes. These codes are a generalization of the
well-known quadratic residue codes and share many of their structural
properties. Quantum quadratic residue codes were first constructed by
Rains [49] for prime alphabet.

Let Q0 = {αm|α ∈ Z×p } be the m-adic residues of Z×p , where p is
a prime. And let Qi = biQ0, where b is a generator of Z×p and i ∈
{0, 1, . . . , m − 1}. Let α be a primitive root of pth root of unity. Then
we can define the following four families of m-adic residue codes.
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Let Ci be the cyclic code with the generator polynomial gi(x) = (xp−
1)/

∏
z∈Qi

(x − αz). These codes Ci form the even-like codes of class I.
Every code Ci has the parameters [p, (p − 1)/m]q. The complement of
Ci is denoted by Ĉi and its generator polynomial is given by ĝi(x) =∏

z∈Qi
(x − αz). These codes constitute the family of odd-like codes of

class I. These codes have the parameters [p, p− (p− 1)/m]q.
The code with generator polynomial hi(x) = (x − 1)ĝi(x) is denoted

by Di. It has parameters [p, p− (p− 1)/m− 1]q. These codes form the
even-like codes of class II. The complement of Di is denoted by D̂i and
its generator polynomial ĥi(x) = gi(x)/(x− 1) . The codes D̂i make up
the odd-like codes of class II. Their parameters are [p, (p− 1)/m + 1]q.

These definitions imply that Ci ⊂ D̂i and Di ⊂ Ĉi. Further it can be
shown that C⊥i = Ĉi and D⊥

i = D̂i [35, Theorem 2,3] if −1 is a m-adic
residue. If −1 is not a residue, then Ci ⊆ C⊥i = Cj and D⊥

i = Dj , where
i 6= j. We thus have families of nested codes and the CSS construction
is applicable.

THEOREM 1.6
Let q be an m-adic residue modulo of a prime p such that gcd(p, q) = 1.
Then there exists a quantum code with the parameters [[p, 1, d]]q, where
dm ≥ p. If −1 is a m-adic reside modulo p, then (d2 − d + 1)m/2 ≥ p.

PROOF By the CSS construction there exists a quantum code
with the parameters [[p, (p − 1)/m + 1 − (p − 1)/m, d]]q, where d =
wt{(D̂i \ Ci) ∪ (C⊥i \ D̂⊥

i )}.
If −1 is a m-adic residue modulo p, then we know from [35, Theo-

rem 2,3] that C⊥i = Ĉi and D⊥
i = D̂i. Since C⊥i = Ĉi and D̂⊥

i = Di,
this means d = wt{(D̂i \Ci)∪ (Ĉi \Di)}. But this is the set of odd-like
vectors in Ĉi and D̂i which is lower bounded as dm ≥ p [35, Theorem 5].

If −1 is a m-adic residue modulo p, then again from [35, Theorem 2,3]
we know that Ci ⊆ C⊥i = Ĉj and D̂⊥

i = Dj with i 6= j. Then (d2 − d +
1)m/2 ≥ p by [35, Theorem 5].

1.5.2 Quantum Projective Reed-Muller Codes

We study projective Reed-Muller (PRM) codes and construct the cor-
responding quantum PRM codes. Let us denote by Fq[X0, X1, ..., Xm]
the polynomial ring in X0, X1, ..., Xm with coefficients in Fq. Further-
more, let Fq[X0, X1, ..., Xm]νh ∪ {0} be the vector space of homogeneous
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polynomials in X0, X1, ..., Xm with coefficients in Fq with degree ν
(cf. [55]). Let Pm(Fq) be the m-dimensional projective space over Fq.

