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Abstract. Computing the Discrete Fourier Transform (DFT) of signals
over some finite field F, often requires an extension to a large field Fyn
containing an appropriate primitive root of unity. The Algebraic Discrete
Fourier Transforms (ADFTs) avoid the extension of the basefield Fj, and
can be used to compute the spectrum of the DFT. We derive a com-
plete parametrization of ADFT matrices and show how this knowledge
can be employed to derive VLSI realizations with low implementation
complexity.

1 Introduction

The results presented in this paper are part of a long term research project called
IDEAS [2]. The main goal of IDEAS is the development of an intelligent environ-
ment supporting the design of algorithms and architectures in signal processing.
Our design environment deals with three levels of abstraction: VLSI technology,
abstract modelling of digital circuits, and algebraic specification using computer
algebra systems. In the early years we started with the development of soft-
ware products for hardware compilers and computer algebra software. Nowa-
days, there are powerful tools available and we can focus on the algebraic topics.
Comparable environments are described in [9, 10]. One of the main differences
is the integration of commercial products avoiding an enormous implementation
overhead.

This paper is concerned with the so-called Algebraic Discrete Fourier Trans-
forms, their algebraic structure, and integrated circuit implementation. These
transforms are closely related to the general discrete Fourier transforms as de-
scribed for example in the chapter on STIPS machines in [9, chap. 5].

This paper is organized as follows. In the next paragraph we summarize some
definitions from the theory of finite fields. In §3 we recall the conjugacy properties
of the Discrete Fourier Transform. A novel approach to the ADFT is given in §4.
A complete parametrization of all ADFT matrices is derived in §5. The benefit
of choosing an ADFT with low implementation complexity is discussed in §§6-7.
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2 Basic Definitions

Recall that computing the DFT of length IV signal vectors over the finite field
with ¢ elements Fj, typically affords an extension to a larger field that contains a
primitive Nth root of unity. This requires that the characteristic of Fj, does not
divide the signal vector length N. We emphasize here that the degree of such an
extension Fy» /F, can be quite large, since the existence of a primitive Nth root
of unity in Fi» implies that NV is a divisor of ¢" — 1. Typically, there are many
different choices for the basis of the extension field. As we will see in the sequel,
a well-chosen basis can be used to reduce implementation complexity.

For each basis {ay,...,a,} of the extension Fy~ /F; there exists a uniquely
determined dual basis {f1, ..., 0y} that satisfies

0 for k#I
tr(ﬁkal):{l - bt

where tr (x) := trp . /5, (X) =x+x94 -+ x9"™" denotes the trace function of
the extension Fy» /F,. We will use the trace function to express the coordinates
of the elements in Fy». Suppose that an element u € Fiy» is of the form

n
u = E Ui, u; € Fy.
i=1

Then the coordinates of u with respect to the basis {a;, - - -, @, } can be expressed
with the help of its dual basis {31, -, 8n} by

ug = tr (Bru) = Zui tr (Bras) - (1)

We will be interested in basis that are of the following form
B ={a,a9,..., aqn_l}.
Such a basis is called a normal basis; it is known that this type of basis exists
for all extensions Fyn /Fy [8]. Note that the elements of B are conjugates and
are linearly independent over F,. A Galois automorphism merely permutes this

basis, hence the coordinates of conjugate elements. Finally, we recall the following
remarkable fact, cf. [6, 8]:

Lemmal. The dual basis of a normal basis is again a normal basis.

