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Abstract

The relation between ladder and lattice implementations of two-

channel �lter banks is discussed and it is shown that these two

concepts di�er in general. An elementary proof is given for the

fact that over any integral domain which is not a �eld there

exist causal realizable perfect reconstructing �lter banks that

can not be implemented with causal lifting �lters. A complete

parametrization of �lter banks with coe�cients in local rings and

semiperfect rings is given.
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List of Symbols

Q rational numbers

Z integers

Z=NZ integers modulo N

A a commutative ring with identity

A� group of units of the ring A

A[z�1] polynomial ring in z�1 over the commutative ring A

A[z; z�1] Laurent polynomial ring over the commutative ring A

deg f degree of the polynomial f

a - b a does not divide b

cnc(p; q) p can not cancel q

HMf head monomial of the (Laurent) polynomial f

GLn(R) general linear group over the ring R

SLn(R) special linear group over the ring R

En(R) group generated by elementary transvections

GEn(R) group generated by elementary matrices

GNn(R) generalized Nagao group

M t transpose of the matrix M

[#2] downsampling by factor two

["2] upsampling operation
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1 Filter Banks

Let A be a commutative ring. We assume that all signals and �lters are

elements of the Laurent polynomial ring B = A[z; z�1]. Note that B is

isomorphic to the group algebra A[Z]. Therefore, we refer to the multipli-

cation in B as a convolution or �lter operation. We de�ne a downsampling

operation [#2] on B by [#2] a(z) = ae(z), where a(z) = ae(z
2) + zao(z

2). An

upsampling operation ["2] on B is de�ned by ["2] a(z) = a(z2).

A two-channel �lter bank consists of two parts. In the analysis part an input

signal s(z) 2 B is �ltered with two analysis �lters e�(z); e�(z) 2 B, and the

sampling rate of the resulting two signals is reduced by applying [#2]. Thus

we obtain the signals d�(z) := [#2] e�(z)s(z) and d�(z) := [#2] e�(z)s(z).
The synthesis �lter bank takes two signals d�(z) and d�(z) as input, applies

the upsampling operation, �lters these signals with synthesis �lters �(z) and

�(z) respectively, and adds the resulting two signals. This step yields the

output signal

ŝ(z) := �(z)d�(z
2) + �(z)d�(z

2):

The analysis and synthesis parts of a two-channel �lter bank are sketched

in Figure 1.

e�(z)

e�(z)

�(z)"2

"2

#2

#2 �(z)

Figure 1: Two channel �lter bank. The analysis (synthesis) �lter bank is shown
on the left (right) of the dashed line.

An equivalent but computationally more e�cient implementation of such a

�lter bank can be derived as follows. Express the input signal s(z) in the

form s(z) = se(z
2) + zso(z

2). The result of the analysis �lter bank can be

written in the form

�
d�(z)

d�(z)

�
= Hp

�
se(z)

so(z)

�
; with Hp :=

� e�e(z) e�o(z)e�e(z) e�o(z)
�
; (1)

where e�(z) = e�e(z
2) + z�1e�o(z

2) and e�(z) = e�e(z2) + z�1e�o(z2).
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Similarly, if we express the output signal ŝ(z) in the form ŝ(z) = ŝe(z
2) +

zŝo(z
2), then the result of the synthesis �lter bank can be written in the

form

�
ŝe(z)

ŝo(z)

�
= Gt

p

�
d�(z)

d�(z)

�
; with Gp :=

�
�e(z) �o(z)

�e(z) �o(z)

�
; (2)

where �(z) = �e(z
2) + z�o(z

2) and �(z) = �e(z
2) + z�o(z

2).

Figure 2 shows the implementation suggested by equations (1) and (2). In

the signal processing literature this is known as the polyphase form of the

�lter bank [8, 11, 12].

# 2

# 2

" 2

" 2

x 7! Gt
p x zz�1 x 7! Hp x

Figure 2: Two-channel �lter bank in polyphase form.

A �lter bank is said to be perfect reconstructing1 if and only if the out-

put signal ŝ(z) coincides with the input signal s(z) for all s(z) 2 B. This

condition can also be expressed as follows:

Theorem 1 A two-channel �lter bank for signals in A[z; z�1] is perfect re-

constructing if and only if the polyphase matrices Hp and Gp satisfy the

condition Gt
pHp = I.

Thus, the polyphase matrices of perfect reconstructing �lter banks are ele-

ments of the general linear group GL2(B). In some applications, e. g., lossless

compression, the perfect reconstruction condition is a minimal requirement.

2 Ladder and Lattice Structures

In practice one wishes to design �lter banks that are in some sense \easy" to

implement. We review two methods that are widely used in the construction

1Sometimes this condition is relaxed and the output signal is only required to be a

delayed version of the input signal.
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of perfect reconstructing �lter banks. Both methods use a product of simple

matrices to construct the matrices Hp and Gt
p.