Projective Reed-Muller Codes. The PRM code over Fq of integer
order ν and length n = (qm+1 − 1)/(q − 1) is denoted by Pq(ν, m) and
defined as

Pq(ν,m) = {(f(P1), ..., f(Pn) |f(X0, ..., Xm) ∈ Fq[X0, ..., Xm]νh ∪ {0}},
and Pi ∈ Pm(Fq) for 1 ≤ i ≤ n. (1.4)

LEMMA 1.7

The projective Reed-Muller code Pq(ν,m), 1 ≤ ν ≤ m(q − 1), is an
[n, k, d]q code with length n = (qm+1 − 1)/(q − 1), dimension

k(ν) =
∑

t=ν mod (q−1)
t≤ν

m+1∑

j=0

(−1)j

(
m + 1

j

)(
t− jq + m

t− jq

)
(1.5)

and minimum distance d(ν) = (q− s)qm−r−1 where ν = r(q−1)+ s+1,
0 ≤ s < q − 1

PROOF See [55, Theorem 1].

The duals of PRM codes are also known and under some conditions
they are also PRM codes. The following result gives more precise details.

LEMMA 1.8

Let ν⊥ = m(q − 1)− ν, then the dual of Pq(ν, m) is given by

Pq(ν, m)⊥ =
{Pq(ν⊥,m) ν 6≡ 0 mod (q − 1)

SpanFq
{1,Pq(ν⊥,m)} ν ≡ 0 mod (q − 1) (1.6)

PROOF See [55, Theorem 2 ].

As mentioned earlier our main methods of constructing quantum codes
are the CSS construction and the Hermitian construction. This requires
us to identify nested families of codes and/or self-orthogonal codes. First
we identify when the PRM codes are nested i.e., we find out when a PRM
code contains other PRM codes as subcodes.
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LEMMA 1.9
If ν2 = ν1 + k(q − 1), where k > 0, then Pq(ν1,m) ⊆ Pq(ν2, m) and

wt(Pq(ν2,m) \ Pq(ν1,m)) = wt(Pq(ν2,m)).

PROOF In Fq, we can replace any variable xi by xq
i , hence every

function in Fq[x0, x1, . . . , xm]hν is present in Fq[x0, x1, . . . , xm]hν+k(q−1).
Hence Pq(ν1,m) ⊆ Pq(ν2,m). Let ν1 = r(q − 1) + s + 1, then ν2 =
(k + r)(q − 1) + s + 1. By Lemma 1.7, d(ν1) = (q − s)qm−r−1 > (q −
s)qm−r−k−1 = d(ν2). This implies that there exists a vector of weight
d(ν2) in Pq(ν2,m) and wt(Pq(ν2,m)\Pq(ν1,m)) = wt(Pq(ν2,m)).

Quantum Projective Reed-Muller Codes. We now construct
stabilizer codes using the CSS construction.

THEOREM 1.7
Let n = (qm+1 − 1)/(q − 1) and 1 ≤ ν1 < ν2 ≤ m(q − 1) such that

ν2 = ν1 + l(q − 1) with ν1 6≡ 0 mod (q − 1). Then there exists an
[[n, k(ν2) − k(ν1), min{d(ν2), d(ν⊥1 )}]]q stabilizer code, where the para-
meters k(ν) and d(ν) are given in Theorem 1.7.

PROOF A direct application of the CSS construction in conjunction
with Lemma 1.9.

We do not need to use two pairs of codes as we had seen in the previous
two cases, we could use a single self-orthogonal code for constructing a
quantum code. We will illustrate this idea by finding self-orthogonal
PRM codes.

COROLLARY 1.3
Let 0 ≤ ν ≤ bm(q − 1)/2c and 2ν ≡ 0 mod q − 1, then Pq(ν,m) ⊆
Pq(ν,m)⊥. If ν 6≡ 0 mod q − 1 there exists an [[n, n − 2k(ν), d(ν⊥)]]q
quantum code where n = (qm+1 − 1)/(q − 1).