3 Conjugacy Properties

Denote by w € Fy» a primitive Nth root of unity. The DFT matrix can be written
in the form (wjk)%k:[)“]v,l. Applying an automorphism of the Galois group
Gal (Fy» / F) to the components of the DFT matrix results in a permutation of
the rows (or columns) of this matrix. As a result one obtains the well-known
conjugacy properties of the DFT [7]:



Lemma?2. Let (so,...,sn—1) be a signal vector in (F,)N. Denote by S; the jth
spectral coefficient
N—1
Sj = w
k=0

jksk. (2)

Applying the Frobenius automorphism x — x9 to the spectral coefficient S; yields
the spectral coefficient Sjq mod N, that is, S;9 = Sjq mod N-

Proof. The values s, are elements of the basefield F; by assumption. Therefore,
they remain fixed under the action of the Frobenius automorphism, yielding

N—-1 7 N-1
ik jq)k
qu = Z w sy, = E w(]q) Sk = qu mod N - O
k=0 k=0

Thus, it is sufficient to compute one spectral coefficient for each conjugacy class.
If we express the DFT matrix coefficients with respect to a normal basis, then
the conjugate spectral coefficients can be obtained by mere permutation. More
specifically, we get the following result (keeping the notations as above):

Lemma 3. Assume that the coefficients of the spectral coefficient S; w.r.t. the
normal base B are given by (uo,u1,...,uy—1) € F}', that is, Sj = EZ;& upad” .
Then the coefficients of Sj; w.r.t. B are given by (un—1,Ug,...,Un—2).

Proof. Suppose that the spectral coefficient S;, is expressed with respect to the
basis B = {a,aq,...,aqnfl} as Sj, = EZ;; vea?”, where vy € F,. Then we

have
n—1 n—1 n—1
k41 k k
qu = E ukaq = E Uk—1 mod naq = E Ukaq = S]'q.
k=0 k=0 k=0

Comparing coefficients yields the result. O

4 Algebraic Discrete Fourier Transforms

We remarked in the previous section that computing the DFT of signal vectors
with values in the basefield Fj amounts to compute only one spectral coefficient
of each conjugacy class (cf. Lemma 2). To put it differently, suppose we are
given only a single spectral coefficient of each conjugacy class, then we can still
reconstruct the original basefield signal from this knowledge. Essentially, it is
this property that is exploited e.g. in transform decoding techniques of BCH
codes [7]. From a computational perspective it is highly attractive to express
the coefficients with respect to a normal basis, since then the coordinates of
conjugate coefficients are obtained by cyclic shifting (Lemma 3).



Example 1. Consider the DFT for signal vectors of length 7 with values in F5.
The definition of the DFT affords an extension to the field F5s. However, since the
signals merely take values in the much smaller field F3, we only have to compute
the value of the spectral coefficients Sy, S1, and S3 given by equation (2). The
other coefficients can be computed by means of Lemma 2, namely

Sy =52, Sy=5%  Sg=52, S5 =52

Thus, the spectral coefficients can be grouped according to the cyclotomic cosets,
that is, the orbits of  — (2z mod 7) in the set [0..6].

In order to understand why some orbits are of smaller length than others, we
will focus on the values that a spectral coefficient may take, as the signal values
s; vary. Denote by F;;(S;) the value field of the spectral coefficient S; over Fy,
that is, the field obtained by adjoining all possible values of the jth spectral
coefficient to the basefield F;:

S € Fq }) .

This field is a normal subfield of F». By elementary Galois theory it is clear
that the number of coefficients conjugate to the spectral coefficient S; coincides
with the degree of the value field F,(S;) = F,(w’) over F,. This fact is best
appreciated with the help of a small example.

N-—-1

Fy(S5) = Fq(wj) =F, ({ Z w* sy,

k=0

Example 2. Consider again the DFT of length 7 for signals with values in Fj,
which requires an extension to Fys = Fy(w), where w is a primitive 7th root of
unity with minimal polynomial z* + z + 1. Clearly, F,(Sy) = F,(w") coincides
with the basefield F}, therefore Sy has no conjugates. The value field of S; is
given by Fj(w), hence is of degree 3 over Fy. The value field of Ss is given
by F,(w?). It can be checked that the minimal polynomial of w® is given by
2% + 22 + 1. Therefore, the spectral coefficient S3 has three conjugates.

Up to now we exploited the conjugacy properties of the DFT. Roughly speak-
ing, a “large value field” leads to many conjugates, and thus to considerable sav-
ings. Now we want to show that, loosely speaking, a “small value field” leads to
structure in the coordinate repesentation which can be exploited too. Eventually,
this will lead us to the definition of the Algebraic Discrete Fourier Transform [1],
which takes advantage of both properties.