The basic building blocks of the �rst method are known in signal process-

ing as ladder structures or lifting steps [10, 4, 2]. They are given by the

elementary transvections

T12(a) =

�
1 a

0 1

�
; T21(b) =

�
1 0

b 1

�
; (3)

with a; b 2 B, and by diagonal matrices in GL2(B). Figure 3 shows an

example of such an implementation.

# 2

" 2

" 2

zz�1

# 2

p(z) q(z) q(z) p(z)

Figure 3: Ladder structures.

The group GL2(B) of invertible 2 � 2-matrices has the three subgroups of

elementary matrices

�
1 B

0 1

�
;

�
1 0

B 1

�
;

�
B� 0

0 1

�
;

where B� denotes the set of units in B. The subgroup of GL2(B) generated

by these elementary matrices is called GE2(B). Thus, the group GE2(B)

describes all polyphase matrices Hp and Gt
p that can be constructed with

the help of some lifting �lter network.

For later use we de�ne the group E2(B) to be the subgroup of GE2(B) of ma-

trices with determinant 1. Note that E2(B) is generated by the elementary

transvections.

The basic building blocks of the second method are known in signal process-

ing as lattice structures [5, 11, 8]. In this case the matrices Hp and Gt
p are

given as a product of constant matrices in GL2(A) and powers of the delay

matrix �
1 0

0 z�1

�
:
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The subgroup in GL2(B) generated by GL2(A) and the delay matrix is called

GN2(B) here. The group GN2(B) describes all polyphase matrices that can

be generated by some lattice �lter network.

#2

z�1

z�1

#2

d

b

c

a

c0

b0

d0

a0

Figure 4: Analysis �lter bank realized with lattice structures.

3 Relation between Ladder and Lattice Structures

If A is a �eld it is known that the ladder and the lattice approach are

both powerful enough to generate all polyphase matrices in GL2(B), cf. [7].

However, for more general coe�cient rings the two concepts di�er in general.

Recall that a ring is called reduced if and only if it does not contain non-zero

nilpotent elements. A ring R is said to be indecomposable if and only if it

does not contain central idempotent elements apart from 0 and 1. A ring R

is called a GE2-ring if and only if GE2(R) = GL2(R).

Proposition 2 Let A be a commutative ring, B = A[z; z�1].

(i) E2(B) � GN2(B).

(ii) If A is reduced and indecomposable, then GE2(B) � GN2(B).

Proof. (i) The normalizer of

�
1 A

0 1

�
and

�
1 0

A 1

�

in GN2(B) contains �
1 B

0 1

�
and

�
1 0

B 1

�

respectively, which shows that E2(B) � GN2(B).
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(ii) If A is reduced and indecomposable, then A[z; z�1] contains only trivial

units, and therefore GN2(B) contains the invertible diagonal matrices from

GL2(B). Using (i), this proves the claim. 2

Remarks.

1. If A is a subring of the �eld of complex numbers, then GE2(B) �
GN2(B). Thus, in this case all perfect reconstructing �lter banks con-

structed with ladder steps can be constructed with the help of lattice

steps as well. We will see below that the converse is not necessarily

true.

2. If A is a �eld, then A[z; z�1] is a euclidean ring, and in particular a

GE2-ring. Therefore, GE2(B) = GN2(B) = GL2(B), which shows the

completeness of the lattice and ladder factorizations for �elds.

Recall that a unit in B is called trivial if and only if it is of the form uzk,

for some u 2 A� and k 2 Z.

Proposition 3 Let A be a GE2-ring, B = A[z; z�1]. Then GN2(B) �
GE2(B). More precisely:

(i) If A is decomposable or is not reduced, then GN2(B) $ GE2(B).

(ii) If A is indecomposable and reduced, then GE2(B) = GN2(B).

Proof. The matrices from GL2(A) are contained in GE2(B) by assumption.

It is clear that the delay matrix is in GE2(B). Therefore GN2(B) � GE2(B).

We observe that the determinant of a matrix in GN2(B) is a trivial unit.

(i) If A is decomposable, then A contains a non-trivial idempotent e. The

element u = e+ (1� e)z�1 is a non-trivial unit in B. Thus, the elementary

diagonal matrices diag(u; 1) is contained in GE2(R) but not in GN2(B).

If A is not reduced, then A contains a non-zero nilpotent element r. Thus,

v = 1 + rz�1 is a non-trivial unit in B. Again, the elementary diagonal

matrix diag(v; 1) is contained in GE2(R) but not in GN2(B).

(ii) Clear from the above and Proposition 2. 2

Example 4 If A = Z=NZ, where N is a positive integer that is not prime,

then the previous proposition shows that GN2(A[z; z
�1]) $ GE2(A[z; z

�1]).

