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Abstract — Computing the Fast Wavelet Transform
of rational input sequences using algebraic scaling co-
efficients affords only a finite extension field K over Q
rather than the field of complex numbers. We use Ga-
lois theoretic methods to study this extension field.

I. INTRODUCTION

Orthonormal wavelet bases are usually constructed by the
tools of multiresolution analysis, cf. [2]. At the heart of a
multiresolution analysis stands a so-called scaling function .
This scaling function satisfies a dilation equation, which can
be written in Fourier space as ¢(w) = mo(w/2) @(w/2), where
mo(w) = hn e~ In what follows, we assume compactly
supported scaling functions with algebraic coefficients hy, i. €.,
every coefficient h, is element of an algebraic number field.
From the multiresolution analysis axioms one derives the sim-
ple relation |mo(w) |2 + |mo(w + 7) |2 = 1. Therefore, it is
convenient to construct the transfer function mg (w) from its
squared modulus |me(w) |* with the help of the following:

Theorem 1 (Fejér-Riesz) Let A(w) be a real nonnegative
even trigonometric polynomzeal
with

Alw) = ZZ:O Qm COS M W, am € R.

Then it is possible to construct a real trigonometric polynomial
B(w) = ZZ:O b €™, with by, € R, of the same order M,
such that A(w) = | B(w)|?.

IT. ALGEBRAIC SCALING COEFFICIENTS
In the case of trigonometric polynomials |mo(w)|? with alge-
braic coefficients, the following theorem ensures that mg (w)
has algebraic coefficients, too.
Theorem 2 ([1]) The coefficients am of the trigonometric
polynomial A(w) are algebraic if and only if the coefficients
b of B(w) are also algebraic.

Theorem 2 can be proved by extending DAUBECHIES’ proof of
Theorem 1 [2], but using minimal splitting fields instead of
the algebraically closed field C. The main steps in the proof
can be sketched as follows:

1. Rewrite the trigonometric polynomial A(w) as a poly-
nomial p in cos w. The polynomial pa can be factorized
over a minimal splitting field E as lc(pa) HM

L (c—cy).
Here, lc( - ) denotes the leading coeflicient.

2. Build a self-reciprocal polynomial P4 by substituting
(z 4+ 271/2 in pa(c) and multiplying with z.
Therefore, the resulting polynomial is of the following
form Pa(w) = lc(pa) Hanl (1/2 —cjz+ 1/222) . Fac-
torize Pa(z) in a minimal splitting field D.

c =
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3. Choose a zero z; from every factor (1/2 —cy;z+ 1/222) ,
1 <3< M, and build a new trigonometric polynomial
Pg(z) = I/H]Nil(z — z5), where v € K is just a nor-
malization factor. The trigonometric polynomial B(w)
is obtained from Pg by B(w) = PB(e_i“’). Thus, the
field K is generated by elementary symmetric functions
of the zeros z;.

Hence, from a field theoretic point of view the situation can
be summarized by the following diagram:

I\
|

IIT. GaLois THEORETIC ANALYSIS
From the very construction, we see that the fields £ and D) are

Galois extensions over F. We discuss some of their properties
through a sequence of lemmas and corollaries.

K

Lemma 1 The Galois group Gal(D/E) is isomorphic to
(Z/2Z)™, with m < M.

From this observation we easily derive the following result
about the structure of the Galois group.

Lemma 2 The Galois group Gal(D/F) is the extension of
the elementary abelian normal 2-subgroup Gal(D/E) by the
group Gal(E/F).

As a consequence, we get an upper bound for the order of the
Galois group Gal(D/F), which is helpful in the estimation of
this group.

Corollary 3 We have the following upper bound for the field
degree of D/F:

[D:F]<2™.|Gal(E/F)| < M- 2",
By carefully studying the structure of K, we obtain

Lemma 4 The field D is generated by the composition field
FEK.

Corollary 5 The field degree [K : F] is at least | Gal(D/E)|.

The close connection between the fields ) and K can be ex-
emplified by the following

Lemma 6 If the field degree D/ E is mazimal, i.e., [D : E] =
2™ then the Galois closure of K is the field D.
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