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Abstract|A method to compute the Discrete Wavelet Trans-

form for certain wavelet �lters is proposed that takes advantage

of conjugacy properties in number �elds. It is shown that wavelet

�lters derived from compactly supported orthonormal wavelets

can be approximated with arbitrary precision by the proposed

wavelet �lters.
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I. Introduction

In the last decade there has been a great interest in wavelet

analysis. Discrete Wavelet Transforms (DWTs) found numerous

applications in various di�erent �elds. The DWT for compactly

supported orthonormal wavelets is attractive from an algorith-

mic point of view, since it can be implemented by Quadrature

Mirror Filter (QMF) banks [1].

In this note a new technique for computing the DWT is in-

troduced that exploits algebraic properties of special wavelet

�lters (see section III). It is shown that all wavelet �lters de-

rived from compactly supported orthonormal wavelets can be

arbitrarily approximated by the proposed type of wavelet �lters

(see section IV). The method presented here often leads to a

reduction of chip area in VLSI implementations of the DWT.

This has been demonstrated for a speci�c example in [2].

II. Preliminaries

We consider square integrable compactly supported real-

valued wavelets [3] in this note. Let (H;G) be a QMF pair

H(z) =

N�1X
n=0

hn z
�n
; G(z) =

N�1X
n=0

gn z
�n
;

where H(z) is a scaling �lter and G(z) is a wavelet �lter. Recall

that a QMF pair (H;G ) derived from a multiresolution analysis

has to meet the following scaling coeÆcient constraints [3]:

N�1X
n=0

hn�2k hn =
1

2
Æk;0 ; k 2 Z ; (1)

where Æk;0 denotes the Kronecker delta,

N�1X
n=0

hn = 1; and

N�1X
n=0

gn = 0: (2)

The wavelet coeÆcients are related to the scaling coeÆcients by

gn = (�1)n hN�1�n:
In a basic decomposition step an input signal sequence (sn)

is convolved with the scaling and wavelet �lters, followed by a

decimation by two:

ak =
X
n2Z

hn�2k sn; dk =
X
n2Z

gn�2k sn:

III. Algebraic Wavelet Filters

In this section we present an alternative way to compute the

DWT for wavelet �lters that have algebraic �lter coeÆcients.

We start with a simple example to illustrate the underlying

idea.
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A. The Daubechies Wavelet D4

In signal processing applications the input signal samples are

typically rational. We want to compute the DWT of such a

sequence with respect to the famous Daubechies wavelet of order

two, where the scaling �lter coeÆcients are given by [3]:

h0 =
1 +

p
3

8
; h1 =

3 +
p
3

8
; h2 =

3�
p
3

8
; h3 =

1�
p
3

8
:

Assume now that we want to perform the calculations in an

exact way, then we have to extend the �eld of rationals to a

larger �eld that contains the quantity
p
3: Consequently, the

minimal necessary �eld is given by the quadratic number �eld

Q(
p
3) = Q(h0; h1; h2; h3):

The wavelet �lter gn = (�1)n hN�1�n is the \mirrored" ver-

sion of the scaling �lter hn with every second sign changed. We

will exploit this symmetry by use of conjugacy properties in

Q(
p
3):

The elements of the number �eld Q(
p
3) can be written in

the form a+ b
p
3; where a and b are rationals. The non-trivial

Galois automorphism � of this number �eld maps an element

a+ b
p
3 to its conjugate a� b

p
3: Applying this automorphism

to the scaling coeÆcient sequence (hi) yields the \mirrored"

sequence (h3�n): Clearly, the \mirrored" scaling �lter can be

used in the computation of the wavelet �lter. The details are

given in the next subsection.

