
Energy Efficient Data Management for Wireless
Sensor Networks with Data Sink Failure

Hyunyoung Lee∗, Andreas Klappenecker†, Kyoungsook Lee∗, Lan Lin∗

∗Department of Computer Science, University of Denver, Denver, CO 80208, U.S.A.
{hlee,klee,llin}@cs.du.edu

†Department of Computer Science, Texas A&M University, College Station, TX 77843-3112, U.S.A.
klappi @cs.tamu.edu

Abstract— This paper proposes an energy efficient protocol
for sensor data management. The protocol employs replicated
data sinks to achieve (1) resiliency to data sink failure, and
(2) efficiency in storing and retrieving sensor data. A simple
address assignment scheme is introduced that partitions the
sensor field into cells, where each cell contains one data sink
and all sensors that are closest to this data sink. It is shown
that this scheme is scalable and resilient against data sinkand
sensor node failures. Furthermore, the scheme has a reasonably
low message complexity and a high energy efficiency.

I. I NTRODUCTION

There is an upsurge of interest in wireless sensor networks,
since they have many important applications in everyday life,
ranging from monitoring and detection to space exploration.
In this paper, we propose an energy efficient protocol for
storing and retrieving sensor data. Our protocol provides fault-
tolerance in the presence of data sink and sensor failures. As a
result, our protocol can maximize the overall life of the sensor
network.

Sensors are usually very simple units that are equipped with
a sensing functionality. As indicated by Moore’s law [16], one
can expect that wireless sensors become smaller, cheaper, and
more powerful. Sensors can even carry out simple computa-
tions and communicate with each other.

However, a wireless sensor node has limited resources since
it typically runs on battery power and usually has a very
small memory space. Thus, sensing devices must operate under
severe resource contraints and one of the foremost goals is
to minimize the energy consumption. Therefore, there is a
need for an energy-efficient communication scheme to store
and retrieve a vast amount of sensor data. Furthermore, in
many applications, the sensing devices are placed outdoors,
resulting in a vulnerability to various noises and errors. With
these characteristics of a wireless sensor network, we consider
the following naturally arising questions:

1) What kind of data storage and retrieval structure in a
wireless sensor network is energy-efficient?

2) How can we make the wireless sensing system fault-
tolerant, when sensor nodes and data sinks may fail?

3) How can we achieve scalability in wireless sensor data
management so that the sensor system can be easily ex-
panded by deploying new sensors and even adding new

data sinks?

As an effort to answer these questions, we designed a
protocol based on ideas inspired byde Bruijn digraphs [1] and
Voronoi diagrams [2]. It is well-known that de Bruijn networks
can provide efficient routing among large number of nodes.
Our routing scheme imitates certain aspects de Bruijn routing,
but is simpler, more flexible, and dynamically reconfigurable.
In our scheme, the address of a sensor node already indicates
the length of the path to the closest data sink.

Recall that a countable setP of points in the Euclidean
planeR

2 leads to a partition of the plane in terms of Voronoi
cells, where each cell contains exactly one pointp of P and
all points in R

2 that are closer top than to any other point
in P . Inspired by this geometric notion, we partition the sensor
network into different cells, where a cell contains one datasink
s and any sensor that has a smaller hop count tos than to any
other data sink. If a sensor has the same hop-count to two
or more data sinks, then we agree that this border node will
belong to the cell of each of these data sinks. Figure 2 (c)
illustrates this concept.

By partitioning the sensor network into such cells, we obtain
scalability and improve the energy efficiency. If some data sink
or sensor node fails, then our protocol dynamically re-assigns
the cells to provide resilience against such failures.

Our communication architecture uses a hybrid model that
effectively utilizes a variation of the peer-to-peer communica-
tion paradigm among the sensors, and a variation of the client-
server paradigm between the sensors and the data sinks. The
wireless sensors act as clients in the networked sensor system
and the data sinks act as servers. The data sinks process the
collected data and return feedback control data to the sensor
nodes.

The remainder of this paper is structured as follows. In Sec-
tion II, we discuss related work and give some background on
de Bruijn digraph routing. In Sections III and IV, we specify
the system model and describe our protocol. In Sections V
and VI, we analyze the properties of our protocol and conclude
the paper.

