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Abstract. Blakley and Borosh introduced a general theory of codes, en-
compassing cryptographic and error control codes among others. They
explored the properties of such general codes with methods from rela-
tional algebra and set theory. We provide a categorical point of view,
which leads to new constructions of codes. We also exhibit a Jordan-
Holder type theorem and a Schreier refinement technique.

1 Introduction

In the late twentieth century a vast proliferation of codes occurred. Many new
cardinalities became common, especially large finite or infinite. Many new arith-
metics — infinite as well as finite — could be found in the newly introduced
arithmetic-based codes. Hilbert spaces are as integral to the theory of quantum
error control as Hamming spaces to classical error control. But many new codes
arose without arithmetic, amounting to mere codebooks or databases.

Codes with no encode process, codes with no decode process, codes which
encode every plaintext symbol into billions of different codetext expressions are
now famous and widely used, as are codes which decode every codetext expres-
sion into every plaintext symbol.

Commerce has made ISSN, ISBN, UPC commonplace. Locks are codes,
phonebooks are, genomes are, cash register receipts are, codes replace telephone
wires, tollbooths, signatures.

This is not metaphorical talk. Every one of these objects is a code in a strict
mathematical sense. And one realization that emerges from this mathematical
view of codes is the profound importance of stuctural considerations. Codes have
shapes, just as molecules have shapes. And the designer of codes has a larger
repertory of kinds of structures to draw upon than an organic chemist. Moreover,
these kinds of structures can be usefully described and combined by the methods
of universal algebra, as adumbrated in [3]. But they also lend themselves to
treatment by category theory, as will become clearer below.

After defining and visualizing precodes and codes, we introduce the corre-
sponding categories in Section 4. We obtain products, limits, and colimits in the
usual way in Sections 5 and 6, and then give some examples. The subprecodes
of a precode form a lattice in a natural way. Section 8 discusses some of its
properties and, in particular, establishes a Jordan-Ho6lder-Schreier theory for it.
This result suggests a unified view of several cryptanalytic methodologies. We
conclude with comments on this need for further results.



2 Visual Presentation of Precodes and Codes

The code definition given in the general theory [2] of codes goes as follows. A
precode is a list (P,C,e,d) whose entries are a set P of plaintext symbols, a
set C of codetext symbols, an encode relation e C P x C, and a decode relation
d C C x P. A code is a precode for which the composite relation de C P x P is
subdiagonal, i.e. contains only pairs of the form (p, p).

We follow [2] and introduce a graphical representation of precodes and codes
called a strip chart. The items P, e, C, d, P are represented by five columns of
marks. The marks in the three ‘symbol’ columns P, C', P are at various heights
different heights signifying different elements. The marks in the two ‘relation’
columns e, d are undirected line segments treated as if they were arrows going
from left to right.

For example the first strip chart below represents the popular notion of a
code, as a pair e, d of bijections between P and C'. The bijection d going from the
codetext symbols C' (the set of open rings in the third column) to the plaintext
symbols P (the set of blobs in the fifth column) is the inverse of the bijection
e going from the blobs of P in the first column to the rings of C in the third
column. Clearly each action of e moves a first-column blob b to a third-column
ring r, and then d takes this ring to a fifth-column blob at the same height as
the original blob. In other words, de takes each blob to itself.

It is worth becoming acquainted with the strip charts below. They give a
weak foreshadowing of the huge variety of codes already in use. And they set the
stage for the purposeful use of abstract structure to produce novel codes of yet
widely different structural types which the general theory of codes can supply
for various information-related investigations or activities.

In the figure at left, the encode e is a bijection from P to C, the
.\O/.: : decode d is its inverse function, a bijection from C to P. Gray codes,
=

key settings of Caesar ciphers, RSA, DES, AES, some commercial
codebooks and Godel numbering are among the many example of
this matched-pair-of-bijections type of code.

'<Z\/' The code at left has a decode d which is a function (i. e., many-to-one
" m| relation). Its encode e is the converse of d (whence it is a one-to-many
@- relation. There are many such codes, including some codebooks with
" homophones, the calculus (in which encode is antidifferention of a
function and decode is differentiation, secret sharing schemes, and hash function
codes (hashes are decodes, and their converses are encodes).

