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ABSTRACT

We propose a conceptually simple method for lossless compression of medical image and volume data. The method

can be divided into three steps: the input data is decomposed into several subbands with the help of nonlinear

lifting �lters, the resulting subbands are block-sorted according to a method suggested by Burrows and Wheeler, and

the redundancy is removed with the help of an adaptive arithmetic coder. Moreover, we suggest a new method to

implement (non-linear) lifting �lters. We describe these �lters with the help of a small �lter description language,

which is compiled into a shared object �le and dynamically loaded at run time. The source code of the program is

freely available for testing purposes.
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1. INTRODUCTION

Modern medical diagnostics are often based on X-ray computerized tomography (CT) and magnetic resonance

imaging (MRI) techniques. The raw three-dimensional scan data delivered by such imaging devices occupies several

mega bytes of disc space per data set. Some diagnostic methods may even require several scans per patient, for

example in functional computer tomographic examination of whiplash injuries, cf. [1]. Consequently there is a

natural demand for highly e�cient lossless compression methods.

Recently, several lossless image compression methods were proposed that are based on subband decomposition,

e.g. [2, 3, 4]. These methods combine the compression performance of state of the art lossless compression methods

with the advantage of an embedded bitstream, allowing a progressive decoding of the image.

We propose a conceptually simple method for lossless compression of three-dimensional MRI and CT data. We

decided to use separable �lter banks with lifting �lters to reduce the entropy of the signal. Our methods rely on

modular arithmetic or nonlinear operations to reduce the range of the resulting coe�cients. The subbands are then

transformed with the Burrows-Wheeler transform5 and subsequently encoded by an adaptive arithmetic encoder.

Depending on diagnostic purposes, a three-dimensional MRI or CT data set consists of twenty up to more than

100 two-dimensional slices, and the slice distance may vary between 0.6 and 7 mm. Our experiments showed that

even for data sets with a small number of two-dimensional slices and a high slice distance there is a signi�cant gain

in compression ratio by compressing the 3D data comparted to compressing the two-dimensional slices separately.

Beside the lossless compression methods we show a new way to implement lifting �lters in compiled languages.

The traditional way of specifying �lters in terms of their coe�cients is not su�cient to describe nonlinear lifting

steps. In contrast, the lifting �lters are described in a �lter description language (FDL) and compiled into a shared

object �le, which is dynamically loaded at run time. The compilation step results in signi�cantly higher performance

compared to an FDL interpreter.
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2. FILTER BANKS

We want to decompose CT or MRI image or volume data with a multirate �lter bank. Since our aim is lossless

compression, this �lter bank should allow for a perfect reconstruction of the signal. Moreover, the implementation of

the �lter bank should avoid a coe�cient swell, that is, each subband coe�cient should be representable by a decent

number of bits, even after some decomposition steps. We are interested in this property since it is di�cult to build

a coder that exploits all redundancies in a signal.

In this section we recall the basic idea of one-dimensional two-channel �lter banks and their lifting �lter realization.

We will tensor these �lter banks to obtain the corresponding �lter banks for higher-dimensional signals.

The pixel values of CT or MRI volume data are typically represented by 12-16 bits. Thus, we may view these

values as integers in the range from 0 up to 65535. In each row, column, or along the third axis there are only a

�nite number of non-zero coe�cients. A single row may thus be regarded as an element of the group ring Z[Z=NZ].

One possibility would be to use a tensor product of cyclic �lter banks6{8 with two channels and integer valued �lters

to decompose such a signal. The data is processed by two cyclic convolutions, followed by downsampling, and this

process is repeated along each axis. Therefore, the signal is decomposed into eight subbands.

We brie
y recall how such a cyclic �lter bank works. The group ring Z[Z=NZ] is isomorphic to the \truncated"

polynomial ring Z[ z ]=h1� zNi. The input signal s(z) 2 Z[z]=h1� zNi is processed by two cyclic convolutions with

the �lters e�(z) and e�(z). These convolutions are simply given by the multiplication in Z[ z ]=h1 � zNi, that is, by

polynomial multiplication modulo 1� zN . After these convolution operations the sampling rate is reduced by half.