II. RELATED WORK

Our work is related to two intertwined themes in wireless
sensor networks: routing and data aggregation. Numerous

architectures and protocols have been proposed to solve both
problems at the same time.

Our scheme requires an initial flooding of messages in
the sensor field to establish the routing paths. This step is
somewhat similar to directed diffusion [7], a mechanism that
uses limited flooding of queries towards events and sets up
reverse gradients for the best path. One fundamental difference
is that directed diffusion is designed for the single data sink
scenario, whereas our protocol can serve multiple data sinks.

GPSR is an efficient routing scheme that relies on the local-
ized nodes and restricts flooding to a geographical region [9].
One drawback of this approach, however, is its assumption
that the locations of the sensor nodes are known to all nodes
in the network. We designed our protocol such that knowledge
of locations is not required.

SHORT is a self-healing, path- and energy-aware routing
framework that shows a good performance with the reduced
energy costs [4]. In a path-aware scheme, shorter paths are
found by connecting non-adjacent nodes on a path that are
within communication range of each other. In an energy-aware
scheme, a routing path is switched when the energy of the
nodes on the path is running low. By letting the neighboring
nodes of a route, together with the on-route nodes, monitor the
route, up-to-date information of local topology and link quality
can be exploited. Our work resembles their approach regarding
self-healing and energy-efficiency. In our case, the routing of
messages to a data sink is optimal, and we take advantage of
shortcuts in peer message routing, though without introducing
much overhead.

Demirbas, Arora, and Mittal [3] presented a clustering
service, called FLOC, that can achieve efficient and scalable
control in large-scale ad hoc wireless sensor networks.

To achieve high energy efficiency and resiliency, role-based
hierarchical self-organized networks are explored in [10].
Depending on their connectivity and sensing capability, sensor
nodes are assigned the role of data collection and data dissem-
ination. Based on certain metrics, the network is partitioned
into sensing zones, in which the sensor nodes collaborate to
achieve a sensing objective. Like our scheme, this approach
relies only on local information. However, as a hierarchy-based
architecture, this approach is vulnerable to failures, especially
when particular roles are prone to become points of failure.
The authors mention that systematic rotation of roles among
the nodes can resolve this problem. A periodically repeated
role assignment scheme is proposed in [5], for Bluetooth-based
sensor networks.

ACQUIRE [12] is an active query forwarding mechanism
in a sensor network. A query packet is forwarded through the
network that follows a random or guided path. At each step,
a node, upon receiving a query, performs an update to gather
data from all of its neighbors within a look-ahead ofd steps.
As this query progresses through the network, it is gradually
resolved into smaller components until it is completely solved
and is returned back to the querying node. This approach
works at its best for one-shot, non-aggregate, complex queries
for replicated data.

TAG is a high-level abstraction of a declarative interface for
data collection and aggregation in wireless sensor networks of
TinyOS motes [11]. It realizes a distributed query aggregation
scheme that is sensitive to resource constraints and can cope
with lossy communication of wireless sensor networks.

Finally, we should mention mobile agent based systems,
such as [15], where agents exchange data with nearby sensors
or access points that they encounter as they pass by. The
advantage of such an approach is that less infrastructure is
required than in other methods and that there is no overhead
caused by packet routing. When the density of mobile agents
is sufficiently high, the system is more robust than a fixed
network. The primary drawback of such a system is that the
latency is high, so it is not suitable for all applications. Unex-
pected failures such as loss of mobile agents or limitationson
mobility can compromise the fault-tolerance of such a system.

A. De Bruijn Digraphs

We recall the basics of de Bruijn digraphs, see [1] for
details. Routing in such graphs is a well-studied problem, see,
for instance, the references [6], [8], [13], [14], [17].

Let h andk be integers≥ 2. Thede Bruijn digraph B(h, k)
has vertex setV = {0, 1, . . . , h − 1}k, and there is an edge
from vertex a = (a1, . . . , ak) to vertex b = (b1, . . . , bk) if
and only if ai = bi+1 for all i in the range1 ≤ i ≤ k − 1.
Thus every vertex has an out-degree ofh, and the diameter of
B(h, k) is equal tok. Figure 1 illustrates the digraphB(2, 2).

1

01

1100

10

1

0

0 1

1

0

0

Fig. 1. The de Bruijn digraph B(2,2).