Thus we may construct �lter banks with the help of ladder structures that

can not be constructed with lattice structures.
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Proposition 5 Assume that A is not a GE2-ring, B = A[z; z�1].

(i) If A is reduced and indecomposable, then GE2(B) $ GN2(B).

(ii) If A is decomposable or is not reduced, then GE2(B) 6= GN2(B).

Moreover, GE2(B) $ GL2(B) and GN2(B) $ GL2(B).

Proof. (i) By Proposition 2, GE2(B) � GN2(B). Take a matrix M 2
GL2(A) nGE2(A). Suppose that M 2 GE2(B). Then it is possible to factor

M into a product of elementary matrices M =
Q
Ei(z): Specializing z 7! 1

would lead to a factorization M =
Q
Ei(1) 2 GE2(A), contradicting our

choice of M . This shows that GN2(B) nGE2(B) is not empty.

(ii) As in Proposition 3, we see that B� contains non-trivial units. It follows

that GN2(B) $ GL2(B) and GE2(B) 6= GN2(B). Using the argument from

(i), we can show that there exists a matrix M 2 GL2(A), which is not

contained in GE2(B). 2

Example 6 Let A be the ring of integers in the imaginary quadratic number

�eld Q(
p
�d), where d is a positive, squarefree number, d 62 f1; 2; 3; 7; 11g:

It was shown by Cohn [3] that A is not a GE2-ring. It follows from the

preceeding proposition that it is possible to construct �lter banks with lattice

factorization, say with �lters in B = Z[
p�5][z; z�1], that can not be realized

with ladder structures in GE2(B).

4 Incompleteness

An element in B = A[z; z�1] is called causal if it is already contained in

C = A[z�1]. A �lter bank is said to be realizable if all its components are

causal. We allowed a multiplication by z in the synthesis �lter bank so far;

this can be avoided using the delayed version of the �lter bank as shown in

Figure 5.

Such a �lter bank is said to be perfect reconstructing if and only if the

output signal ŝ(z) coincides with the input signal s(z) delayed by one, that

is, ŝ(z) = z�1s(z) for all s(z) 2 B. The �lter bank in Figure 5 is realizable

and perfect reconstructing if and only if Gt
pHp = I and Gt

p;Hp 2 GL2(C).

An application of the euclidean algorithm shows that C = A[z�1] is a GE2-

ring provided A is a �eld. In this case every Hp 2 GL2(C) can be factored

into a product of elementary transvections T12(a); T21(b), a; b 2 C, and
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z�1

#2

#2

"2

"2

x 7! Gt
p xz�1 x 7! Hp x

Figure 5: Delayed version of a two-channel �lter bank.

diagonal matrices in GL2(C). The purpose of this section is to give an

elementary proof of the following incompleteness result:

Theorem 7 Suppose that A is a non-trivial, commutative integral domain

that is not a �eld, C = A[z�1]. Then C is not a GE2-ring.

The head monomial HM(p) of a non-zero polynomial p(z) =
Pn

i=0
piz

�i,

pn 6= 0, is de�ned to be HM(p) = pnz
�n.

Let p; q 2 C. We de�ne the predicate cnc(p; q) to be true (and say that p

can not cancel q) if and only if one of the following two conditions is true:

(a) deg(HM(p)) = deg(HM(q)) and there does not exist an element r of

the quotient �eld Quot(A) such that HM(q) = rHM(p).

(b) deg(HM(p)) 6= deg(HM(q)) and there does not exist an element r 2 C

such that HM(q) = rHM(p).

We say that a matrix M 2 SL2(C),

M =

�
p q

r s

�
;

satis�es condition S if and only if the matrix entries p; q; r; and s are non-

zero and cnc(p; q), cnc(q; p), cnc(r; s), and cnc(s; r) hold true.

Lemma 8 Let C be as in Theorem 7. Let y 2 C. If M 2 SL2(C) satis�es

condition S, then T21(y)M satis�es condition S as well.

Proof. Let �
a b

c d

�
:= T21(y)M =

�
p q

py + r qy + s

�
:

We know that a and b are non-zero and that

cnc(a; b) and cnc(b; a) are true. (4)
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1. Suppose that c = 0. Since det(T21(y)M) = 1, we have 1 = ad,

which implies HM(b) = HM(abd) = HM(a)HM(bd), contradicting (4).

Therefore, c 6= 0. A similar argument shows d 6= 0.

We are left to show that cnc(c; d) and cnc(d; c) are true.

2. Suppose that ad 2 A. Since ad � bc = 1, this implies that bc 2 A.

Since cd 6= 0, we derive that a and b are constants, contradicting (4).