The code at left has an empty encode relation e = (), and a full decode
(an all-to-all relation) d. Hence de is empty, so this strip chart does,
indeed, present a code. The Diffie-Hellman key exchange [6] is often
a pair of codes of this one-way ‘encodeless’ type. The genetic code is
similar, but less extreme. Its encode is empty, and its decode is a function.

The code at left has an empty decode relation d = J, and an encode
relation e which is a function. Clearly de = (). The Purdy high secu-
rity login [9] is a code of this one-way ‘decodeless’ type. Other such
examples are hash functions when viewed as one-way objects.

"




The code at left has an injective (i.e., one-to-one) encode relation e,
and a decode relation d which is a function. Many error correcting
codes are of this type. In particular, the code here is (isomorphic to)
the triplication code with e(0) = 000, e(1) = 111, and with majority

vy

decode.

The code at left has an injective decode d, and a one-to-many encode
relation e. It amounts to a variant of the magnetic-strip-card-key
code, which large hotels use to give guests entry to their rooms. Each
room is ‘encoded’ as a large set of bit strings, only one of which is
valid today. A card with this string ‘decodes’ the room door to open today —
thus revealing the encoded room. Cards with any other bit string don’t open it.
And tomorrow the decode d may be changed, but the encode e will remain the
same. But no two rooms can ever be opened by the same card.

Fi

3 Basic Notions

Let P and C be sets. We will call P the plaintext symbols, and C' the codetext
symbols. Let e be a subset of P x C, called the encoding relation, and d a subset
of C'x P, called the decoding relation. Then R = (P, C, e, d) is called a precode.
R is said to be a code if and only if d o e is a subdiagonal relation on P.

A precode homomorphism from (P, C,e,d) to (P’,C",¢’,d’) is defined by
a list of functions (h, k, hx k, k x h), where h: P — P’ and k: C — C" are required
to satisfy (h x k)(e) C €’ and (k x h)(d) C d’. Sometimes we will write (h, k) to
denote this homomorphism.

We obtain a category ‘P of precodes by taking precodes as objects and
precode homomorphisms as morphisms.

The identity functions on the plaintext and the codetext symbols of a pre-
code R induce the identity morphism 1y associated to the precode R. The
composition of morphisms is given by the composition of functions. The class of
objects in the category P is denoted by Obj(*B). The set of morphisms from R
to A is denoted by Homg (R, A) or sometimes simply by R — A.

Let R = (P,C,e,d) and A = (P’,C",¢’,d’) be precodes. R is said to be a
subprecode of A if and only if P C P, C C (', e C €', and d C d’'. Notice that
a subprecode of a code is again a code.

The subcategory € of codes of the category P of precodes is defined in
the obvious way, taking codes as objects. Note that € is a full subcategory of
P. Indeed, consider a precode homomorphism between two codes K and L. The
image under this homomorphism is a subprecode of £, and hence a subcode.
Thus the set Homg (X, L) of precode morphisms coincides with the set of code
morphisms Home (X, £).

The code J = (0, 0,0, ) is an initial object in the category of precodes, that
is, there exists exactly one morphism from J to any another object R in 3. Any
code T = ({p}, {c},{(p,c)},{(c,p)}) with singleton set symbols is a terminal
object in P. The category P does not have a zero object.



4 Morphisms

We take a closer look at the morphisms of precodes in this section. It turns out
that the monomorphisms are just the injective functions respecting the encoding
and decoding relations. We will see that epimorphisms need not be so well-
behaved. Indeed, neither the category of precodes nor the category of codes is
balanced, that is, bimorphisms need not be isomorphisms.

A morphism f: A — B of precodes A and B is said to be a monomorphism,
or simply monic, if and only if fg = f¢’ implies g = ¢’ for all g, ¢’ € Homyp (R, A)
and all R € Obj(‘B).

Lemma 1. Let f:R — A be a morphism of precodes. Then f = (f1, f2) is monic
if and only if f1 and f2 are injective functions.

Proof. Suppose that f; and fy are injective, hence monic, morphisms in the
category of sets. This immediately implies that f is monic. Conversely, suppose
that f is monic. Denote by 8 = ({p},{c},0,0) a precode with singleton symbol
sets. Let « and y be (necessarily constant) morphisms from 8 to R. Since fz = fy
implies x = y, it follows that fi and fy are injective. a

A morphism f: R — A of precodes R and A is said to be an epimorphism
if and only if gf = ¢'f implies ¢ = ¢’ for all g,¢ € Homg(A,B) and all
B € Obj(P).