B. Algebraic Filter Structure

The wavelet �lter G(z) is derived from the scaling �lter H(z)

by G(z) = � z�kH(�z�1); for some odd k: Alternatively, the

wavelet �lter may be obtained by applying the automorphism

� to the scaling �lter with signed changed odd coeÆcients:

G(z) = �H(�z):

Writing the scaling and wavelet �lters in polyphase form will

elucidate strong similarities in the structure of these �lters. The

scaling �lter is given by

H(z) = HEven(z
2
) + z

�1
HOdd(z

2
);

and the wavelet �lter is almost the same:

G(z) = �H(�z) = �HEven(z
2
)� z

�1
�HOdd(z

2
):

We will choose a representation of the �lter coeÆcients so that

�lters

HEven(z) and HOdd(z)

coincide with their conjugate �lters

�HEven(z) and �HOdd(z)

respectively. This will allow us to re-use the same hardware for

the computation of the scaling and the wavelet �lter. We have

to pay the price that the results of the scaling �lter and the

wavelet �lter are represented in di�erent ways.

The number �eld Q(
p
3) can be interpreted as a two dimen-

sional vector space over the rationals with basis B = f1;
p
3g:

The scaling coeÆcients (hi) with respect to this basis are:

m0 = (
1

8
;
1

8
); m1 = (

3

8
;
1

8
); m2 = (

3

8
;�1

8
); m3 = (

1

8
;�1

8
):

The mirrored sequence (h3�n) has the same coeÆcients, if in-

terpreted with respect to the conjugate basis �B = f1;�
p
3g:

Therefore, we de�ne the vector-valued �lter

M(z) = m0 +m1 z
�1 +m2 z

�2 +m3 z
�3:



Applying this �lter to a rational (scalar) input sequence yields

a vector-valued output sequence. The projection of the output

sequence onto its �rst vector-component yields the same result

as the convolution of the input signal sequence with the �lter

M1(z) = 1=8 + 3=8 z
�1

+ 3=8 z
�2

+ 1=8 z
�3
;

i. e., the projection of the �lter M(z) onto its �rst component.

Similarly, the projection of the output sequence onto its second

vector component yields the same result as the convolution of

the input signal sequence with the �lter

M2(z) = 1=8 + 1=8 z
�1 � 1=8 z

�2 � 1=8 z
�3
:

Filtering a rational signal with MEven(z
2) + z�1MOdd(z

2)

gives the scaling �ltered signal, if we interpret the vector-valued

output as numbers of the �eld Q(
p
3) with respect to the ba-

sis B: Similarly, �ltering a rational signal with MEven(z
2) �

z�1MOdd(z
2) yields the wavelet �ltered signal, if we interpret

the vector-valued coeÆcients as elements of the number �eld

Q(�
p
3) = Q(

p
3) with respect to the basis �B:

As a result, we can implement the elementary decomposition

step as shown in Fig. 1. The structure of the vector-valued

�lter (the dashed-box in Fig. 1) resembles Esteban-Galand like

QMF �lters [4]. The results ak; dk are converted back to a

rational number representation in the box CVT. The details

will be discussed in subsection III-D below.
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Fig. 1. Algebraic wavelet QMFs that satisfy the conjugacy property can

be implemented with vector-valued �lters.

C. General Situation

A wavelet �lter is called algebraic i� all �lter coeÆcients are

algebraic, i. e., each �lter coeÆcient is a zero of a polynomial

with rational coeÆcients. Clearly, the wavelet �lter is algebraic

i� the scaling �lter is algebraic.

Let (hi) be a scaling �lter. The �eld K obtained by adjoining

the quantities hi to the rationals is called the minimal necessary

�eld for the �lter (hi); i. e.,

K = Q(: : : ; h�1; h0; h1; : : :):

If the �lter is algebraic and has �nite impulse response, then

the minimal necessary �eld is a number �eld, i. e., has �nite

dimension when interpreted as a vector space over the rationals.

Denote by K the normal closure1 of the minimal necessary

�eld. A scaling �lter (h0; : : : ; hN�1) is said to have the conju-

gacy property i� there exists an automorphism � of the Galois

group Gal(K=Q) such that

(� h0; : : : ; � hN�1) = (hN�1; : : : ; h0): (3)

Writing the scaling coeÆcients with respect to a base B of

the �eld extension K=Q yields the scaling coeÆcients in vec-

tor form (m0; : : : ; mN�1): Interpreting this vector with respect

to the conjugate base �B leads to a representation of the \mir-

rored" scaling �lter (3). Thus, we can implement every alge-

braic wavelet QMF pair that satis�es the conjugacy property

as in Fig. 1.

