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Abstract. The IDEAS design system is an innovative algorithm engi-
neering environment. It can be employed to derive correct and e�cient

software or hardware implementations from algebraic speci�cations using

the advanced formal method ART. Several case studies for some algo-
rithm engineering tasks are discussed in this article to demonstrate the

feasibility of this system.

1 Introduction

IDEAS is the acronym (I ntelligent Design Environment for Algorithms and
Systems) for an innovative algorithm engineering tool that has been built dur-
ing a long term research project at the authors' institution, incorporating mod-
ern techniques of informatics, mathematics, computer algebra, and engineering.
In contrast to traditional CAE-tools, like software compilers or hardware de-
scription languages (HDLs) or so-called Silicon Compilers and synthesis tools, in
IDEAS the problem speci�cation is stated in terms of mathematical expressions,
which are the natural application descriptions by the user. Subsequently, using
the methodology of Abstract Representation Theory (ART), a type re�nement
is carried out to take into account the requirements of a given implementation
technology according to the semantics of the application. The basic idea is to
generate and optimize implementations by well-chosen mathematical operations
in relation to the algebraic problem speci�cation. This leads to an alternative
approach to algorithm engineering. In several case studies the feasibility of such
an intelligent design environment, the strength of the approach and the power
of the system IDEAS is demonstarated.

1.1 The IDEAS Design Flow

What is the basic di�erence between the traditional top-down or bottom-up
approach and the sketched IDEAS design ow presented here? Following the
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IDEAS approach, the terms problem, speci�cation, algorithm, and implementa-

tion become quite well-de�ned algebraic notions. Since user de�ned speci�ca-
tions are done using traditional mathematical data structures, such as number
domains, vector spaces, matrix algebras, polynomial rings, permutation groups
and ordered sets, modelling the data structure means specializing the ADT by
introducing operational semantics in the speci�cated domain itself. Obviously,
the speci�cation may be changed during the design process. At �rst glance, this
seems improper, because the speci�cation is describing the problem. The un-
usual idea, however, is to introduce operations on the speci�cation itself, i.e.
combining it with the process of modeling ab initio. The engineering tool is used
to generate algorithms, which are correct with respect to the speci�cation in
the semantics of the given model. Optimization then becomes a rewriting prob-
lem of the speci�cation. Summarizing, one can quote several advantages of the
algebraic algorithm design approach:

{ availability of deep mathematical knowledge,
{ correctness by automatic algebraic transformations,
{ e�ciency by modularization and parallelization,
{ reusability through ADT's

The design environment IDEAS is to our knowledge the �rst fully operational
implementation (cf. Fig. 1) of such a system. The strength of the environment
relying on the fact that both the knowledge representation and the transforma-
tions on the speci�cations are provided by modern Computer Algebra Systems.
The implementation of the features of IDEAS, making it an intelligent design
environment, are briey sketched in the following sections. They have become
possible due to the increased capabilities of the underlying Computer Algebra
packages during the last decade.

1.2 The Principle of ART

The theoretical background of this approach, ART (Abstract Representation
Theory) is based on the thought that problems should be speci�ed in the most
adequate data structure. Elementary datatypes that have been studied thor-
oughly in the past are boolean logic and �nite state automata. For problem
speci�cations of this type, quite e�cient tools exist to optimize the speci�cation
before the actual implementation. However, if a problem is best and most nat-
urally stated in terms of linear equations, it doesn't seem to make sense to �rst
re�ne down to the level of boolean logic and then try to optimize at this level,
since important information is lost.

The development of the theory was initiated by the observation that algo-
rithm engineering for restricted problem classes in signal processing is based on
a limited number of data types and design principles [1]. It became clear that
there is a strong relationship between symmetries and fast implementation of a
system matrix A [20, 19].

The cyclic shift property of the Discrete Fourier Transform (DFT) can be
described in these terms of symmetries. If P denotes the cyclic shift, which e.g.
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Fig. 1. The structure of IDEAS

naturally occurs as the phase shift operator in many models of speci�cation
(cf. section 4), and F denotes the Fourier tranfom matrix, then the following
equation holds:

FP = QF;

where Q denotes the diagonal matrix diag(1; !; !2; : : : ; !n�1): This property,
which has many applications in position invariant pattern analysis, is an example
of a symmetry, which o�ers itself to be reformulated in terms of representation
theory.