Lemma 2. Let f:R — A be a morphism of precodes. Then f = (f1, f2) is epic
if and only if f1 and fa are surjective functions.

Proof. Suppose that f; and fs are surjective functions, hence epimorphisms, in
the category of sets. This implies that f is an epimorphism.

Let f be an epimorphism. Seeking a contradiction, we assume that not both
f1 and fy are surjective. Denote by 2 the two element set {0,1}. Define the
precode R = (2,2,2 x 2,2 x 2). Let g and h be two distinct morphisms in
Homgy (A, B) that take the same values on the image of f. It follows from our
assumption that such morphisms exist. However, since gf = hf implies g = h,
we get the desired contradiction. a

A morphism f:R — A of precodes R and A is called an isomorphism if
and only if there exists a morphism g: A — R such that fg =14 and gf = 1.

Lemma 3. Let f:R — A be a morphism of precodes. If f = {(f1, f2) is an
isomorphism then f1 and fy are bijective functions.

Proof. An isomorphism is monic and epic, implying that f; and f> are bijective
functions. )

The evident asymmetry in the statement of this lemma reflects the fact that
an epimorphism f = (f1, f2) need not be surjective on the encoding relation
or decoding relation, even though the functions fi; and fs are surjective. This
fact has some quizzical consequences. For instance, a monic and epic morphism
in the category of precodes is not necessarily an isomorphism. To see this, let ¢
denote the identity function on 2. Then (¢, ) is a monic and epic morphism from
R=(2,2,0,0) to A= (2,2,2x2,2x2). But it is obviously not an isomorphism.



5 Limits

In this section we derive some fairly general constructions of codes and precodes.
The constructions are based on the categorical notion of a limit.

Recall that a diagram D in a category P is a directed graph whose vertices
1 € I are labelled by objects R; in 8 and whose edges i — j are labelled by
morphisms in Homg (R;, R;). The underlying graph is called the scheme of the
diagram.

A family of morphisms (f;: A — R;);c; with common domain A is said to be
a cone for D, provided that for each arrow d : R; — R; in the diagram D, the

triangle
N

Rz—d>fR]

commutes. A limit for D is a cone for D with the universal property that any
other cone for D uniquely factors through it. In other words, if (fi: A — R;)icr
is the limit of a diagram D and (g;: B — R;)ier is a cone for D, then there exists
exists exactly one arrow u: B — A such that g; = f; ou for all ¢ € I.

We want to show that the category 3 of precodes and the category € of codes
are complete. In other words, we need to show that limits exist for all diagrams.
Fortunately, it is sufficient to prove that products and equalizers exists [1, 7].

We need to introduce some more notation. Let (r;);cr be a family of relations
indexed by a set I, where r; C P; x C;. We can define a product of these relations
by

[Iri={@oe[InxIICIviel p).ci)en},

where all products range over the index set I. Sometimes we will denote the
product of two relations r; and r; by r; ® r;. For example, if i = {(2,1), (1,2)},
ro = {(a,b), (a, )}, then the product relation r; ® ry is given by

ry Qe = {((25 a)a (15 b))v ((25 a)v (176))7 ((170')7 (2a b))a ((13 a)a (23 c))}

Theorem 1. The category P of precodes has products. The product of a family
of codes is again a code.

Proof. Let R; = (P;, C;,e4,d;),1 € 1, be a family of precodes indexed by a set I.
The product of this family is obtained by taking cartesian products of the symbol
sets, and the product of the encoding and decoding relations. In other words,
the product of the family R; is given by (R, (m;: R — R;)ier), where the precode
R is given by the object ([],c; Pi.I1;,c; Cis I, € [1ics di), and the projection
map 7; is the obvious map onto the ith component. It is clear that R is a code
if and only if all R; are codes. ad

The equalizer (€,u) of two morphisms f,g: R — A is an object & together
with a morphism w: & — R such that fu = gu, with the additional property



that every morphism h satisfying fh = gh factors uniquely through u. In other
words, the triangle in the following diagram commutes:

8—“>fR:g>>A

A
€:
h

B

Recall that in the category of sets, the equalizer of two functions f,g: R — A is
given by the coincidence set {z € R| f(z) = g(z)} with the inclusion mapping.