Assuming that N is given by an even positive integer, we obtain in this step two signals d�(z) := [#2] e�(z)s(z) and
d�(z) := [#2] e�(z)s(z); where the downsampling operation [#2] is de�ned as usual by mapping the signal s(z) to the

even part se(z) of the polyphase decomposition s(z) = se(z
2) + zso(z

2), that is, the operation [#2] is given by

[#2] :

(
Z[ z ]=h1� zNi �! Z[ z ]=h1� zN=2i;

s(z) 7�! se(z):

For reconstruction, the \sampling rate" of the signals d�(z) and d�(z) is doubled with the help of the upsampling

operation ["2], which is de�ned by

["2] :

(
Z[ z ]=h1� zN=2i �! Z[ z ]=h1� zN i;

s(z) 7�! s(z2):

After the upsampling, the signals d�(z
2) and d�(z

2) are multiplied with �(z) and �(z) respectively and added (again

all operations are taken modulo 1� zN). This yields ŝ(z) = d�(z
2)�(z) + d�(z

2)�(z) mod 1� zN .
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Figure 1. Cyclic �lter bank for signals in Z[ z ]=h1 � zN i. All convolutions (multiplications) are taken modulo

1� zN .

The reconstructed signal ŝ(z) will coincide with s(z) for all signals s(z) 2 Z[ z ]=h1 � zN i provided the �lterse�; e� and �; � are properly chosen. In principle, we could use such a �lter bank for our compression application.

However, this approach has two major drawbacks. Although the number of pixels is not expanded due to the cyclic

convolution, we have in general annoying border e�ects. Moreover, the overall size (measured in bits) will increase

dramatically, since the output of the convolutions has a signi�cantly wider range of integer values.

We can avoid these drawbacks with the help of the lifting scheme.2,9{12 The reader should consult these references

for a thorough introduction to the philosophy of this method. We will restrict ourselves to those aspects relevant to

our application.



As a motivation we will brie
y discuss polyphase matrices and their decomposition in ladder structures (for a

more detailed discussion of this topic we refer to [13] in these proceedings). Recall that the output (d�(z); d�(z))
t

of the analysis �lter bank can be obtained by multiplying the polyphase vector (se(z); so(z))
t of the input signal

s(z) = se(z
2) + zso(z

2) with the polyphase matrix

Hp(z) :=

� e�e(z) e�o(z)e�e(z) e�o(z)
�
;

where the matrix entries are de�ned by e�(z) = e�e(z2) + z�1e�o(z2) and e�(z) = e�e(z2) + z�1e�o(z2). The left-hand
side of Figure 2 shows the corresponding implementation.
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Figure 2. Polyphase implementation of a cyclic �lter bank.

The polyphase matrix Hp(z) of a perfect reconstructing �lter bank is an element of the group GL2(Z[Z=NZ]).13

This group has the special property that it can be generated by elementary transvections, i. e., matrices that di�er

from the identity matrix by one o�-diagonal entry, and invertible diagonal matrices (this non-trivial fact was proved

in [14]). Ignoring diagonal matrices, we can write the analysis part as a product of transvections, giving a ladder

step implementation. For example, if the polyphase matrix Hp(z) is given by the product

Hp(z) =

�
1 0

b(z) 1

��
1 a(z)

0 1

�
;

then we obtain a ladder step implementation of the analysis �lter bank as shown in Figure 3. The advantage of these

ladder steps is that they can be easily inverted. Namely, we have to apply the same elementary transvections but in

reverse order and with the sign of the o�-diagonal entries inverted.

#2

#2

z�1 a(z) b(z)

Figure 3. Ladder step implementation.

Wim Sweldens observed that the same simple inversion is possible, if we replace the convolution operators

(x 7! a(z)x and x 7! b(z)x in our preceding example) by more general operations. To see this, observe that the e�ect

of the elementary transvections on a polyphase vector can be described by the mappings

( se(z); so(z) )
t 7�! ( se(z) + a(z)so(z); so(z) )

t and ( se(z); so(z) )
t 7�! ( se(z); so(z) + b(z)se(z) )

t:

Assume that we are given operators P and Q that map Z[ z ]=h1� zN=2i into itself. Then it is immediately clear that

the mappings

( se(z); so(z) )
t 7�! ( se(z) + P (so(z)) ; so(z) )

t and ( se(z); so(z) )
t 7�! ( se(z); so(z) +Q(se(z)) )

t

are invertible as well. We refer to these operations as lifting steps. Note that these lifting steps are a natural

generalization of ladder steps.



3. A FILTER DESCRIPTION LANGUAGE

Although the lifting scheme is in principle as simple as a ladder implementation, there arise some practical problems.