Recall that for any �nite group G; a linear representation of G in a vector
space V is a homomorphism � from the group G into the group of invertible
matrices of automorphisms GL(V ) of V: A symmetry of a matrix A is de�ned
by a pair of representations �; � with:

A�(g) = �(g)A 8g 2 G;



where � is a permutation representation and � is fully decomposed (thus of
block diagonal form). If A is invertible, then A�(g)A�1 = �(g); and it is called
a decomposition matrix of the permutation representation.

If a matrix has a symmetry, then the transform has obviously strong struc-
tural properties, which can be used to derive fast algorithms by modularization
(block diagonal structure) or parallelization as a consequence of an induced ten-
sor structure. The objective is the computation of a matrix describing a change
of base, such that A can be rewritten as product of factors in a sparse form. As
we shall show below, representation theory is a powerful tool to construct such
suitable base change matrices. In order to explain the construction mechanism,
some basic notions from representation theory are needed.

Recall that a representation � : G ! GL(V ) is called irreducible, if V is
non-zero and if no vector subspace of V is stable under G; except 0 and V: Here,
a vector space is called stable, if it is invariant under the action of G: For two
irreducible representations � : G! GL(V ) and � : G! GL(W ) Schur's Lemma
[22] states in particular that a linear mapping f : V ! W intertwining these
representations, i.e. satisfying ��f = f ��; is zero, if � and � are not isomorphic,
or otherwise is a scalar multiple of the identity.

Now if T� is any decomposition matrix of a permutation representation, then
an extension of Schur's Lemma shows that there is a matrix E with ET� = A;

such that E is block diagonal (up to a permutation) with blocks corresponding
to homogeneous components of �: A homogeneous component of a representa-
tion � consists of all irreducible subrepresentation of � from one isomorphism
class of irreducible representations of the group G: This enforces modulariza-
tion and tensor product factorization. With a constructive method to compute
a factorized decomposition matrix T� with sparse factors at hand [20], using
the equation ET� = A; IDEAS constructs a fast algorithm to multiply with A:
To give an impression of the notions used in this constructive process, the next
section will provide a speci�c case study.

2 Case Study: Fast Cosine Transform

Here, in an application, we demonstrate that we have a method to produce a
factorization of the transform matrix into sparse factors as an improved imple-
mentation from a speci�cation given by the linear transform and a symmetry. A
detailed explanation would require a thorough understanding of representation
theory.

2.1 Preliminaries.

The Discrete Cosine Transform (DCT) is well known from signal processing
applications. Especially, this transform on eight points is at the heart of the well-
known JPEG/MPEG compression family, the construction of a fast algorithm to
carry out the DCT is an important task. An IDEAS generated solution improving



the straight forward implementations is given in this case study. The DCT is
given by:

x(n) = Co(n)

r
2

N

N�1X
k=0

C(k) cos

�
k(n+ 1=2)�

N

�
; n = 0; : : : ; N � 1;

where Co(n) = 1=
p
2; if n = 0; and 1 otherwise.

The DCT matrix of size 8� 8 turns out to be a decomposition matrix of the
dihedral group D8 on 8 points (thus it has a symmetry), which can be written
as a permutation group in the following form:

D8
�= h(1; 3; 5; 7; 8;6; 4; 2); (1; 2)(3; 4)(5;6)(7;8)i ;

resembling the invariance of the DCT with respect to 2-step reected shifts
and local swapping. As mentioned before, another decomposition matrix for the
group D8 can be constructed that di�ers only by a block diagonal matrix E as
another factor. A factorized base change matrix is constructed using a recursive
procedure along a chain of normal subgroups (cf.[2, 19]).

