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ABSTRACT

We discuss the relation between lattice and ladder structures for two-channel �lter banks. It is well-

known that both lattice and ladder steps are powerful enough to generate all perfect reconstructing

�lter banks provided that the �lter coe�cients may take arbitrary values in a �eld. However,

we will show that the two concept di�er in general. We relate the two concepts by looking at

three properties of the coe�cient ring. We discuss a number of incompleteness results of these

parametrizations and point out some connections to open problems in group theory.

1. INTRODUCTION

Assume that a signal is given by an element of the Laurent polynomial ring A[z; z�1], where A is

either the �eld of real numbers A = R or the �eld of complex numbers A = C. Recall that a

multirate �lter bank basically computes the convolution of this signal with several analysis �lters,

and reduces the sampling rate, say, by dropping every other output coe�cient. Figure 1 shows an

example of such a �lter bank.
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Figure 1. Two-channel �lter bank.

De�ne the downsampling operation by [#2]a(z) = ae(z), where a(z) = ae(z
2)+zao(z

2). Assuming

that the analysis �lters e�(z) and e�(z) are element of A[z; z�1] as well, we can describe the output

of the analysis �lter bank by d�(z) := [#2]e�(z)s(z) and d�(z) := [#2]e�(z)s(z).
The synthesis �lter bank takes two input signals d�(z) and d�(z), applies upsampling and con-

volution operations, and adds the resulting sequences. We obtain

ŝ(z) = �(z)(["2]d�(z)) + �(z)(["2]d�(z)) = �(z)d�(z
2) + �(z)d�(z

2);

where the upsampling operation ["2] is de�ned by ["2]a(z) = a(z2).

Note that only addition and multiplication in A are needed to compute the convolution opera-

tion. Therefore, one might replace the real or complex number arithmetic for example by integer

arithmeticA = Z, or by �nite �eld arithmeticA = Fq. In fact, we may take for A any commutative



ring. This broader viewpoint also gives a wider range of applications. For example, �lter banks

over �nite rings have applications in error control coding, see [1] for this connection.

We will mainly study two-channel �lter banks for one-dimensional signals in this paper. Since

we allow rather general coe�cient rings A, it should be pointed out that many results are also of

relevance in the multidimensional setting. Some introductions to �lter banks prefer to treat the

two-channel case �rst, and then the \more di�cult" case of �lter banks with more channels. There

is nothing wrong with this approach in the case of �elds. However, I hope it will get clear from the

following that the \many channel" case is in fact simpler than the two-channel case.

Notation. Henceforth we shall denote by z an indeterminate over the ring A. Let G be a group.

We write H � G in case H is a subgroup of G, and H < G if H is a proper subgroup.

2. LADDER AND LATTICE STRUCTURES

Recall that each �lter bank can be expressed in polyphase form.2{4 Writing the input signal s(z)

in the form s(z) = se(z
2) + zso(z

2), the output of the analysis �lter bank can be expressed by

�
d�(z)

d�(z)

�
= Hp

�
se(z)

so(z)

�
; with Hp :=

� e�e(z) e�o(z)e�e(z) e�o(z)
�
; (1)

where e�(z) = e�e(z2) + z�1e�o(z2) and e�(z) = e�e(z2) + z�1e�o(z2). A similar reasoning shows that

the polyphase components of ŝ(z) can be expressed by a product Gt

p
(d�(z); d�(z))

t. The polyphase

implementation shown in Figure 2 follows those computations.
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Figure 2. Polyphase implementation of a two-channel �lter bank.

A �lter bank is called perfect reconstructing if and only if the reconstructed signal ŝ(z) is the

same as the input signal s(z) for all s(z) 2 A[z; z�1]. The �lter bank shown in Figure 2 is perfect

reconstructing if and only if the polyphase matrices satisfy the condition HpG
t

p
= I, where I is the

2� 2 identity matrix.

The polyphase matrices are often factored into a product of certain simple matrices, which are

easy to implement. The lattice and ladder structures are typical examples for this approach. These

simple building blocks also serve a dual purpose, namely to give simple design criteria for �lter

banks.



Ladder structures. Ladder structures are composed of the following matrices in GL2(A[z; z
�1]):

elementary transvections, that is, matrices of the type�
1 a

0 1

�
;

�
1 0

a 1

�
; a 2 A[z; z�1];

and invertible diagonal matrices. Why ladder structures bear their name can be seen from the

following example:

# 2

" 2

" 2

zz�1

# 2

p(z) q(z) q(z) p(z)

We denote the subgroup of GL2(A[z; z
�1]) generated by the elementary transvections byE2(A[z; z

�1]).