One possible routing scheme in a de Bruijn digraph
works as follows. Suppose that the destination address
is b = (b1, . . . , bk) and the source address isa =
(a1, . . . , aℓ, b1, . . . , bk−ℓ), where(b1, . . . , bk−ℓ) is the longest
prefix of b at the tail ofa. Then the routing can be done by
left-shifting the source addressℓ times, inserting one digit of
the destination address in each step, starting from digitbk−ℓ+1.

We note that it is not possible to use de Bruijn routing in a
sensor network, since the de Bruijn digraph cannot, in general,
be embedded into the available communication topology of the
sensor network. However, we can retain much of the routing
principle for the communication of sensor nodes to data sinks,
as we will see in Section IV.

III. SYSTEM MODEL AND ASSUMPTIONS

Let W (t, n) denote a wireless sensor network witht
replicated data sinksD = {d1, . . . , dt}, and n sensors
S = {s1, . . . , sn}. The data sinks are sensor-oblivious, which

means that a sensor can store and retrieve data to and from
any data sink. We assume that thet data sinks are reasonably
regularly deployed over the sensor field.

We make the following assumptions about the cost for an
interaction between a data sink and a sensor.

• The cost (energy consumption) of storing and retrieving data
is the same at every data sink.

• The cost of sending and receiving data to and from a data
sink can be computed by the hop count in the routing path
to the data sink times a fixed cost per hop.

Each sensor tries to minimize the cost of storing and retrieving
data by communicating with the nearest data sink, where the
distance from a sensor to a data sink is measured in terms of
hop counts. It follows that the sensor network is partitioned
into cells such that the sensors in the same cell communicate
with the same data sink. We call the nodes on the border of
two or more cells “border nodes”.

We assume that unique identifiers (ID) are given to data
sinks. We also assume that every sensor node has a unique
identifier, such as a MAC address. There is no functional
difference among data sinks, that is, they all act as final data
storage and gateway to the outside networks. Data can be sent
to any of the data sinks as long as the data sink is alive. We
assume that the wireless sensor nodes as well as the data sinks
are stationary, i.e. not mobile. We also assume that the data
sink servers know the total numbern of sensor nodes, and that
only a subset of the sensors are within one-hop range from the
data sinks (if all the sensors are within a radio range from the
data sinks, then there is no need for routing).

The wireless signal (message) that a sensor node sends is
broadcast within the radio range, that is, every node within
the radio range of a sensor nodei will hear the messages
broadcast byi. Delivering a message requires more processing
power than receiving a message. Therefore, in the design of
our protocol, we try to minimize the redundant delivery of
messages without compromizing the fault-tolerance in data
transmission.

IV. T HE PROTOCOL

In this section, we describe our protocol for energy-efficient,
fault-tolerant data storage and retrieval, without relying on any
geographic or physical location information of the sensors
as well as the servers. Our protocol uses the five types of
messages:

1) The initialization message (init) is used in the initializa-
tion step to assign hop-count based addresses.

2) The toSink message is used to send a message from
a sensor node to the data sink to perform a data storage
operation.

3) ThefromSink message is used to broadcast a message
from the data sink server to every sensor node. This
message carries the ID of the sending data sink. This type
of message is used when the server proactively retrieves
data from the sensors or when it needs to broadcast control
messages to the sensors.

4) Thepeer message is used to communicate among the peer
sensors.

5) ThenodeFail message is used to inform nodes about a
failed node. This type of message is used by successors of
a failed node to negotiate new routing paths.

We first describe how the initial setup is performed, where
one or more de Bruijn-style addresses are assigned to each
sensor node. Then we illustrate how message routing is
performed. Finally, we explain how resilience against node
failures is achieved.

A. Initialization

The data sink servers start the initialization step by a
dynamic address assignment procedure. Thet data sink
servers have addresses1, . . . , t. Suppose that the data sink
server i has h sensors within its one-hop radio range. The
data sink serveri assigns theh sensor nodes the addresses
(i, 0), (i, 1), . . . , (i, h − 1). When a sensor nodes with h′

one-hop neighbors receives an addressa = (a1, a2, . . . , aℓ)
from an one-hop neighborj, then it takes one of the following
actions:
• If s does not have a valid address, thens takes

a as its address. And it assigns each one-hop
neighbor, except j, an address in the range of
(a1, a2, . . . , aℓ, 0), . . . , (a1, a2, . . . , aℓ, h

′ − 2).
• If s already has a valid address of lengthℓ, then it keepsa

as an alias address. Notice that all aliases of a sensor node
have the same length.