2.2 A Fast Discrete Cosine Transform Algorithm

The dihedral group in its usual permutation group presentation leads naturally
to a permutation representation. In representation theory a key notion is that of
an induced representation. Roughly speaking, the induction operation extends
a `small' representation of a subgroup to a `bigger' representation of the whole
group. The dimension of the representation vector space increases by a factor of
j group j=j subgroup j; producing a block structure of this order. Permutation rep-
resentations are always induced from representations of smaller groups, namely
from the 1-representation of the stabilizer. More formally, this can be stated as
follows:

h(1; 3; 5; 7; 8;6; 4; 2); (1;2)(3; 4)(5; 6)(7;8)i �= IndD8

Stab(D8;1)
(1):

First Step. The dihedral group D8 contains a normal subgroup D4 of prime
index that contains the stabilizer of D8 :

D4
�= h(3; 2)(5; 4)(7; 6); (1; 5)(7;2)(8;4)i

Now a procedure called induction recursion can be applied, which is based on
the identity:

IndD8

Stab(D8;1)
(1) �= IndD8

D4

�
IndD4

Stab(D8;1)
(1)
�
:

This means that the induction operator can be factored, which leads to a fac-
torization of the decomposition matrix. There are always four factors, typically
of the form:

T = (T1 
 1)B(1 
 T2)P;



where T1 is a decomposition matrix of the factor group D8=D4; B is a block
diagonal matrix with images of irreducible representations of the group D8 as
blocks, T2 is a decomposition matrix of D4

�= h(1; 2; 3; 4); (1; 4)(2;3)i ; and P is
simply a permutation.

Since the factor group ZZ2
�= D8=D4 is abelian, the decomposition matrix is

simply given by the Fourier matrix (cf. section 3.1)

T1 :=

�
1 1
1 �1

�
:

The matrixT2 is determined by recursion, and the matrixB is given by a solution
of a system of linear equations.

Second Step. The dihedral group D4 contains ZZ2�ZZ2
�= h(2; 4); (1; 3)i as a nor-

mal subgroup. Again, induction recursion can be applied. This time the identity

IndD4

Stab(D4;1)
(1) �= IndD4

ZZ2�ZZ2

�
IndZZ2�ZZ2Stab(D4;1)

(1)
�

is used, leading again to a factorization of the form

T2 = (T 01 
 1)B0(1
 T 02)P
0;

where the matrices are of size 4�4: The matrix T 02 is a decomposition matrix for
ZZ2�ZZ2 with permutation representation h(1; 2)i and is determined via recursion.
The matrices T 01; B

0; and P 0 are like T1; B; and P respectively execpt of smaller
degree (cf. the similar approach in section 5).

Last Step. Since permutation groups of degree 2 always have the Fourier matrix
DFT2 as a decomposition matrix, this one is taken from a library. In the end, one
has obtained a factorized decompostion matrix T: A fast algorithm to multiply
with DCT8 follows immediately. To learn about the details of computing B and
B0 consult [20].

2.3 VLSI Implementation

The previous section gave an impression of the \internal life" of IDEAS. The
user from the outside is simply requested to provide a matrix together with its
symmetry and gets a fast algorithm as a result of the ART approach. For the
DCT8 the system automatically produced an algorithm which uses 14 multipli-
cations instead of 64: In view of the regularity, this compares preferably in gate
count and chip size with the 13 multiplications of handoptimized algorithms [12],
which economizes on multiplications at the cost of additions. The algorithm is
stated as a list of matrices in a computer algebra system. The IDEAS system
translates this representation to the high-level Hardware Description Language
ELLA. Using the LOCAM synthesis tools a gate level description can be gener-
ated. The step from the gate level description to the geometry is done with the
help of the VLSI-CAE system ISIS (cf. Fig. 1). Sequential programs (C-syntax)
are generated by the use of ordinary software compilers for this purpose.



3 Case Study: Algebraic Discrete Fourier Transform

In this case study techniques for compiling and optimizing Algebraic Discrete
Fourier Transforms (ADFTs) [1, 4] are dicussed. ADFT is based on the so-called
Modular Polynomial Transformations (MPTs), providing a common generaliza-
tion of the Diskrete Fourier Transform and Chinese Remainder Technique [8].