The Galois group of Fy» /Fy is a finite cyclic group of order n, generated by
the Frobenius automorphism « — 2?. Hence, the Galois group of Fy» /F,(S;) is
generated by a power of the Frobenius automorphism, say G = (z +— qu>. In
more elementary terms this means that the coordinates of the spectral coefficient
S; with respect to the normal basis B have the following structure:

(uo,...,un,l) = (Ug,...,kal,U(),...,’U,kfl, ...... ,U[),...,’U,kfl).
\ N ) N /

~~ ~~




This structure is guaranteed for all inputs (sg,...,Sny_1) € FqN by the definition
of the value field. Moreover, it is not possible to refine this structure (meaning
that no blocks smaller than k& can be obtained for all inputs), since this would
imply that even more Galois automorphism fix the value field F}(S;). Moreover,
elementary Galois theory tells us that the order of G multiplied with the degree of
F,(S;j)/Fy equals the degree of F» / ;. Thus, there are exactly k automorphisms,
namely x — z, v — 2%, ... ,x — mqk_l, that map S; to its conjugate spectral
coefficients Sj, Sjq, ..., Sjgr—1.
To summarize, for each conjugacy class of spectral coefficients with k elements
we have to compute only the first k coeflicients ug,...,ur—1 of S; with respect
to a normal basis B. In view of Lemma 3 this is the same as computing the first
coordinate of each spectral coefficient with respect to the normal basis B.

Definition4. Let N > 0 be an integer and Fj a finite field. We assume that
the characteristic of F}, does not divide N. Suppose further that Fj» is a finite
extension of Fj, that contains a primitive Nth root of unity. Denote by

B:{a,aq,...,aqn_l}, B’:{ﬂ,ﬂqa---:ﬂqn_l}

anormal base B with dual base B’ of Fy» / F,. The Algebraic Discrete Fourier
Transform of length N with respect to the normal basis generator « is defined
by the N x N-matrix
ADFT, = (tr (ﬂle))i7j:07___7N_1 .
Let us restate the definition of the ADFT in less technical terms. Recall
that the function z — tr(fx) maps an element = € Fy» to its first coordinate
with respect to the basis B; we have noticed this general property of dual bases
in equation (1) above. Thus, the ADFT is obtained from the DFT-matrix by
expressing each matrix entry w € F,. with respect to B. This yields a vector
v;; of length n over Fj for each entry w. The first component of this vector
v;,j coincides the (7, j)-entry of the ADFT-matrix.

Ezxample 3. Consider the DFT of length 7 for signals over F5. The extension
Fys = Fy(w) is generated by a primitive 7th root of unity w with minimal
polynomial 23 + x + 1. A normal base for Fys/F} is given by B = {w®, w? w°}.
If we express the coefficients w® with respect to B, then the DFT-matrix reads
as follows:



Viewing the DFT as a transform for signals over F5 yields a 7 x 21-matrix over
F,. The ADFT with respect to the normal basis generator w® of B is obtained

by reading off the first components [, , ], thus yielding a 7 x 7-matrix over Fj:
1 1 1 1 1 1 1
1 1 1 0 0 1 0
1 1 0 0 1 0 1
1 0 0 1 1 1 0
1 0 1 1 1 0 0
1 1 0 1 0 0 1
1 0 1 0 0 1 1

Remark. We defined the ADFT only for DFTs over finite fields Fy» /F,. More
generally, one can define the ADFT for arbitrary fields. For example, the dis-
crete Hartley transform can be viewed as a special case of ADFTs over the real
numbers. An even wider class of basefield transforms is studied in [5].

5 Parametrization

The ADFT is by no means uniquely determined by a given basefield and DFT-
matrix. After fixing a specific extension Fy» /Fy, we can still choose freely some
normal basis generator. We exploit this freedom to optimize ADFTs for specific
needs.