• If s has a valid address of lengthℓ′ > ℓ, then it deletes all its
address aliases and keepsa as a new address. And it once
again assigns each one-hop neighbor, exceptj, an address in
the range of(a1, a2, . . . , aℓ, 0), . . . , (a1, a2, . . . , aℓ, h

′ − 2).
In this way, every sensor node that is reachable from a data
sink will receive at least one address. The number of address
aliases of a sensor node does not exceed the number of its one-
hop neighbors. A sensor node informs its one-hop neighbors
about its address aliases.

This simple address assignment scheme has some re-
markable properties: If a sensor node has an address alias
(a1, a2, . . . , aℓ), then there is a path ofℓ− 1 hops to the data
sink a1, and there is no shorter path toa1. This assignment
scheme realizes the partitioning into cells. If a node has only
address aliases that start witha1, then it is within the cell of
a1. The border nodes are characterized by the fact that they
have address aliases that start with different digits.

An example will be helpful to illustrate the main features of
the address assignment. Figure 2 (a) shows a sensor network
with three data sinks (that are depicted by black circles) and
several sensor nodes (that are depicted by white circles). If two
nodes are within radio-range of each other, then there is an
edge between these nodes. The result after address assignment
is shown in Figure 2 (b). Figure 2 (c) illustrates the subdivision
into different cells. Each cell contains a data sink and all sensor
nodes that are closer to this data sink than to any other in
terms of hop-count. If a sensor node has the same distance
from more than one data sink, then it belongs to the cell of

(a) A sensor network with three data sinks (black nodes)
and several sensor nodes (white nodes); an edge between two
nodes indicates that the nodes are within radio range.

120

1
2

3

11

13

100

111

31

32

230
330

210
101

10

130

131

320

23

22
20

33

30

12

110

21

310

200

(b) Sensor network after address assignment. Some nodes have
several address aliases that lead to different routes intoSink
messages.

310

1
2

3

11

13

100

31

32

210
101

10

130

131

320

23

22
20

33

30

12

110

21
111
200
120

230
330

(c) Induced partition of the network. All nodes that have an
address alias beginning with the same digit belong to the same
cell. Border nodes belonging to two different cells are shaded
grey.

Fig. 2. Address assignment.

each of those data sinks; such nodes are called border nodes.
The nodes 120, 230, 310 are examples of such border nodes.

If a sensor nodes has address(a1, a2, . . . , aℓ−1, aℓ), then
there exists a nodep with address(a1, a2, . . . , aℓ−1). We call
p a predecessor of s, ands a successor of p. Theassociates of
s are all one-hop neighbors ofs that are neither predecessors
nor successors.

B. Routing

After the addresses have been assigned to the nodes, we
can perform routing. The most common type of message is a
toSink message from a sensor node to a data sink, which
is typically routed through predecessors. Occasionally, adata
sink may sendfromSink messages to the sensor nodes,
which are forwarded through successors. Apeer message is
routed through any combination of predecessors, associates,
and successors.
• A toSink message is routed by randomly selecting one

predecessor; this is done by right-shifting one randomly
selected address alias. Then the same process is repeated
until the data sink is reached. For instance, one possible path
from the address(a1, . . . , aℓ) is through the predecessors

(a1, . . . , aℓ−1), (a1, . . . , aℓ−2), . . . , (a1, a2)

to the data sinka1.
• A fromSink message is broadcast by sending the message

from the data sink to its successors, and each sensor node
receiving such a message forwards it to all its successors.

• Suppose that apeer message is sent from a node with
addressa = (a1, . . . , aℓ) to a node with addressb =
(b1, . . . , bk). The nodea or any node receiving the message
forwards it to the one-hop neighbor that has an address alias
with the longest common prefix withb; if several one-hop
neighbors qualify, then the one with the shortest address
alias is chosen. If a data sink6= b1 receives such a message,
then it will forward it to the data sinkb1.
We remark that the design of the protocol ensures that the

routing of thetoSink messages is optimal; in a typical sensor
network application thetoSink messages are by far the most
frequent ones, since they are used to communicate the sensor
data.