PROOF We know that ν⊥ = m(q − 1) − ν and if Pq(ν, m) ⊆
Pq(ν,m)⊥, then ν ≤ ν⊥ and by Lemma 1.9 ν⊥ = ν + k(q − 1) for some
k ≥ 0. It follows that 2ν ≤ bm(q − 1)/2c and 2ν = (m− k)(q − 1), i.e.,
2ν ≡ 0 mod q − 1. The quantum code then follows from Theorem 1.7.
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1.5.3 Puncturing Quantum Codes

Finally we will briefly touch upon another important aspect of quan-
tum code construction, which is the topic of shortening quantum codes.
In the literature on quantum codes, there is not much distinction made
between puncturing and shortening of quantum codes and often the two
terms are used interchangeably. Obtaining a new quantum code from
an existing one is more difficult task than in the classical case, the main
reason being that the code must be so modified such the resulting code
is still self-orthogonal. Fortunately, however there exists a method due
to Rains [49] that can solve this problem.

From Lemma 1.4 we know that with every quantum code constructed
using the CSS construction, we can associate two classical codes, C1 and
C2. Define C to be the direct product of C⊥1 and C⊥2 viz. C = C⊥1 ×C⊥2 .
Then we can associate a puncture code P (C) [33, Theorem 12] which is
defined as

P (C) = {(aibi)n
i=1 | a ∈ C⊥1 , b ∈ C⊥2 }⊥. (1.7)

Surprisingly, P (C) provides information about the lengths to which we
can puncture the quantum codes. If there exists a vector of nonzero
weight r in P (C), then the corresponding quantum code can be punc-
tured to a length r and minimum distance greater than or equal to
distance of the parent code.

THEOREM 1.8
Let 0 ≤ ν1 < ν2 ≤ m(q − 1) − 1 where ν2 ≡ ν1 mod q − 1. Also let
0 ≤ µ ≤ ν2−ν1 and µ ≡ 0 mod q−1. If Pq(µ,m) has codeword of weight
r, then there exists an [[r,≥ (k(ν2)−k(ν1)−n+r),≥ d]]q quantum code,
where n = (qm − 1)/(q − 1) d = min{d(ν2), d(ν⊥1 )}. In particular, there
exists a [[d(µ),≥ (k(ν2)− k(ν1)− n + d(µ)),≥ d]]q quantum code.

PROOF Let Ci = Pq(νi,m) with νi as stated. Then by Theo-
rem 1.7, an [[n, k(ν2) − k(ν1), d]]q quantum code Q exists where d =
min{d(ν2), d(ν⊥1 )}. From equation (1.7) we find that P (C)⊥ = Pq(ν1 +
ν⊥2 ,m), so

P (C) = Pq(m(q − 1)− ν1 − ν⊥2 ,m),
= Pq(ν2 − ν1,m). (1.8)

By [33, Theorem 11], if there exists a vector of weight r in P (C), then
there exists an [[r, k′, d′]]q quantum code, where k′ ≥ (k(ν2) − k(ν1) −
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n + r) and distance d′ ≥ d. obtained by puncturing Q. Since P (C) =
Pq(ν2 − ν1,m) ⊇ Pq(µ,m) for all 0 ≤ µ ≤ ν2 − ν1 and µ ≡ ν2 − ν1 ≡
0 mod q − 1, the weight distributions of Pq(µ,m) give all the lengths
to which Q can be punctured. Moreover P (C) will certainly contain
vectors whose weight r = d(µ), that is the minimum weight of PC(µ,m).
Thus there exist punctured quantum codes with the parameters [[d(µ),≥
(k(ν2)− k(ν1)− n + d(µ)),≥ d]]q.

1.6 Conclusion

We have given a brief introduction to the theory of nonbinary stabi-
lizer codes. Our goal was to emphasize the key ideas so we have omitted
long and cumbersome proofs. Most of these details can be found in our
companion papers on stabilizer codes. After introducing the stabilizer
formalism for quantum codes, we showed how these were related to clas-
sical codes. Essentially we mapped the stabilizer and its centralizer to
a classical code and its dual. And from then on all properties of the
quantum codes could be studied by studying the classical codes. The
construction of stabilizer codes can be reduced to identifying classical
codes that are self-orthogonal. Then, we discussed the question of opti-
mal codes and some well known bounds. We showed the nonexistence of
a class of perfect codes of distance greater than 3. Finally we illustrated
these ideas by constructing two new families of quantum codes.
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