Both transformations are of high demand for high speed applications in cod-
ing theory [17, 6], cryptography [15, 13] and signal processing [1, 7].

3.1 Preliminaries

Denote by a = (a0; : : : ; an�1) an input vector over a �eld IF: It will be conve-

nient to repeat this vector as a signal polynomial, namely as a(x) =
Pn�1
i=0 aix

i:

Assume that the characteristic of IF does not divide the signal length n: The
polynomial xn � 1 can be decomposed in disjoint, irreducible, monic factors

xn � 1 =

mY
i=1

pi(x) 2 IF[x]:

The Modular Polynomial Transform (MPT) to the factors (pi)
m
i=1 of a signal

polynomial a(x) is de�ned as the set of polynomial remainders

MPT(IF;xn�1)(a(x)) = (B1(x); : : : ; Bm(x));

where Bl(x) � a(x) mod pl(x):As a direct consequence of the Chinese remainder
theorem it follows that the Modular Polynomial Transform is invertible. The
intrinsic parallel structure of an MPT is illustrated in Figure 2, allowing a fast
multiplication of degree n polynomials in O(n1+�) or O(n log n) time rather than
O(n2) [8].

The Modular Polynomial Transform with respect to the factor basis (x �
!i)ni=1 is important, because it computes the Discrete Fourier Transform of the
same length if the n-th roots !i of unity are contained in IF. Otherwise it im-
plicitely computes the Discrete Fourier Transform via the Algebraic Discrete
Fourier Transform. For this it is necessary to represent all results of the MPT in
a common �eld extension.

The irreducible factors pi(x) of x
n�1 can be viewed as minimal polynomials

of several extension �elds of IF. Each zero of the polynomials pi(x) is some root of
unity. In the case where IF is the �eld of rationals, all quotient �elds Q[x]=hpi(x)i
can be viewed as sub�elds of the cyclotomic �eld Q[x]=h�n(x)i; where �n is the
n-th cyclotomic polynomial.

In the case where IF is of characteristic p the situation is somewhat di�erent.
The usual cyclotomic polynomial �n(x) 2 Q[x] may be reducible over IF; and
the situation may appear that some quotient �elds are isomorphic. In this case,
it su�ces to work with one of the isomorphic �elds, saving further computations
after a local change of base to so-called normal bases. Recall that an IFp-basis
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of the form (�; �p
1

; �p
2

; : : : ; �p
n�1

) is called a normal basis of IFpn . Two normal

bases (�; �p
1

; : : : ; �p
n�1

) and (�; �p
1

; : : : ; �p
n�1

) are called dual i�

n�1X
i=0

(�i�j)
qi = �i;j

holds. Moreover, if the two dual bases coincide, then the normal basis is called
a self-dual.

3.2 The Algebraic Discrete Fourier Transform

Suppose that IF is a �eld with a characteristic not dividing n: Denote by ! a
primitive n-th root of unity and by IE the Galois extension IF(!): Furthermore,
let DFTnN be the DFT-matrix (!ij) of size n�n; where each coe�cient is repre-
sented with respect to a normal base N of the �eld extension IE=IF: The ADFT
is de�ned by the matrix that is obtained from the (!ij) matrix by projecting
each coe�cient !ij onto its �rst component with respect to the normal base B:

In this section an algorithm to compute the ADFT via the MPT is described.
In a �rst step the MPT(IF;xn�1)(a(x)) is used to compute the remainders Bi:
Then the di�erent �elds IF= hpi(x)i are injected into the common �eld IE: After-
wards, a second base change is applied to represented the results with respect to



a joint normal base N: It can be shown that the resulting transform computes
the ADFT spectrum up to a permutation. Therefore, it is possible to use the
MPT in order to compute the ADFT.

The multiplications required in the feedback shift registers realizing the MPT
can be visualised by so-called multiplicationmatrices. Let � 2 IFpn be a primitive
element of IF�pn ; then there is an isomorphism (the so-called dlog) � : IF�pn !
[1; : : : ; pn � 1], mapping each element b 2 IF�pn to a value i 2 ZZpn�1 with the

property: b = �i. LetM� denote the associated matrix with the property b�M� =
b � � for all b 2 IF; where b � � is regarded as a vector.