Example 1: Suppose that the node 131=310 in the sensor
network given in Figure 2 (c) wants to send atoSink
message to a data sink. If it chooses its alias 131, then the
resulting route will be131 → 13 → 1. If it chooses its address
alias 310, then the resulting route will be310 → 31 → 3.

Peer messages can be used, for example, by a sensor to
check whether its sensor readings are reasonable. Although
such messages are rare or not used at all in typical sensor
network applications, we remark that routing between any two
nodes is possible. Let us first look at an example that illustrates
this routing rule.

Example 2: Consider the sensor network given in Fig-
ure 2 (c). Suppose that node 110 wants to sendpeer message
to node 210. Since both neighbors of 110 have an empty
common prefix with 210, the message is forwarded to 11, the

shorter address alias. Among the neighbors of 11, the node
200 has the longest common prefix with 210, so it is routed
there, and node 200 routes the message to 210.

Example 3: Suppose that node 130 wants to send a peer
message to node 210 in the sensor network given in Fig-
ure 2 (c). Then the message is routed through130 → 13 → 1,
then forwarded to data sink 2, and the final hops are2 →
21 → 210.

A straightforward routing rule for peer messages could use
a sequence of predecessors until the node with the longest
common prefix ofa and b is reached, from whichb can
be reached through successors. Ourpeer message routing
rule improves upon this rule by taking shortcuts whenever
information about one-hop neighbors reveals such a possibility,
as was shown in Example 1. UnliketoSink routing, it should
be noted thatpeer routing is not necessarily optimal; this is
the price one has to pay for the very limited memory usage.
In view of the fact thatpeer messages are rare and typically
local, this does not appear to be a significant disadvantage.

Remark. Our protocol makes typically multiple paths avail-
able while routing from sensor node to a data sink; unlike
many other routing protocols for sensor networks, such as
directed diffusion, ours will always ensure that the selected
route is optimal, so that load balancing does not come at the
cost of energy efficiency.

C. Fault-Tolerance

The failure of a node has significant impact on its successors
and, to some extend, on its associates. Indeed, if a node
fails, then its successor nodes might not be able to further
deliver their sensor data to a data sink, unless some corrective
measures are taken.

Fortunately, if a sensor node or a data sink fails, then this
can be easily detected by a simple acknowledgment scheme.
Therefore, we can assume that the one-hop neighbors of a
failed nodes become aware of the failure ofs within a short
amount of time. If a nodes fails, then its one-hop neighbors
take the following action:
• A predecessor ofs informs the data sink that the nodes has

failed.
• All associates ofs delete the address aliases that belong to

s from their lists.
• All successors ofs make their address aliases invalid that

have an address alias ofs as a prefix, and they send a
nodeFail(s) message to their successors.

Each node receiving anodeFail(s) message makes its
address alias invalid that hass as a prefix, and forwards
nodeFail(s) to its succcessors. Basically, the effect of the
nodeFail messages is that all nodes that potentially route
throughs will eliminate this possibility.

Sensor Node Failure: Let us first illustrate the effect of
a sensor node failure, and after that the failure of a data sink.
Conceptually, the two concepts are the same, but a sensor node
failure has much less impact in our scheme.

Recall that a sensor node might fail, for instance, because
it lacks battery power. If a sensor node goes to sleep to save

battery power, then we can also view this as a “temporary”
failure; the only difference to a true failure is that the sensor
node itself can inform its neighbors that it will become
unavailable.

For example, let us assume that the sensor node 13 in
Figure 2 fails. Figure 3 shows the situation right after the
failure, when the neighboring nodes have detected that the
node 13 is not available anymore. Figure 3 illustrates that

13

1
2

3

11

100

111

31

32

230
330

210
101

10

130

131

320

23

22
20

33

30

12

110

21

310

200
120

Fig. 3. Failure of sensor node 13.

the address aliases 130 and 131 are now invalid, since one
cannot route through the predecessor 13 anymore. The node
131=310 is hardly affected, since it still can route throughits
predecessor 31. As there are no successors of 131, no further
updates are necessary. On the other hand, the node 130 does
not have any other address alias left after the failure of node
13, meaning that it might have to route its messages to the
data sink through a longer route. By querying its neighbors
(in this case, only node 100), it receives and accepts the new
address alias 1000. Figure 4 shows the re-assigned address
aliases after the recovery from the failure of node 13.