Whereas a ladder step is already determined by the indices of the o�-diagonal entry and the coe�cients of the ladder

step �lter, it is not clear how to specify a general lifting step. We describe in this section a small language for this

purpose.

Assume that the input signal is given as an element of the group ring Z[Z=2NZ]. In the �rst step, this signal

is split into the even indexed subsequence and the odd indexed subsequence. These subsequences can be viewed as

two integer arrays e and o. We can refer to the elements of these sequences by e[k] and o[k]. In other words, if

the input sequence is given by the samples s`, with 0 � ` < 2N , then e[k] refers to the element s2k and o[k] refers

to the element s2k+1.

A lifting step simply takes the elements of one array as input, operates on this data, and adds (or subtracts) the

result from the other array. We allow addition +, subtraction -, multiplication *, integer division /, left shift <<, and

right shift >> as binary operators. An integer expression can be added to an array element with the operator += and

subtracted from an array element with the operator -=. For example, the expression e[k] += 3*o[k] means that

the value of o[k] is multiplied by three, added to e[k], and the result is stored in e[k]. In addition to the integer

operations, we allow 
oating point operations in intermediate calculations of a lifting step. However, one should note

that the assignment operators += and -= require an integer expression on the right hand side. The ceiling, 
oor,

and round functions CEIL, FLOOR, and ROUND can be used to convert 
oating point expressions back to integers. The

syntax of our language is summarized in Figure 4.

We explain the main concepts of our language with the help of a few examples. The description of a lifting scheme

is always of the form lifting( body ), where body consists of several loop statements. For example, a lifting scheme

with two lifting steps is shown in the following example:

lifting(

[0;N-1] o[k] -= e[k]; e[k] += o[k]/2;

)

The loop index is always given by the special variable k. The loop ranges from the index 0 to N-1, where N denotes

the length of the arrays o and e. In the �rst lifting step, the array elements e[k] are subtracted from o[k] and

the result is stored in o[k]. The second statement makes an integer division by two of o[k], adds the result to

e[k] and assigns the result of this addition to e[k]. In the next example we have replaced the integer division by

a 
oating point division. Since assignments require integer expressions, we need to convert the result of the 
oating

point division to an integer e. g. with the help of the 
oor function:

lifting(

[0;N-1] o[k] -= e[k]; e[k] += FLOOR(o[k]/2.0);

)

This example is an integer version of the Haar transform, which is known as the S-transform, see for example [12].

The next example gives another example of a lifting scheme with two lifting steps. It shows how border e�ects

can be treated:

lifting (

[0] o[k] -= ((e[k]+e[k+1])/2); e[k] += (o[k]/2);

[1; N-2] o[k] -= ((e[k]+e[k+1])/2); e[k] += ((o[k-1]+o[k])/4);

[N-1] o[k] -= e[k]; e[k] += ((o[k-1]+o[k])/4);

)

In the �rst lifting step the value of o[k] is predicted by (e[k]+e[k+1])/2. We have to take care of border e�ects in

this example. We can calculate o[k] -= (e[k]+e[k+1])/2 in the range [0;N-1]. For o[N-1] we need a di�erent

treatment, for example, we may try to predict this value from e[N-1]. In this example we have divided the signal

into three regions (left, inner, and right), which is expressed by the �rst column of loop ranges. The �rst statement

of each line is computed for all k in the range. In other words, the �rst statement in each line refers to the �rst lifting

step. Therefore, we require that all these statements refer to the same target array (in our example the array o).

The second lifting step has the target array e. This array is updated by the second statement in each range.



lifting( body )

body ::= loop

j body loop

loop ::= range stmnts

stmnts ::= stmnt

j stmnts stmnt

range ::= [ bound ] j [ bound ; bound ]

bound ::= number j N j bound + bound j bound - bound

stmnt ::= lval += iexpr ;

j lval -= iexpr ;

j lval +%( modulus )= iexpr ;

j lval -%( modulus )= iexpr ;

modulus ::= number j nvals j modulus + modulus j modulus - modulus

lval ::= e[k] j o[k]

iexpr ::= e[ index ]

j o[ index ]

j number

j ( iexpr )

j - iexpr

j iexpr + iexpr

j iexpr - iexpr

j iexpr * iexpr

j iexpr / iexpr

j iexpr >> iexpr

j iexpr << iexpr

j CEIL ( fexpr )

j FLOOR ( fexpr )

j ROUND ( fexpr )

j MOD ( iexpr , modulus )

fexpr ::= iexpr

j number . number

j ( fexpr )

j - fexpr

j fexpr + fexpr

j fexpr - fexpr

j fexpr * fexpr

j fexpr / fexpr

index ::= k j k + number j k - number

number ::= [0{9]+

Figure 4. The syntax of the �lter description language.