1The normal closure of K is the �eld generated by all conjugate �elds of K:

D. Back Conversion

In the previous example the results ak and dk are represented

with respect to the bases B and �B; that is, the vector ak =

(ak;1; ak;2) 2 Q2 represents the number

(ak;1; ak;2)
�
1;
p
3
�T

= ak;1 +
p
3 ak;2

and the vector dk = (dk;1; dk;2) 2 Q2 represents the number

(dk;1; dk;2)
�
1;�

p
3
�T

= dk;1 �
p
3 dk;2:

A rational approximation to these numbers is used in �nite

precision implementations. This can be achieved by rounding

the elements of the bases B and �B to the desired precision,

for instance, rounding the elements of B to three decimal dig-

its yields f1; 1:732g: Thus, an implementation of the back con-

version unit CVT in Fig. 1 requires at most four multiplica-

tions with rational constants and two additions, provided K is

a quadratic �eld extension of the rationals.

E. Hardware issues

The growing signi�cance of wavelet applications and their

VLSI implementations were the main motivation for this re-

search. We briey explain the bene�t of the proposed method

in the case of the Daubechies 4-tab �lters. Most applications

require only a �xed �lter pair. Therefore, fully-edged mul-

tipliers can be avoided using hardwired adders, subtractors,

and shifts, saving costly silicon area. We use the number of

adders/subtractors (denoted by AS) as a complexity measure.

A naive implementation obtained by rounding each coeÆcient

to eight binary digits after the �xed point can be realized with 26

AS. The method described in section III-B yields 18 AS for the

same accuracy, assuming that the coeÆcients are expressed with

respect to base B: Choosing another base of the �eld extension

may lead to lower complexity implementations. For example,

expressing the coeÆcients with respect to the base f1=2; (1 +p
3)=8g yields 14 AS. Note that the output of the dashed box

in Fig. 1 changes only every second clock cycle. Therefore, it

is possible to use the back conversion hardware jointly for the

bases B and �B; leading to quite pronounced savings. In fact,

it is then possible to realize the Daubechies �lter with 9 AS in

total. Implementation details and a comparison of layouts will

be treated in a forthcoming paper [5].

IV. Density

The Daubechies wavelet of order two served as an example

of an algebraic wavelet that satis�es the conjugacy property.

One might wonder if there are more wavelets that satisfy these

contrived conditions. The aÆrmative answer is given by the

following theorem:

Theorem 1: All wavelet QMF �lters derived from compactly

supported orthonormal wavelet bases can be approximated with

arbitrary precision by algebraic wavelet QMF �lters that have

the conjugacy property. Moreover, the minimal necessary �eld

for these �lters can be chosen of degree two.

We need a handsome description of all wavelet QMFs to prove

this theorem. There exist several parametrizations of QMFs

[6], [7], [8], [9]. It turns out that the parametrization due to

D. Pollen [7] is well-suited for our purposes. We review the

necessary facts of this parametrization in the next subsection.

A. Pollen's Parametrization

Pollen associates to every scaling �lter a 2� 2-matrix with

Laurent polynomials in R[z; 1=z] as entries. The scaling coef-

�cient constraints imply that the associated matrices are uni-

tary, have determinant one, and yield the identity matrix when



1 is substituted for z: These matrices constitute a group called

SUI(2;R[z; 1=z]): This group is generated by a set of simply

structured matrices (described below), leading to the desired

parametrization of scaling �lters.