Theorem 2. The category P has equalizers. If (E,u) is the equalizer of two
morphisms between codes, then & is also a code.

Proof. Let R = (P,C,e,d) and A be precodes. Let f = (f1, fa) and g = (g1, g2)
be a pair of morphisms between R and A. We give an explicit construction of
the equalizer.

The equalizer (€, u) of f and g is given by the precode €& = (P*,C*, e*, d*),
where the plaintext symbols P* = {a € P| f1(a) = g1(a) } and codetext symbols
C* ={a € C|fala) = g2(a) } are just coincidence sets, and the encoding and
decoding relations are obtained from R by restriction, that is, e* = e|pxx o,
d* = d|g+xp+, and the morphism u = (i1, t2) is induced by the set inclusion
maps t1: P* — P, 15: C* — C.

The construction ensures that u(&) is the largest subprecode of R such that
the restrictions of the functions f and g on u(€) coincide, fl, ) = gluce). We
can express h by a composition of a morphism e:B — € with u, since h(B)
is a subprecode of u(€). The morphism € is uniquely determined, since u is a
monomorphism. a

Theorem 3. The category B of precodes and the category € of codes are com-
plete.

Proof. The categories P and € have products and equalizers and are therefore
complete [1,7]. The main idea of this standard construction goes as follows.
Suppose that we are given a diagram D in B with sets V of vertices and E of
edges. We build two products: the product of all objects in D, and the product
indexed by E of all codomains of arrows in D. The universal property of the
FE-indexed product induces unique maps 1 and ¥ as is shown in the following
diagram:

Rj
N / Te

L iﬂ\iev R; :::::::::z;)::::::::; [[(Rj|i—=jekE)
R - R



The map h is given by the equalizer of 1)1 and 12, and the maps ¢; are given
by composition of h with the projection maps m;, that is, ¢; = m; h. It is not
difficult to see that (L, (¢;)icr) is a cone of D. It follows from the universality of
the equalizer and of the V-indexed product that this cone is the limit of D. 0O

6 Colimits

Reversing arrows, we obtain the concept of cocones and colimits of diagrams.
We will derive the dual results for precodes.

Theorem 4. The category B of precodes has coproducts. The coproduct of a
family of codes is again a code.

Proof. The coproduct (X, (¢;: R; — K)icr) of the family R; is given by the
disjoint union of the symbol sets and the induced disjoint union of the encoding
and decoding relations together with the obvious inclusion maps. In other words,

X = (UPz‘X{i}aUCiX{i}:Uei@)AuUdi@Ai),

i€l icl icl icl

where A; denotes the relation A; = {(7,1)}.
It is clear that X is a code if and only if all R; are codes. O

Theorem 5. The category B has coequalizers.

Proof. Let R and A = (P,C,e,d) be precodes, and let f = (f1, f2) and g =
(g1, g2) be a pair of morphisms between R and A. Let E; be the smallest equiv-
alence relation on P such that fi(a) and ¢1(a) are equivalent. Similarly, let E
be the smallest equivalence relation on P such that f3(a) and gs(a) are equiv-
alent. The coequalizer of f and g is given by the precode (P/Ey,C/Es,e/Ey ®
Es,d/FE> ® E7) and the morphism (c,¢s) induced by the canonical quotient
maps ¢1: P — P/FE; and ¢3: C — C/Es. a

Remark 1. The coequalizer of two codes in the category P is not necessarily a
code. For example, let X = ({1, 2}, {1, 2}, id, id) the code with identity encoding
and decoding relations. Denote by i and s the two bijective functions from {1, 2}
into itself. Then the coequalizer of the morphisms (i, ) and (i, s) is the precode
€ given by

&= ({2} {11}, {(, 1D, 2, [1)}, {([1], 1), ([1], 2)}).
Theorem 6. The category P of precodes is cocomplete.

Proof. The category B has coproducts and coequalizers and is therefore cocom-
plete. a



7 Examples

Ezample 1 (RSA). Denote by p and ¢ two distinct odd primes. A key setting of
an RSA public key cryptosystem [10] can be seen as a code over the symbol set
Z/pqZ, where the encoding relation e is given by the function z — 2 mod pgq
and the decoding relation d is given by z +— 2% mod pq. The exponents are
assumed to satisfy the congruence £§ = 1 mod p(pq), where @ is Euler’s totient
function. We denote this code by RSA = (Z/pqZ,Z/pqZ,e,d).