Before we introduce more operations it is instructive to generalize the lifting scheme. We used two integer arrays

and updated each array with the operations -= and +=. More generally, we can replace the (additive) group of

integers by an arbitrary group. All operations can be done in the same way. As a particular example we can take the

residue class ring Z=nZ with addition taken modulo n. We know that the pixel values of an image are in a certain

range, for example in [0::65535]. Therefore, we can view these values as elements of Z=nZ, provided that n � 216.

The analogues of the assignment operators -= and += in the group Z=nZ are denoted by +%( n )= and -%( n )=

in our small language.

The next example is a modular version of the previous example. The special variable nvals contains the value 2n,

if the input image data is of n bit depth.

lifting (

[0] o[k] -%(nvals)= ((e[k]+e[k+1])/2); e[k] +%(nvals)= (o[k]/2);

[1; N-2] o[k] -%(nvals)= ((e[k]+e[k+1])/2); e[k] +%(nvals)= ((o[k-1]+o[k])/4);

[N-1] o[k] -%(nvals)= e[k]; e[k] +%(nvals)= ((o[k-1]+o[k])/4);

)

The interpretation of most constructs of our language should now be clear from the previous examples. As a

general rule, we note that the precedence and associativity of the operators is borrowed from the corresponding C

operators. Although it is not obvious from the syntax of our language, it should be noted that if an array element

e[k] (resp. o[k]) occurs as an lval in a statement, then the iexpr of this statement should not contain any reference

to an element of the array e (resp. o). Moreover, if the ith statement in a loop has e[k] (resp. o[k]) as an lval, then

it is required to be the lval in the ith statement of all other loops. These rules re
ect the fact the the ith statement

of a loop is part of the description of the ith lifting step.

The description of the lifting �lters is translated in our implementation to C code for one-, two-, and three-

dimensional data (realizing the non-linear analogues of tensored wavelet �lters). Our compression program lwc

reads such a description, generates the necessary C code, calls the C compiler to generate a shared object �le, and

dynamically links this object �le. This way we obtain a fairly e�cient implementation without requiring the user to

write C code.



4. BURROWS-WHEELER TRANSFORM

The decomposition of the volume data into subbands reduces the entropy but does not decorrelate completely. We

perform a second transform on the subbands for this reason, which is know as the Burrows-Wheeler transform.5,15

The Burrows-Wheeler transfora is best understood with the help of an example. Suppose we want to transform

the string abaada.

M :=

0
BBBBBB@

abaada

baadaa

aadaab

adaaba

daabaa

aabaad

1
CCCCCCA

M 0 :=

0
BBBBBB@

aabaad

abaada

baadaa

aadaab

adaaba

daabaa

1
CCCCCCA
:

We have M [�(i); j] =M 0[i; j], where � is given by the permutation i 7! i+ 1 mod N

N :=

0
BBBBBB@

aabaad

aadaab

abaada

adaaba

baadaa

daabaa

1
CCCCCCA

N 0 :=

0
BBBBBB@

daabaa

baadaa

aabaad

aadaab

abaada

adaaba

1
CCCCCCA

� = (0 2 1 4 5); � = (0 1 2 3 4 5)

� = (0 2 4 1 3 5)

����1 = (0 2 1 4 5)(0 1 2 3 4 5)(5 4 1 2 0) = (0 2 4 1 3 5) = �

Figure 5. A slice of an MRI scan. The image shows the knee of our colleague Detlef Zerfowski (shortly after

unhealthy marathon training).



Figure 6. Burrows-Wheeler transform of the image shown in Figure 5. (Some people think that the same e�ect can

achieved after in�nitely many hours of marathon training...)

Figure 7. Nonlinear analogue of the wavelet transform. The �gure shows a decomposition of the image shown in

Figure 5.



5. CONCLUSION

APPENDIX A. OPEN SOFTWARE

A prototype implementation of the method described in this paper is freely available at

http://iaks-www.ira.uka.de/home/klappi/lossless.html

The source code of our compression program lwc is distributed under the GNU general public license.
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