Let us equip the ring of Laurent polynomials R[z; 1=z] with

the involutory operation e given by ep(z) := p(1=z): A scaling

�lter H(z) = HEven(z
2) + z�1HOdd(z

2) can be represented by

the matrix

E(z) :=

 
u(z) v(z)

�gv(z) gu(z)
!
; (4)

regarding the abbreviations u(z) = eHEven(z) + HOdd(z) and

v(z) = �HEven(z) + eHOdd(z): Elementary calculations show

that this representation is faithful, namely

H(z) = (�1=2; 1=2)E(z2) (�z�1; 1)T : (5)

Moreover, the mapping H(z) 7! E(z) is a bijection between

the set of scaling coeÆcients and the in�nite dimensional Lie

group SUI(2;R[z; 1=z]): The inverse of an group element E(z)

is given by E�1(z) = eE(z)T : The group SUI(2;R[z; 1=z]) can

be generated by matrices of the form

U�(z) :=

�
u�(z) v�(z)

�gv�(z) gu�(z)
�
; (6)

where u�(z) and v�(z) are de�ned as follows:

u�(z) :=
1

2
[(1� cos �) z + (1 + cos �)] ;

v�(z) :=
1

2

�
(� sin �) + (sin �) z

�1
�
:

Recall that every scaling coeÆcient sequence is of even length,

because of the scaling coeÆcient constraint (1). Pollen's

parametrization theorem essentially states that every scaling

coeÆcient sequence of length N or less can be represented by a

product of N=2 � 1 matrices of the form U�(z) or U
�1
� (z):

More precisely, a scaling coeÆcient sequence of length N =

4k + 2; k 2 N; can be represented by a product of the form

E(z) = U�1U
�1
�2

� � � U�2k�1U
�1
�2k

; (7)

and a scaling coeÆcient sequence of length N = 4k + 4; k 2 N;
can be represented by a product of the form

E(z) = U�1U
�1
�2

� � � U�2k�1U
�1
�2k

U�2k+1 : (8)

For example, all scaling coeÆcient sequences of length four

or less are given by

h0(�) = �1=4 cos � + 1=4 sin � + 1=4;

h1(�) = 1=4 cos � + 1=4 sin � + 1=4;

h2(�) = 1=4 cos � � 1=4 sin � + 1=4;

h3(�) = �1=4 cos � � 1=4 sin � + 1=4:

(9)

Translating a scaling �lter H(z) by zj leads again to a scaling

�lter zj H(z): These shifts are ignored in the parametrization

of scaling coeÆcients.

B. A Symmetry of Pollen's Parametrization

Our goal is to construct algebraic wavelets satisfying the con-

jugacy property with the help of Pollen's parametrization. In

this subsection we show how the parameters of the mirrored

scaling sequence can be obtained from the parameters of the

scaling sequence. We need the following technical result to sim-

plify our notation.

Lemma 2: Denote by Mat2(R) the ring of 2�2-matrices over

a ring R: The operation M de�ned by

M

�
a b

c d

�
=

�
a �b

�c d

�
is an involutory automorphism of Mat2(R): In particular, the

relation M(A)M(B) =M(AB) holds for all A;B 2Mat2(R):

Proof: By inspection. 2

In the previous example (9) it is easily seen that a sign change

of the parameter � leads to the mirrored scaling sequence. More

generally, the following lemma describes a representation of the

mirrored scaling �lter.

Lemma 3: If E(z) is the representation matrix (4) of a scal-

ing �lter H(z); then M(E(z)) is a representation of the �lter

z�1 eH(z):

Proof: Straightforward calculation, substitute the matrix

M(E(z2)) for E(z2) in (5). 2

The operation of M on a matrix U� of the form (6) can be

described in terms of the parameter � by

M(U�(z)) = U��(z): (10)

This follows directly from the fact that sin � is an odd function

and cos � is an even function. Similarly, the action on the inverse

U�1� is given by

M(U
�1
� (z)) =M(eUT

� (z)) = eUT
��(z) = U

�1
�� (z): (11)

Equations (10) and (11) together with Lemma 2 allow us to

prove by induction that the mirrored scaling �lter is obtained by

a sign change of the parameters �i: Summarizing, we obtained

the following result.