The subgroup generated by E2(A[z; z
�1]) and the invertible diagonal matrices in GL2(A[z; z

�1]) is

denoted by GE2(A[z; z
�1]).

Lattice structures. A matrix in GL2(A[z; z
�1]) is said to have a lattice structure if it can be

written as a product matrices in GL2(A) and powers of the diagonal delay matrix diag(1; z�1). The

subgroup of GL2(A[z; z
�1]) generated by these matrices is called GN2(A[z; z

�1]). The next �gure

shows an example of lattice structures:
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Of course, one would like to express all matrices in terms of these simple building blocks. Thus

one would like to have the equalities:

GL2(A[z; z
�1]) = GE2(A[z; z

�1]) = GN2(A[z; z
�1]): (2)

If the coe�cient ring A is a �eld, then we indeed have the ideal situation described by the previous

equations. Unfortunately, this is not true in general. In the next sections we discuss some relations

between these three groups.



3. LIMITS OF LADDER AND LATTICE STRUCTURES

We need several terms from ring theory to describe properties of A[z; z�1]. Recall that a ring is said

to be reduced if and only if it does not contain non-zero nilpotent elements. A ring R is said to be

indecomposable if and only if it does not contain central idempotent elements apart from 0 and 1.

For example, the ring Z=4Z is indecomposable but is not reduced; the nilpotent elements are f0; 2g.

The ring Z=6Z is reduced but not indecomposable; the idempotent elements are f0; 1; 3; 4g.

Lemma 3.1. Let A be a commutative ring, B = A[z; z�1].

(i) E2(B) < GN2(B).

(ii) If A is reduced and indecomposable, then GE2(B) � GN2(B).

Proof. Let a 2 A. The group GN2(B) contains the matrices�
1 azk

1

�
=

�
1 0

0 z�k

��
1 a

0 1

��
1 0

0 zk

�
;

for all k 2 Z. Hence it contains all elementary transvections.

If A is reduced and incomposable, then A[z; z�1] contains only trivial units. Thus the invertible

diagonal matrices are in GN2(B). 2

We need a further property of rings. A ring R is called a GE2-ring if and only if GE2(R) =

GL2(R). If R is a �eld, a local ring, or a euclidean ring, then R is a GE2-ring. Moreover, a �nite

product of GE2-rings is again a GE2-ring. Thus Z, Z=NZ, Fp, R, and C are all examples of

GE2-rings.

Proposition 3.2. Let A be a GE2-ring, B = A[z; z�1].

Then GN2(B) � GE2(B). More precisely:

(i) If A is decomposable or is not reduced, then GN2(B) < GE2(B).

(ii) If A is indecomposable and reduced, then GE2(B) = GN2(B).

Proof. By assumption, all matrices in GL2(A) are contained in GE2(A[z; z
�1]). It follows that

GN2(B) � GE2(B). Property (ii) follows immediately by Lemma 3.1.

If A is decomposable or is not reduced, then B contains non-trivial units. Since the determinant

of a matrix in GN2(B) is a trivial unit, the group GN2(B) is a proper subgroup of GE2(B). 2

Proposition 3.3. Assume that A is not a GE2-ring, B = A[z; z�1].

(i) If A is reduced and indecomposable, then GE2(B) < GN2(B).

(ii) If A is decomposable or is not reduced, then GE2(B) 6= GN2(B).

Moreover, GE2(B) < GL2(B) and GN2(B) < GL2(B).

Proof. Part (i) is an immediate consequence of the assumption and Lemma 3.1.

If A is decomposable or is not reduced, then B contains non-trivial units. Thus, GN2(B) <

GL2(B). From the assumption it follows that GE2(B) < GL2(B). Another consequence is that

there is a matrix in GN2(B) that is not in GE2(B). This shows part (ii). 2

We summarize the content of Lemma 3.1, Proposition 3.2, and Proposition 3.3 in Table 1.The

case where the coe�cient ring A is an indecomposable, reduced GE2-ring seems to be particularly

interesting. Here one has the exibility to choose between ladder or lattice structures. Moreover,



one can hope that equation (2) is satis�ed { at least for nice coe�cient rings A. We will have a

closer look at such rings in the following sections.