With the knowledge of M�; gate level networks for �xed elements may be
compiled. If p(x) is the de�ning polynomial of IF, then M� is of the form:

M� =

0
BBBBBB@

0 1 0 : : : 0
...

. . .
. . . : : :

...
...

. . . 1 0
0 : : : : : : 0 1

�pn�1 : : : : : : �p1 �p0

1
CCCCCCA

(1)

Using this knowledge, it is clear how to generate VLSI layouts based on the
method of algebraic compilation: The diagonal of 1's represent a shift operator
followed by a feedback set of taps pi.

3.3 VLSI Implementations

All the outputs of the computer algebra system, for which in this case AXIOM
[16] was used, are sent to a parser and an HDL code generator. Together with
commercial synthesis tools, a CMOS layout has been generated. Figure 3 shows
an MPT layout for MPT(IF24 ; x

7�1) reecting the factorization of x7�1 which
is (x + 1)(x3 + x + 1)(x3 + x2 + 1): In the next case study it is shown that
architectural information is already available at the algebraic level and can be
used to improve geometries.

Fig. 3. Layout of the MPT of the polynomial x7�1 is characterized by the factorization
(x+ 1)(x3 + x+ 1)(x3 + x2 + 1):



It is possible to choose one of the most suitable normal bases with respect to
the number of operations necessary to compute the base changes, refer also [14].
Figure 4 gives some results for di�erent MPTs and bases. Thus only by some
change of bases, a major reduction of the hardware was achieved. A similar
transformation as described in the example can be computed with 4 additions
and 2 multiplications. This completes the section on MPT; describing the use of
computer algebra for compiling and optimizing these kinds of algorithms.

transform additions multiplications

�eld length

IF2 3

IF4 7

IF3 4
IF3 8

IF3 16

IF5 6
IF5 12

min max

1 1

6 6

2 2
4 4

24 24

2 4
4 8

min max

- -

- -

1 4
2 7

7 14

1 7
3 14

Fig. 4. Some results of optimization.

4 Case Study: Fast Wavelet Transform

Wavelets are special orthogonal functions  which are localized having some
oscillations. As such they can be chosen adapted to a certain waveform, giving
high correlations with a signal. However, under the modelling paradigm of 1.1
such waveforms, such as noises or cracks on records, or ultrasound signatures,
will be squeezed or spread and delayed in signal space. Therefore, the wavelet
base of the model signal space is generated by dilation and translation from the
mother wavelet  :

4.1 Preliminaries

Wavelet bases are special orthonormal bases of the space of square integrable
functions L2(IR) given by a family of wavelets of the form

 j;n(x) = 2�j=2 (2�jx� n); j; n 2 ZZ:

A closer look at the construction of wavelet bases reveals an elegant way to
derive the Fast Wavelet Transform (FWT) algorithm [10, 18].

A natural starting point for the construction is a multiresolution analysis,

that is, in particular, a ladder of approximation subspaces

f 0 g � � � � � V2 � V1 � V0 � V�1 � V�2 � � � � L2(IR);



where for each j 2 ZZ the subspace Vj is spanned by an orthonormal basis�
2�j=2'(2�jx� n) j j; n 2 ZZ

	
: The space V0 is invariant under integer transla-

tions. The function ' is called scaling function.

The di�erent approximation spaces are connected by the following dilation
property:

f(x) 2 Vj () f(2x) 2 Vj+1:

Therefore, the scaling function ' ful�lls a dilation equation:

'(x) =
p
2
X
n2ZZ

hn '(2x� n); with suitable hn 2 C: (2)

An orthonormal wavelet can be derived from the scaling function ' as follows:

 (x) =
p
2
X
n2ZZ

gn'(2x� n); (3)

where gn = (�1)n hk�n; and k is an odd integer. The equations (2) and (3) play
a key role in the construction of the FWT, which will be explained in the next
section.

The hierarchic structure of a multiresolution analysis resembles that of the
subgroup chain when deriving linear systems with symmetry. The techniques of
the �rst case study are not applicable however, because the underlying vector
spaces are not �nite dimensional. Nevertheless, structural properties are used
again to derive the fast algorithm.