Proposition 4: Given a scaling �lterH(z) with representation

matrix E(z) of the form (7) or (8), then the representation ma-

trix M(E(z)) of the mirrored scaling �lter z�1 eH(z) is obtained

by sign change of all parameters �i:

C. Proof of Theorem 1

Before concluding the proof of Theorem 1, we illustrate the

style of argument for scaling coeÆcient sequences of length four

or less.

C.1. Illustration. The unit circle can be viewed as an aÆne

variety de�ned by the equation x2 + y2 = 1: The circle can

be parametrized by the trigonometric functions x = cos � and

y = sin �; or alternatively by the rational parametrization

x =
1� �2

1 + �2
; y =

2�

1 + �2
:

The last parametrization covers all points of the circle, except

a single point (�1; 0): In view of this parametrization, example

(9) can be re-expressed as follows:

h0(�) =
1

2

�(1 + �)

(1 + �2)
; h1(�) =

1

2

(1 + �)

(1 + �2)
;

h2(�) =
1

2

(1� �)

(1 + �2)
; h3(�) =

1

2

�(� � 1)

(1 + �2)
:

(12)

Each coeÆcient hi(�) depends continuously on the parameter �:

As a consequence the scaling �lters of length four or less depend

continuously on this parameter.

Let d be an arbitrary non-square rational. The rational mul-

tiples of
p
d are dense in R and each parameter � 2

p
dQ yields

an algebraic scaling �lter that satis�es the conjugacy property.

This shows that Theorem 1 holds for scaling �lters of length

four or less.



C.2. General Case. Replace the trigonometric functions in

(6) by their rational parametrizations. This leads to a matrix

U�(z) of the form (6), where u� and v� are de�ned by

u�(z) :=

�
�2

1 + �2

�
z +

�
2

1 + �2

�
;

v�(z) := �
�

�

1 + �2

�
+

�
�

1 + �2

�
z
�1
:

Thus, the matrices U�(z) and U�1� (z) = eUT
� (z) have Laurent

polynomials with coeÆcients in Q(�) as entries. A product of

such matrices

E(z) = V�1V�2 � � � V�K ;
where V�i 2

�
U�i(z); U

�1
�i

(z)
	
; has Laurent polynomials with

coeÆcients in Q(�1; : : : ; �K) as entries. Moreover, the denomi-

nator of each such coeÆcient is non-zero (by construction) for

all choices of parameters. This shows that the scaling coeÆ-

cient sequences of a given length, say length 2K + 2; depend

continuously on the parameters �1; : : : ; �K :

Therefore, it is enough to show that there exists a dense set

D in the parameter space, such that all parameters in D lead

to algebraic scaling �lters satisfying the conjugacy property.

Let d be a non-square rational. The set D = (
p
dQ)K is

dense in RK : Apparently, all parameters (�1; : : : ; �K) 2 D lead

to algebraic scaling �lters. In fact, all scaling coeÆcient are

elements of the quadratic number �eld Q(
p
d): The action of

the automorphism � :
p
d 7! �

p
d on a factor V�i is equivalent

to the action of the operator M :

�V�i =M(V�i) = V��i :

Using the homomorphy of � and Proposition 4, it follows that

�E(z) = �V�1�V�2 � � � �V�K
= V��1V��2 � � � V��K = M(E(z)):

Thus, all scaling �lters corresponding to the dense set of param-

eters D lead to algebraic scaling �lters satisfying the conjugacy

property. All these �lters a�ord a minimal necessary �eld ex-

tension of degree two. 2

V. Concluding Remarks

Orthonormal wavelet coeÆcients can have a quite compli-

cated arithmetic structure. Indeed, it follows from example (12)

that all real algebraic number �elds can occur as minimal neces-

sary �elds. An algebraic wavelet �lter a�ording a number �eld

of high degree would jeopardize any e�ort to save silicon area

using the methods described in section III. Theorem 1 shows

that it is possible to circumvent this problem by approximating

the desired wavelet QMF with simply structured �lters.

The �lters derived from compactly supported orthonormal

wavelets can not be symmetric (with exception of the Haar �l-

ter). However, it was shown in this note that deeper symmetries

can be exploited to reduce the complexity of an implementation.
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