A is: GE2 reduced indecomp. Lattice vs. Ladder Comment

no no no GN2(B) 6= GE2(B) both incomplete

no yes yes GN2(B) 6= GE2(B) both incomplete

no no no GN2(B) 6= GE2(B) both incomplete

no yes yes GN2(B) > GE2(B) ladder incomplete

yes no no GN2(B) < GE2(B) lattice incomplete

yes yes yes GN2(B) < GE2(B) lattice incomplete

yes no no GN2(B) < GE2(B) lattice incomplete

yes yes yes GN2(B) = GE2(B)

Table 1. The relation between lattice and ladder structures.

4. INCOMPLETENESS RESULTS

Unfortunately, it is not clear what kind of restrictions should be imposed on the coe�cient ring to

guarantee that the desired equalities (2) hold. Since even principal ideal domains may fail to be GE2-

rings, one can not expect an easy answer. In this section we discuss a number of incompleteness

results, that is, examples of perfect reconstructing �lter banks that can be neither expressed by

lattice nor ladder structures. As suggested in the previous section, we will focus on reduced and

indecomposable coe�cient rings.

An integral domain is in particular an indecomposable and reduced ring. There are a number

of integral domains that are GE2-rings: any �eld, or any euclidean domain.

Theorem 4.1. Let A be an integral domain which is not a �eld, and x an indeterminate over A.

Then the polynomial ring A[x] is not a GE2-ring.

An elementary proof of this fact can be found in [5]. It is clear from this theorem that we can not

hope to �nd many examples of integral domains A that yield the desired completeness result (2). In

particular, if k is a �eld, then A = k[x] is an euclidean domain. But even for such a nice coe�cient

ring, we see that A[z; z�1] �= k[x][z; z�1] �= k[z; z�1][x] is not a GE2-ring by the previous theorem.

In a similar vein, the following theorem also excludes numerous Laurent polynomial rings:

Theorem 4.2 (Bachmuth, Mochizuki6). Let A = P [t; t�1], where P is an integral domain

which is not a �eld, and t is an indeterminate over P . Then A[z; z�1] is not a GE2-ring.

Note that there is a remarkable gap between the statements of Theorem 4.1 and Theorem 4.2.

Let A be an integral domain which is not a �eld. Theorem 4.1 states that all polynomial rings over

A are not GE2-rings. From Theorem 4.2 one can only deduce that Laurent polynomial rings in at

least two variables over A are not GE2-rings. Thus, there is some hope that a Laurent polynomial

ring over, say, some euclidean or more generally some Dedekind ring is a GE2-ring. We have already

seen that this is not always the case: the euclidean ring A = k[x], k a �eld, provides a counter

example.



A discrete valuation ring is a principal ideal domain that has a unique non-zero prime ideal.

Let p be a prime in Z. The localization Z(p) of the integers Z at the prime ideal (p) is an example

of a discrete valuation ring. In other words, Z(p) is given by the subset of the rational numbers

consisting of fractions a=b, where b is not divisible by p. We have the following positive answer for

this special class of Dedekind rings:

Theorem 4.3 (Bachmuth, Mochizuki6). Let A be a discrete valuation ring. Then A[z; z�1]

is a GE2-ring.

In any noetherian ring one tends to globalize the results. However, the GE2-property is resistant

against such local-global principles. In fact, the localization of a Dedekind ring at a prime ideal

gives a discrete valuation ring. However, we have already seen that there exist Laurent polynomial

rings over Dedekind domains that are not GE2-rings. That those negative examples abound is

shown in the next section.

5. MANY CHANNELS

The two-channel case is rather pathological in the sense that there are only two di�erent types of

ladder steps available. In this section we allow an arbitrary number of channels. This simpli�es the

discussion, since there are a number of powerful tools available from Algebraic K-Theory, a branch

of Linear Algebra.

Consider a perfect reconstructing �lter bank with n channels. Assume that the downsampling

operator keeps 1 out of n coe�cients. Assume further that the signals and �lters are elements of

A[z; z�1]. If the �lter bank is perfect reconstructing, then the polyphase matrix Hp of the analysis

�lter bank is an element of GLn(A[z; z
�1]).7 We would like to know if it is possible to implement

all such perfect reconstructing �lter banks with ladder steps.

Let us �x some terminology. An elementary transvection in GLn(A[z; z
�1]) is a matrix that

di�ers from the identitymatrix in at most one o�-diagonal entry. The group generated by elementary

matrices is called En(A[z; z
�1]). GEn(A[z; z

�1]) denotes the group generated by En(A[z; z
�1]) and

the invertible diagonal matrices. We can reformulate our question as follows: does the equality

GLn(A[z; z
�1]) = GEn(A[z; z

�1]) hold? Note that this question is equivalent to the following: does

the equality SLn(A[z; z
�1]) = En(A[z; z

�1]) hold?