4.2 The Fast Wavelet Transform Algorithm

Assume that the input signal s is already in an approximation space, say V�1:
Then this signal s can be represented as a sequence of \sample values"

(: : : ; h'�1;n�1 j s i ; h'�1;n j s i ; h'�1;n+1 j s i ; : : :) ; (4)

where 'j;n(x) = 2�j=2'(2�jx�n);with respect to the orthonormal basis of V�1:
Denote byW0 the orthogonal complement of V0 in V�1: The space W0 comprises
the \details" of V�1 missing in V0: It can be shown that the integral translates
of  constitute a basis for W0:

The FWT realizes the change of base from V�1 to V0 � W0: Substituting
the integral translates of the scaling function '(x) in equation (2) and of the
wavelet  (x) in the equation (3), leads to an elementary decomposition step of
the FWT:

h'0;m j s i =
X
n2ZZ

hn�2m h'�1;n j s i ;

h 0;m j s i =
X
n2ZZ

gn�2m h'�1;n j s i :



In other words, an elementary decomposition step can be visualized in matrix
form as follows: 0

BBBBBBBBBBBBBB@

. . .
. . .

. . .
. . .

� � � h0 h1 h2 h3 � � �
� � � h0 h1 h2 h3 � � �

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

� � � g0 g1 g2 g3 � � �
� � � g0 g1 g2 g3 � � �

. . .
. . .

. . .
. . .

1
CCCCCCCCCCCCCCA

(5)

The design process for a VLSI implementation of an elementary decomposition
step is sketched in the following sections.

4.3 VLSI Implementation

Input signals in signal processing applications are often associated with the ra-
tional sequence data type. From an algorithmic point of view, the FWT con-
volves in one decomposition step the rational input sequence with the sequences
(�h�n)n2ZZ and (�g�n)n2ZZ and then drops every second sample in the resulting two
sequences. Consider the sequence (hn) corresponding to the Daubechies wavelet
of order two [9]:

h0 :=
1 +

p
3

8
; h1 :=

3 +
p
3

8
; h2 :=

3�
p
3

8
; h3 :=

1�
p
3

8
: (6)

The objective of this section is to derive an architecture for an elementary de-
composition step of the FWT using internally symbolic arithmetic and delivering
�xed point arithmetic.

At �rst glance, an obvious solution is to approximate the coe�cients (hn)
numerically, for example as follows:

h0 := 0:3415064; h1 := 0:5915064; h2 := 0:1584936; h3 := �0:0915064:

Integral coe�cients are obtained after a suitable normalization. The multiplica-
tion with integer constants can be realized with shifts, additions, and subtrac-
tions. When IDEAS is provided with these coe�cients, the system generates an
elementary decomposition step with 26 adders and subtractors in total for a
twenty bit resolution.

Following our comments about application driven re-modelling (cf. 1.1), al-
ternatively, the speci�cation can be re-written to take advantage of the speci�c
arithmetic structure of the coe�cients in (6). It is possible to specify the coe�-
cients as elements of the �eld extension Q(

p
3) instead of the rational domain.



Using the isomorphism Q(
p
3) �= Q[x]=hx2 � 3i; the coe�cients (6) can be ex-

pressed as follows:

(h0; h1; h2; h3) =

�
1 + x

8
;
3� x

8
;
3 + x

8
;
1� x

8

�
mod (x2 � 3 ):

At �rst sight nothing is gained. However, conjugacy can be used to reduce hard-
ware, using similar techniques as in the ADFT in section 3.2.