Reducing the symbol sets modulo p and q respectively, one obtains two key-
settings of Pohlig-Hellman cryptosystems [8], denoted by

PH,=(Z/qZ,Z/qZ,e1,d1) and PHy = (Z/pZ,Z/pZ,es,ds).

The encoding and decoding relations are obtained from e and d by reducing
modulo p and ¢ respectively. For instance, the relation e; is given by the function
x +— x° mod q.

The RSA code is, in the terminology introduced in the next section, an
example of a product of the codes PH; and PH,.

Ezample 2 (RSA, cont’d). Conversely, given two Pohlig-Hellman codes

PH, = (Z/qZ, Z/qza x +— 2t mod ¢, — 2% mod q)
PHy = (Z/pZ, Z/pZ, v — 2°2 mod p,x — 2°2 mod p)

and assuming that ged(p—1, ¢—1)|(1—¢€2), then it is easy to see that the greatest
common divisor of p—1 and ¢—1 divides d; —d3. The Chinese remainder theorem
yields the integers ¢, ¢ satisfying

e=e;modqg—1, 6=01modqg—1,
g=eymodp—1, 6 =damod p—1,

respectively. The RSA code
(Z/pqZ,Z/pgZ, = — £ mod pq, z — z° mod pq)
is then isomorphic to the product of PH; and PHs.

Ezample 3 (Unequal Error Protection). We construct a simple (nonlinear) error
control code that protects 0 and 1 against one single error, and can detect a
single error in the transmission of 20 other symbols {2,...,21}. This code is
constructed with the help of two smaller codes.

Denote by Fs the binary finite field. Let C; be the set of all codewords in
F§ of (Hamming) weight 0, 1, 5, and 6. Let A; be the code (Fa,Cy,eq,dy),
where e1(0) = 000000 and e;(1) = 111111, and the decoding relation d; maps
all codewords of weight 0 or 1 to the plaintext symbol 0, and maps all codewords
of weight 5 or 6 to the plaintext symbol 1.

Let Cy be the set of all codewords in F§ of weight 3. The plaintext symbol
set is given by P, = {2,...,21}. The encoding relation es maps the symbols



2,...,21 to the codewords in C5 in lexical order respectively, and the decoding
relation is given by the inverse function da = e, *. Then Ay = (Ps, Co,e,e™ ).
The code R is given by the union of the codes A, and As, that is,

R:({O,...,QQ},FS, e; Uea, dlUdg).

This code is (isomorphic to) the coproduct (as defined in section 6) of the codes
.Al and .Ag.

Ezample 4 (Codes over p-adic Integers). The famous explanation of the nonlin-
ear Kerdoc and Preparata error control codes as linear codes over Z/4Z gave rise
to other explorations of Hensel lifting in coding theory. In [4], Calderbank and
Sloane investigated a series of Hamming codes over the symbol sets Z/2"Z. The
familiar binary [7,4] Hamming code has generator polynomial 23 + 2 + 1. Hensel
lifting of this generator polynomial to Z/4Z gives a unique monic irreducible
polynomial that divides 27 — 1 in Z/4Z[z]. Proceeding further, one obtains a se-
ries of cyclic codes over Z/8Z, Z/16Z, Z /32Z, etc. The 2-adic lift of the binary
Hamming code is then the error control code over the ring of 2-adic integers with
generator matrix

A —1 0 0 0
A 1 0 0
1 X 2 -1 0]’
0 1 A —1

co o~
o O >

where ) is the 2-adic integer (1 —+/=7)/2, and \* = X\ — 1.

The code (Z3,Z%, e, d) corresponding to this Hamming code over the 2-adic
integers Zs is a special case of the limit construction of codes described in
Section 5.

8 Subprecode Lattice.

The following question was posed in [3]: Does there exist a Jordan-Holder-
Schreier theory of codes? We give an affirmative answer to this question in this
section.

Denote by Lat(R) the set of subprecodes of a precode R. The subprecode
relation defines a partial order < on Lat(R), namely, R; < R; if and only if R;
is a subprecode of R;.

Proposition 1. The partially ordered set Lat(R) of subprecodes of a precode R
is a lattice. In particular, the subcodes of a code form a lattice.