310

1
2

3

11

100

111

31

32

230
330

210
101

10

1000

320

23

22
20

33

30

12

110

21

200
120

Fig. 4. Recovery after failure of sensor node 13.

It should be noted that if there is a sufficiently dense
population of sensors so that each sensor has several address
aliases, then the sleeping modes of the sensors will not cause
much disruption of the routing. The successors (and their
successors, . . .) of a sensor nodet that decides to go to sleep
have to make their address aliases with prefixt invalid, but
if there are other address aliases available, then this willnot
affect the routing.

Data Sink Failure: Data sink failures obviously have the
biggest impact. For intance, let us assume that the data sink
3 in Figure 2 fails. The effect is that all addresses of sensor
nodes within the cell of data sink 3 become invalid, with the
exception of the border nodes, as shown in Figure 5.

32

1
2

3

11

13

100

111

31

230
330

210
101

10

130

131

320

23

22
20

33

30

12

110

21

310

200
120

Fig. 5. Failure of data sink 3.

The recovery from a data sink failure works exactly in
the same way as in the case of a sensor node failure: If a
sensor nodet does not have any valid address anymore, then
it queries its one-hop neighbors to assign him address aliases.
Then t proceeds exactly as in the initial address assignment
step; it keeps only the shortest address aliases received, and
rejects all others. Figure 6 illustrates the result of theseaddress
negotiations.

V. EXPERIMENTS

Suppose that a sensor network consists ofn sensor nodes.
Let us assume that every sensor node and every data sink has
aboutd one-hop neighbors, whered ≪ n. Given a regular
distribution of the sensor nodes, we can safely assume that
the diameter of the sensor network isO(

√
n).

Let us define themessage complexity of a sensor network
as the number of messages that need to be delivered by the
sensor nodes until a message sent from a source node reaches
its final destination node.

The message complexity of a simple flooding scheme is
d × n × Ω(

√
n) = Ω(dn

3

2). In contrast, in our scheme the
message complexity for communication between a sensor node
and a data sink is at mostO(

√
n), and forpeer messages

the message complexity is at mostO(2
√

n).

120

1
2

11

13

100

230

210
101

10

130

131

23

22
20

12

110

21

121
132

1310

201

2300
23000

111
200

Fig. 6. Re-assignment of addresses after failure of data sink 3 and the induced
partition into two cells.

We define thefault tolerance of a sensor network to be
the probability of messages from any sensor node being
successfully stored at any data sink. Therefore, it sufficesto
find the probability of a network partition.

We implemented a subset of our protocol to experiment
with the expected behavior of a wireless sensor network. The
topology we used as the input to the simulator is a

√
n×√

n

grid of n sensors and a single data sink in the middle. First,
we measured the node connectivity by computing the expected
number of (non-faulty) sensors that can still communicate with
the data sink whenk-out-of-n sensors fail, which is shown in
Figure 7.

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9 10

co

nn
ec

te
d

(a
vg

)

k (out of n) failures

n = 16
n = 25
n = 36
n = 49

Fig. 7. Expected node connectivity.

In a second experiment, we simulated the expected number
of hops taken bytoSink messages. The result is shown in
Figure 8. The plot shows the average value of

(

n

k

)

different
scenarios ofk-out-of-n failing nodes.

The simulation results show that in the case of node failures
our scheme is able to maintain the connectivity between the
nodes and the data sink. At the same time, it maintains a short
average path length, as expected.

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

1 2 3 4 5 6 7 8 9 10

av
er

ag
e

pa
th

 le
ng

th

k (out of n) failures

n = 16
n = 25
n = 36
n = 49

Fig. 8. Average path length.

VI. CONCLUSIONS

We proposed an energy-efficient communication protocol
for data storage and retrieval in a wireless sensor network.
Our protocol employs replicated data sinks to improve fault-
tolerance in the face of data sink failures. We achieve resilience
against sensor node and data sink failures through a dynamic
re-assignment of addresses and the introduction of alternate
paths.

The most common application in sensor networks is the
delivery of sensor data. Our protocol ensures that such mes-
sages from the sensor nodes are always routed in an optimal
way to the closest data sink using the least possible number
of hops. We avoid the overhead of keeping routing tables
to accomodate the memory constraints of sensor nodes; a
node simply needs to keep the address aliases of itself and
of its one-hop neighbors. Furthermore, our protocol does not
require any location information. The reasonably low message
complexity of our scheme can extend the battery life of each
node, maximizing the overall life of the sensor network.