The automorphism
p
3 7! �

p
3 of the Galois group Gal(Q(

p
3)=Q) maps the

coe�cient sequence (hn) onto the \mirrored" sequence (h3�n): Up to change of
sign, this conjugated sequences coincides with the sequence (gn); which is given
by gn = (�1)n h3�n: Thus, the redundancy involved in the symbolic polynomial
computation can be used to avoid e�ort for the computation of the convolution
with (gn): In order to transform the results from Q[x]=hx2�3i to the �xed point
format, numerical approximations to the roots of the minimal polynomial x2�3
are subsituted for x:

Using the methods of the preceeding case study, IDEAS optimizes the poly-
nomial bases to minimize the necessary operations. Depending on the algebraic
structure, geometric information is derived in order to place and route the ba-
sic cells, implementing additions, subtractions, and circuits multiplying signal
values with constants, etc. The current implementation of IDEAS produced a
layout for one decomposition step based on 15 adders and subtractors. A part
of the layout is shown in Figure 5. The placement and routing information is
detected on the algebraic level. Due to the close integration of Computer Alge-
bra Systems, ELLA, and ISIS, it is possible to use this geometric information
for the generation of architectures.

5 Future Technology: Quantum Gates

The newly emerging �elds of Quantum Computing as described in the contribu-
tion by Brassard in this volume presents a most natural area of applications for
the IDEAS design tool, as we shall show in this last case study.

5.1 Preliminaries

The state space of a Quantum Computer can be viewed as a Hilbert space H
of kets j i; the dual space of which is formed by the bras h'j with respect to
the hermitian form h :j: i: Since proper computational states are those kets j i
for which h j i = 1, the dynamics of the Quantum Arithmetical Logical Unit
(QALU) is necessarily given by unitary transforms on H, which for practical
reasons as well as for complexity aspects a�ord representations of small degree.
Without loss of generality we therefore assume that the state transition functions
of a QALU are matrices U 2 U(N ) the unitary group of degree N. A computation
c links an initial state j i 2 H with the �nal state j' i = Ucj i weighted with
the amplitude a'! = h'j i via the state transition matrix Uc associated with
c. If Uc can be written as a product Uc = Utl : : :Ut1 with Uti 2 G from a given



Fig. 5. Fast Wavelet Transform in a 12 bit realization. A part of the layout is shown.

The full circuit is based on 4806 transistors and needs 1:544 mm2 area with respect to
a 1� dual metal CMOS process.

set G of computational primitives of so-called quantum gates, the number l is
the length of the computation. In this sense complexity issues can canonically
be related to word problems in U(N ) w.r.t. the generating set G.

5.2 Quantum parallelism

What is more, not only sequential computations can be expressed in this manner
by forming products, but the concept of true parallelism comes very natural by
considering the tensor space H
H0 which is physically constructed by quantum

interference coupling of the two separate QALU's with state spaces H (resp. H0)
by entanglement (Verschr�ankung, so-called by E. Schr�odinger). Its state vectors
are given by the tensors j ; � i := j i 
 j � i with  2 H; � 2 H0: On this
space the unitary transforms of the form W = U 
 V 2 U(NN 0) with U 2
U(N ); V 2 U(N 0) resemble fully parallel computations as for the Kronecker
product of transforms we have U 
 V = (U 
 IN 0 ) � (IN 
 V ); cf. section 2.2.
The the meaning in quantum micro code of e.g. U 
 I 2 U(NN 0) is: \Apply the
unitary transform to all kets j ; � i 2 H
H0 simultaneously by altering the left



part amplitudes according to U and leave the right part unchanged."

5.3 Superposition at its best

With this trick we can automatically generate an algorithm for producing an
coherent equidistribution of all 2n states in one quantum register consisting of
n entangled 2-state systems Hi; i 2 [1 : n]; whose base in given by the kets
fj "i i j "i 2 f0; 1gg : The n-fold tensor space H = H1 
 � � � 
 Hn of dimension

2n consists of all kets j i =
Pn
i=1

P1
"i=0 �"1;"2;:::;"n j "1; "2; : : : ; "n i: Starting

from the initial ket j 0; : : : ; 0 i the n-th Hadamard-Walsh transformation Wn =
W1 
W1 
 : : :
W1 with (cf. equation 2.2)

W1 =
1p
2
T1 =

1p
2

�
1 1
1 �1

�
(7)

produces the desired �nal state j equi = 2�n=2
Pn

i=1

P1
"i=0 j "1; "2; : : : ; "n i in

n parallel steps by applying W1 successively to each of the n two-state systems
Hi:

5.4 Conditional Commands

Having produced a coherent superposition of all possible 2n states equally \am-
ply" computation can start on these simultaneously. For this di�erent transforms
Uk may have to be applied to di�erent orthogonal states 'k for U 2 [1 : n]: The
transform Ucond =

P
k j'k ih'kj 
Uk resembles the conditional CASE-operator.