Proof. Define the join R;VR; of two precodes R; and R; by their union R;VR; =
(P;UP;,C;UCj,e;Uej,di Udy); and define the meet R; A R; of two precodes
R;i and R; by their intersection R; A R; = (P; N P;,C; N Cj,e; Nej,d; Ndy).
Clearly, R; VR; is the smallest precode containing R; and R;, and R; AR; is the
largest subprecode contained in both R; and R;. Thus, Lat(R) is indeed a lattice



with respect to those meet and join operations. The second statement follows
immediately, since every subprecode of a code is again a code. a

Notice that the lattice Lat(R) is bounded, since all subprecodes A of R satisfy
0 < A < 1, where the bounds 0 and 1 are given by 0 = (0,0,0,() and 1 = R.
The lattice Lat(R) is distributive, since the distributive laws of the meet and
join operations

VA, B, € e Lat(R): AA(BVE) =(AAB)V(AAEC),
VA, B,€eLat(R): AV (BAC)=(AVB)A(AVE),

follow immediately from the set theoretic union and intersection properties.
Thus, we can strengthen the statement of Proposition 1 as follows:

Proposition 2. The partially ordered set Lat(R) of subprecodes of a precode R
is a bounded distributive lattice.

A Schreier refinement theorem can be derived for any modular lattice, and thus
in particular for the distributive lattice Lat(R). We need to introduce some
terminology to state this result. Let A and B be two precodes in Lat(R) such
that A < B. The subset [A,B] = {€ € Lat(R)|A < € < B} is called the
interval between the precodes A and B. Two chains in a subprecode lattice
Lat(R),

A=A < ... <A =3B, (1)
A=Bg<...<B, =3B, (2)
between the same subprecodes A and B of R are said to be isomorphic if and
only if m = n and there is a permutation 7 of 1,...,n such that the inter-

val [A;_1,A;] is lattice-isomorphic to the interval [Bry_1, Br;]. Defining the
precodes Ag1 = Bgr = A, and

Aij = (A; ABj)V By, Bji=(Bj AA;) VA,
fori=1,...,nand j =1,...,m, we obtain a refinement of chain (1) and (2) by

A=A < <Api AR << Apa <A <--- Ay = B,
A= B <+ <Bp1 <B1p <+ <Ba < Bz < -+ By, = B,

respectively. Since the lattice Lat(R) is modular, these two chains are isomor-
phic, cf. [5, p. 70]. Therefore, one obtains the following Schreier-type refinement
proposition for precodes:

Proposition 3. Any two chains between two precodes in Lat(R) have isomor-
phic refinements.

As a consequence, we obtain a Jordan-Hélder-type proposition:

Proposition 4. Suppose that the precode R = (P, C,e,d) has finite symbol sets.
Then any chain can be refined to a maximal chain and any two mazximal chains
between two given end-points have the same length.



Unfortunately, this proposition is not as useful as its group theoretic analogue,
since a maximal chain reflects the size of the precode and not its structure. For
example, suppose that the cardinalities of P, C, e and d are «, 3, and §. Then
all maximal chains are of length oo + 8 + v + 6.

9 Conclusions

A cryptanalyst who breaks a monoalphabetic substitution cipher by uncovering
successively the plaintext value of various codetext symbols (e.g. by means of
frequency analysis) does what amounts to forming an increasing sequence of
subcodes of the cipher under attack. Similarly, an attack on a polyalphabetic
substitution cipher which recovers one alphabet after another can be viewed
as discovering homomorphic images of that cipher. It may often make sense
to approach a cryptanalytic problem as a sequence of breaks of a sequence of
homomorphic images of, or subobjects of, a code which is a key-setting of a
cryptosystem.

The four propositions above form one schema for the first of these two ap-
proaches, but can involve lengthy maximal chains. A complementary — perhaps
more incisive — Jordan-Holder-Schreier theory might be obtained by recourse to
a different partial order on a collection of precodes, such as an order based on
homomorphic images (or even the strong homomorphic images suggested by the
three isomorphim theorems in [3]).

This paper has shown that the general theory of codes introduced in [2, 3]
can be formulated in category-theoretical terms. It has presented constructions
such as limits, colimits, equalizers, and has showed that special cases are in fact
already present in existing codes in current use.
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