We can obtain an answer to this question for certain coe�cient rings, and large n, with methods

from Algebraic K-Theory. Although the methods are somewhat technical, one is rewarded with

surprisingly strong results. In the �rst step we recall the de�nition of the Whitehead group K1(R),

which measures in some sense the obstruction to our question for large n.

Let R be a commutative ring. Identify a matrix M 2 GLn(R) with the block diagonal matrix

diag(M; 1) 2 GLn+1(R). De�ne the group GL(R) as the direct limit

GL(R) = lim
�!

GLn(R) =

1[
i=1

GLn(R):

Similarly, we put E(R) =
S

n
En(R) and SL(R) =

S
n
SLn(R).

The Whitehead group K1(R) is de�ned by GL(R)=[GL(R);GL(R)], the quotient of GL(R) by

its commutator subgroup. It turns out that [GL(R);GL(R)] coincides with E(R). The determinant



of each matrix provides us with an epimorphism from K1(R) to the unit group R� of the ring R.

We obtain the following short exact sequence:

1 �! SL(R)=E(R)| {z }
=SK1(R)

�! K1(R) �! R� �! 1:

The determinant homomorphism is split by R� �! GL1(R). Therefore, the Whitehead group

decomposes

K1(R) = SK1(R)�R�:

The calculation of the Whitehead group provides us with valuable information for our problem,

since there exists the following stability result. LetR be a noetherian ring with �nite Krull dimension

dim(R) = d. For all m � d + 2, Em(R) is a normal subgroup of GLm(R), and GLm(R)=Em(R) !

K1(R) is an isomorphism.

A ring R is said to be regular if R is noetherian and all �nitely generated R-modules have a

projective resolution of �nite type.8 For example, any �eld or any Dedekind ring is regular. If A is

regular, then so is the polynomial ring A[z] and the Laurent polynomial ring A[z; z�1].9,10 Moreover,

for regular rings K1(A[z]) �= K1(A) and K1(A[z; z
�1]) �= K1(A)�K0(A), where K0(A) denotes the

Grothendieck group.

Recall that our original question was whether or not we have SLn(A[z; z
�1]) = En(A[z; z

�1]).

We show how an answer can be obtained for Dedekind rings. Why I focus on this particular case

will be justi�ed later.

Let D be a Dedekind ring. The Krull dimension is dim(D) � 1, hence dim(D[z; z�1]) � 2. We

obtain

SK1(D[z; z�1]) �= SK1(D) �K0(D)=Z[D];

where [D] denotes the image of the isomorphism class of D in the Grothendieck group. For example,

ifD is the ring of integers in an algebraic number �eld or ifD is an euclidean ring, then SK1(D) = 1.

The reduced Grothendieck group K0(D)=Z[D] is isomorphic to the class group of the Dedekind

ring D.11

We have SLn(D[z; z�1]) = En(D[z; z�1]) for n � 4 if and only if SK1(D) = 1 and the class

group of D is trivial. Those conditions are satis�ed, for example, if D is a euclidean ring. In fact,

the stability bound n � 4 can be lowered to n � 3 by the following result of Suslin12:

Theorem 5.1 (Suslin). Let A be a noetherian ring, and

B = A[x1; x
�1
1 ; : : : ; xk; x

�1
k
; xk+1; : : : ; xn]:

Then, for all r � max(3;dimA + 2), the canonical mapping GLr(B)=Er(B) ! K1(B) is an iso-

morphism.

Remark. In view of Suslin's theorem, it is clear why I have chosen coe�cient rings of Krull

dimension � 1. Here we can derive results for �lter banks with as few as three channels. An

indecomposable, regular ring is a noetherian, integrally closed domain.13 A noetherian, integrally

closed domain of Krull dimension � 1 is a Dedekind ring. This explains why I focused on this

particular case. Dropping the regularity condition typically leads to more involved calculations.9



6. CONCLUSION

We have seen that in the two-channel it is often impossible to realize certain �lter banks with ladder

of lattice structures. Negative examples are even given by nice coe�cient rings, such as euclidean

domains. A remarkable open problem seems to be the following question, which was raised by

Bachmuth and Mochizuki 18 years ago:

Is Z[z; z�1] a GE2-ring?

Apparently, there has been no progress on this question since then. The related question for causal

�lter banks with minimum delay has a negative answer.14,15,5
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