ACKNOWLEDGMENTS

The research by H.L. was supported by the University
of Denver PROF grant 88197. The research by A.K. was
supported by NSF grant CCR-0218582 and NSF CAREER
award CCF-0347310.

REFERENCES

[1] B. Bollobás, Extremal Graph Theory with Emphasis on Probabilistic
Methods. Providence, RI: American Mathematical Society, 1986.

[2] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf,
Computational Geometry. Germany: Springer-Verlag, 1997.

[3] M. Demirbas, A. Arora, and V. Mittal, “FLOC: A fast local clustering
service for wireless sensor networks,”Workshop on Dependability Issues
in Wireless Ad Hoc Networks and Sensor Networks (DIWANS/DSN),
2004.

[4] C. Gui and P. Mohapatra, “SHORT: self-healing and optimizing rout-
ing techniques for mobile ad hoc networks,”Proc. of the 4th ACM
Int. Symp on Mobile Ad Hoc Networking and Computing (MobiHoc),
pp. 279–290, June 2003.

[5] M. Handy, F. Grassert, and D. Timmermann, “DCP: A new data
collection protocol for Bluetooth-based sensor networks,” EUROMICRO
Symposium on Digital System Design, pp. 566–573, 2004.

[6] D. Hsu and D. Wei, “Efficient routing and sorting schemes for de Bruijn
networks,” IEEE Transactions on Parallel and Distributed Systems,
vol. 8, no. 11, pp. 1157–1170, November 1997.

[7] C. Intanagonwiwat, R. Govindan, and D. Estrin, “Directed diffusion:
A scalable and robust communication paradigm for sensor networks,”
Proc. of the 6th Annual Int. Conf. on Mobile Computing and Networking
(MobiCom), pp. 56–67, August 2000.

[8] M. F. Kaashoek and D. R. Karger, “Koorde: A simple degree-optimal
distributed hash table,”Proc. of Int. Workshop on Peer-to-Peer Systems
(IPTPS), 2003.

[9] B. Karp and H. T. Kung, “GPSR: Greedy perimeter statelessrouting
for wireless networks,”Proc. of the 6th Annual Int. Conf. on Mobile
Computing and Networking (MobiCom), pp. 243–254, August 2000.

[10] M. Kochhal, L. Schwiebert, and S. Gupta, “Role-based hierarchical self
organization for wireless ad hoc sensor networks,”Proc. of the 2nd ACM
Int. Conf. on Wireless Sensor Networks and Applications (WSNA), pp.
98–107, September 2003.

[11] S. Madden, M. Franklin, J. Hellerstein, and W. Hong, “TAG: a tiny
aggregation service for ad-hoc sensor networks,”Proc. of the 5th
Symp. on Operating Systems Design and Implementation (OSDI), 2002.

[12] N. Sadagopan, B. Krishnamachari, and A. Helmy, “The ACQUIRE
mechanism for efficient querying in sensor networks,”Proc. of the First
IEEE Int. Workshop on Sensor Network Protocols and Applications
(SNPA), May 2003.

[13] M. Samatham and D. Pradhan, “The de Bruijn multiprocessor network:
a versatile parallel processing and sorting network for VLSI,” IEEE
Transactions on Computers, vol. 38, no. 4, pp. 567–581, 1989.

[14] A. Samsudin and K. Y. Lee, “nD-dBPN: New self-routing permuta-
tion networks based on the de Bruijn digraphs,”Proc. of the 1998
Int. Conf. on Parallel Processing, pp. 604–611, August 1998.

[15] R. C. Shah, S. Roy, S. Jain, and W. Brunette, “Data MULEs:Modeling
a three-tier architecture for sparse sensor networks,”Proc. of the First
IEEE Int. Workshop on Sensor Network Protocols and Applications
(SNPA), May 2003.

[16] M. Shooman,Reliability of Computer Systems and Networks. New
York: Wiley, 2002.

[17] K. N. Sivarajan and R. Ramaswami, “Lightwave networks based on de
Bruijn graphs,”IEEE/ACM Transactions on Networking, vol. 2, no. 1,
February 1994.