Lemmab. Let B = (a,af,...,a" )t be a normal basis of Fyn/Fy and let
T € GL(n, F,) a base change matriz. Then TB is a normal basis of Fyn [ Fy if
and only if T is a circulant matriz.

Proof. Suppose that T' is of the form T = (¢j—k mod n)k,1=0,...n—1- Then TB =
(Y0, +--»¥n_1)! is a basis of the form

k k
n—1 n—1 a n—1 q
g gk g
Ve = g Cl—k mod nQ" = E Cl—k mod n & = g Cl mod n & .
=0 =0 =0

This reduces to v = 7gk. Therefore T'B is a normal basis, as claimed. The other
direction follows directly from the normal basis property. O

Remark. The inverse of a circulant matrix is again circulant. Therefore, a coor-
dinate change from one normal basis to another is achieved by multiplying with
some invertible matrix (d;—; mod n)i,j-

Theorem 6. Assume that Fy» is a finite field containing a primitive Nth root
of unity w € Fyn. Denote by a a generator of a normal basis of the extension



Fyn /F,. Then all ADFT matrices derived from (wij)i,jzoy,,,,N,l € GL(N, Fjn)
for signals over the basefield Fi, can be written in the following form:

(Z . (aqewu)>

where the coefficients do,ds,...,d,_1 are elements of F, that generate an in-
vertible circulant matriz (d;—;); ; € GL(n, Fy).

i,j=0,..,N—1

Proof. After fixing an extension F,» /F, and a DFT matrix (w%) [mind that the
choice of the primitive root w is somewhat arbitrary], all ADFT matrices are
given by the set

{ (tr (ywY) ) . ‘ 7 is a normal basis generator of Fqn/ Fq}
i,j=0,...,N—1
According to the previous Lemma, the coordinate change from
.. .. n—1 - t
Vij == (tr (aw”) ,tr (aqw”) oot (aq w”))

to
W= o ) 5 (39 ()

is realized by multiplying V;; with an invertible circulant matrix T' = (d;—;);,;,
that is, W;; = T'V;; holds for all ¢, € {0, ..., N — 1}. More explicitly, we obtain

n—1
tr (’quwij) = Z dy_y tr (Oéqlwij) .
£=0

In particular, this yields for the first coordinate

n—1
tr (ywl) = Z detr (aqewij) ,
=0

as desired. O

6 Optimization

The theorem in the previous paragraph shows that an enumeration of invertible,
circulant matrices in GL(n, Fy) yields an enumeration of all ADFT matrices.
Enumeration gets unfeasible for large basefields or large extensions. To rem-
edy the situation, we describe now a heuristic optimization technique to derive
ADFT matrices with low implementation cost. Before we do so, we discuss some
examples to illustrate the benefit of these methods.



Example 4. Consider the DFT of signal vectors of length 9 over F5. This requires
an extension to Fys. Let a be a primitive element of Fys with minimal polynomial
29 4+ 2* + 2% + 2+ 1. Then w = 7 is a primitive 9th root of unity with minimal
polynomial 2% 4+ 2 + 1. The element o®® with minimal polynomial 2% 4+ 2¢ + 1
generates a normal basis; another normal basis is generated by the element
o’ with minimal polynomial % + 2° + x* + 2% 4+ 1. The matrices ADFT; =
(tr (e®3wh)); j=0,....s and ADFT; = (tr (a®wl)); j=0,....s read then as follows:

111111111 111111111
101101000 110001111
110000110 100111011
110110110 101101101
ADFT, 100101001 |, ADFT,=|101010111
110010100 111101010
101101101 110110110
101100001 111011100
100010110 111110001
QII

The figure shows a standard cell implementation of the transforms ADFT; and
ADFT,. Although both transforms can be used to compute the spectrum of the
DFT for signals of length 7 over the basefield F», the implementation of the
ADFT; requires less active elements. This reduction in silicon area was achieved
by searching for an ADFT matrix with many zero-entries, which resulted in the
transform ADFT;. The ADFT, was obtained by an initial guess of a normal
basis generator.