The matrix Ucond has the form of a block matrix diag(U1; U2; : : : ; Uk; : : :); there-
fore representing a decomposition matrix for a subgroup of U(N ) thus closing
the loop to section 1.2 invoking the principles of ART in a most natural way.

5.5 Applying IDEAS: Automatic compilation and implementation

With these computational primitives, i.e., sequential, parallel, conditional com-
position, translated into unitary groups and therefore to the theory of Lie al-
gebras, the IDEAS tools and paradigm provide a natural solution to the en-
gineering task transforming the problem speci�cation given by an initial /�nal
state relationship h'j i for all ';  2 H into the group-theoretic problem: To
factor the matrix U = (h'j i)'; with respect to the generating set G: In other
words, automatic compilation from a problem speci�cation to a computation
process will be possible. While a most general gate has been proposed by sev-
eral authors [21, 11] resembling the basic primitive of a Boolean Horner scheme
(a; b; c)! (a; b; (a�b)�c)) on basis of which any Boolean polynomial presented in
Ring-Normalform (i.e. the often called RM-Normalform) can be implemented,
the IDEAS environment can be made to translate such unitary computations
and compile them from a physically and practically feasible set G of generat-
ing customised gates adapted to e�cient computational tasks as investigated
recently by Beth, Blatt, Zoller & Weinfurter [3].



5.6 From Unitary Transforms to Layout: IDEAS all along

In implementing the unitary transform Wn, given as example in section 5.3, we
have shown that is su�ces to apply the basic transform

W1 =
1p
2

�
1 1
1 �1

�
(8)

on each Qbit j "1 i. A \Quantum" standard cell for this purpose has been known
since more than a century, the so-called \Mach-Zehnder interferometer" acting
on photons [21]. It can easily be build from beam splitters, phase shifters and
mirrors cf. Figure 6.

p p
21

�
1 0
0 �i

�
�

�
1p
2

ip
2

ip
2

1p
2

�
�

�
1 0
0 i

�
= 1p

2

�
1 1
1 �1

�
:

Fig. 6. The Mach Zehnder con�guration: A standard cell for Quantum Computing

(p1 = �
�

2
; p2 =

�

2
) and the corresponding U2 description of the experimental con�gu-

ration is shown

6 Conclusion

We have demonstrated the power and applicability of the modern algorithm
and system design environment IDEAS, which resembles the new representa-
tion theoretic approach ART to the problem of automatic engineering algorithm

giving correct and e�cient implementation for computations in hardware and
software. It has been shown that the concept of manipulating Abstract Data
Types by proper tools of Computer Algebra is feasible, especially if the cate-
gories of mathematical structures presented by the user have a rich and intrinsic
structural theory, such as those many areas which can be described by the classi-
cal language of today's modern math. By detecting symmetries in the problems
presented and formalising congruence classes of patterns in the abstract data
types, the algebraic approach not only allows the automatic generation of fast



algorithms for solving problems in the model domains. What is more, it provides
the opportunity of re-modeling the semantics of the model algebra according to
symmetries detected in the algorithm development process. A surprising result
of this type has been obtained when the IDEAS approach was applied to the
design of molecular robotics [5], as a consequence of which also an improvement
on the control of an ultra-large milling machine was achieved. The latter exam-
ple shows in a nutshell that the approach sketched here has opened a completely
new and promising road to solve wider classes of problems by the use of problem
adapted description languages. The ART behind IDEAS therefore has developed
beyond the Art of Computer Programming towards an art of integrated problem
solving.
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Fig. 7. Unsuitable description languages (upper picture) induce bad class formation in

the model datatype due to inproper semantics. While in the lower picture a problem
adapted modelling by a suitable semantic comes with \good" description languages.
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