Example 5. Consider the DFT of length 12 signals over the basefield F5. This
requires an extension to Fs2. Denote by a a primitive element of F5» with min-
imal polynomial 22 + 4z + 2. In this field there are four primitive 12th roots
of unity, namely o?,a'?, o', and a??; let us choose w = a??2, an element with
minimal polynomial z? + 2z + 4. A normal basis for Fs2/Fj is generated by «
or alternatively by a!®. Then the matrices ADFT; = (tr (aw"));j=o,..,11 and

ADFT, = (tr (a'®w")); j=o,...11 read as follows:

111111111111 222222222222
130340420210 244122311433
104401104401 242313242313
134213421342 213421342134
140140140140 221221221221
101303404202 223114332441

ADFTy = |y 4 414141414 | APFT2= 232323232323
120240430310 214423341132
104104104104 212212212212
124312431243 243124312431
110440110440 231324231324
101202404303 233411322144

The left figure shows the layout of ADFT; using 2266 x 4936um? silicon area.
The right figure shows the implementation of ADFT5 requiring an area of 2266 x
6347um?. Both realizations are designed for a 1 CMOS technology.



For our heuristic optimization we consider the circulant base change matrix
(dj—3)s,; as a matrix with elements of the ring Fy[d1,...,d,—1] in the indetermi-
nates d;. This yields the Parametrized Algebraic Discrete Fourier Transform:

n—1
PADFT := (Z dytr (WJJ’))
(=0

= i,j=0,...,N—1

Let us illustrate this construction for signals of length 7 over F5>. The DFT matrix
given in Example 3 translates directly into the following PADFT:

ds ds ds ds ds ds ds
ds do+dy do+dy di dy+ds do ds
ds do+dy di+dy dy do + dy dy do
ds dy dy do+dy do do+dy dy+d> |,
ds di+dy do+dy do do +d; dy dy
ds do di dy+ ds dy dy+ds dy+dy
ds ds dy dy +ds di do+dy dy+ds

where ds denotes the term ds := dg + d; + d>. Note that all terms in the PADFT
are linear combinations of the parameters d;.

Theorem 6 shows that all ADFT matrices can be obtained from the PADFT
by specializing the parameters dp,...,d,—1 to values in F, such that T" =
(dj—i mod n)i,; is invertible. For instance, from the PADFT matrix above one de-
rives the ADFT given in Example 3 by choosing the parameters dy := 1,d; := 0,
and ds := 0; the circulant matrix T yields for these parameters a permutation
matrix, which is of course invertible.

The generic representation of the ADFT matrix allows to compute for exam-
ple sparse ADFT matrices. The following algorithm searches for a specialization
that leads to a high number of zero-entries. The algorithm proceeds in a greedy
way and tries to specialize the terms that occur most often to zero. This is done
by constructing a system of linear equations, which represent constraints on the
specialization parameters. The aim is to find a specialization 7 of the parame-
ters d; that yields an invertible matrix 7(T") = (7(d;j—; mod n))i,; and satisfies as
many contraints as possible.

# Input: a PADFT matrix M in the indeterminates d; over F
# Output: an ADFT matrix
H := list of terms occuring as entries in M,
sorted by number of occureny;

E := [1;
for i from 1 to length(H) do

LinearEq := append(E,H[i]=0);

T := solve(LinearEq);

if {r|7 € T,det(r(T)) #0} # 0 then E:= LinearEq; fi;
od;
T := solve(E); 7 := choose({r|7 € T,det(r(T)) #0});
return(r(M));



This algorithm presents the basic idea of heuristical optimization: the trans-
form is determined by implementation issues. The same idea can be used for
more elaborate optimization algorithms.

7 Conclusion

We have presented general results on Algebraic Discrete Fourier Transforms.
We have shown that these results can be used to find efficient implementations
of those transforms. The computation of sparse matrices in only one specific
example. It is possible to combine our methods with implementations strategies
as described in [3, 4].
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