Therefore ad is not constant and hence bc is not constant.

3. Since ad � bc = 1 and ad and bc are not constant, the terms with

largest total degree have to cancel. Therefore, we have

HM(a)HM(d) = HM(ad) = HM(bc) = HM(b)HM(c): (5)

4. Seeking a contradiction, we suppose that cnc(c; d) is false.

In the case deg(HM(c)) 6= deg(HM(d)) this means that there exists

a polynomial r 2 C such that HM(d) = rHM(c). It follows from (5)

that rHM(a) = HM(b), contradicting (4).

In the case deg(HM(c)) = deg(HM(d)) this means that there exists

a polynomial r 2 Quot(A) such that HM(d) = rHM(c). It follows

from (5) that deg(HM(a)) = deg(HM(b)) and rHM(a) = HM(b) hold,

contradicting (4).

We conclude that cnc(c; d) is true. In the same way we �nd that

cnc(d; c) is true. 2

Denote by D the matrix

D =

�
0 1

�1 0

�
:

Lemma 9 If M 2 SL2(C) satis�es condition S, then DM and MD satisfy

condition S as well.

Proof. Clear. 2

Corollary 10 Let y 2 C. If M 2 SL2(C) satis�es condition S, then

T12(y)M satis�es condition S as well.

Proof. Since T12(y) = DT21(�y)D�1, this follows from the previous two

lemmas. 2
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We can now complete the proof of Theorem 7. It su�ces to show that

SL2(C) can not be generated by transvections T12(y), T21(y), y 2 C.

By assumption there exists a non-zero non-unit u 2 A. LetM be the matrix

M =

�
1 + uz�1 u2

�z�2 1� uz�1

�

This matrix M satis�es condition S and therefore no multiplication by ele-

mentary matrices can reduce it to the identity matrix. 2

Remark.

Tolhuizen, Hollmann, and Kalker use a similar approach in [10]

to show the incompleteness in the case of integer coe�cients

A = Z and polynomial rings A = k[y], k a �eld. These two

counter examples are also contained in the seminal paper by

Cohn [3].

5 Semiperfect Coe�cient Rings

The preceding section showed some limits of lifting steps in the case of

integral domains. In this section we give some positive results, which show

that a complete factorization into lifting steps is possible if the coe�cient

ring is given for example by a residue class ring A = Z=NZ.

An ideal in which every element is nilpotent is called nil.

Theorem 11 Let A be a commutative local ring and suppose that the unique

maximal ideal m in A is nil. Then B = A[z; z�1] and C = A[z�1] are both

GE2-rings.

Proof. We have to show that a matrix M 2 GL2(B) can be reduced

to the identity matrix by multiplication with elementary transvections and

diagonal matrices. By reducing all entries in M modulo the ideal mB, we

obtain a matrix M 2 GL2(B=mB). Since B=mB �= (A=m)[z; z�1] is a

Laurent polynomial ring over the residue class �eld A=m, hence a euclidean

ring, we can expressM as a product of elementary matrices in GE2(B=mB),

namely M = E1E2 � � � Er: We can lift the matrices Ei 2 GE2(B=mB) to

matrices Ei 2 GE2(B). Thus, the matrix

N =ME�1
r � � �E�1

2
E�1
1
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is of the form

N 2
�

1 +mB mB

mB 1 +mB

�
:

Since m is a nil ideal in A, it follows that mB is a nil ideal in B. Conse-

quently, the diagonal entries of N are units in B. By multiplication with two

elementary transvections we can reduce N to an invertible diagonal matrix,

which proves that B is a GE2-ring. The reasoning for C is similar. 2

The Jacobson radical J(A) of a ring A is the intersection of all maximal left

ideals. A ring A is called semilocal if and only if A=J(A) is semisimple. A

ring A is said to be semiperfect if and only if A is semilocal and its Jacob-

son radical J(A) is idempotent lifting. The structure theory of semiperfect

rings used in the proof of the following theorem is explained for example in

Lam [6].

Theorem 12 Let A be a commutative semilocal ring and assume that the

Jacobson radical J(A) of A is nil. Then B = A[z; z�1] and C = A[z�1] are

both GE2-rings.

Proof. Since the Jacobson radical is nil, it is in particular idempotent

lifting. In other words, A is a semiperfect ring. A commutative semiperfect

ring is a �nite direct product of local rings. Namely, there exists a complete

set of primitive orthogonal idempotents ei such that A = e1A � � � � � erA,

and each eiA is a local ring. The Jacobson radical of eiA is given by eiJ(A),

and thus is a nil ideal. Therefore, A is isomorphic to a �nite direct product

of local rings Li, each with nil maximal ideal. Consequently, B and C are

isomorphic to the �nite direct products

B �=
rY

i=1

Li[z; z
�1] and C �=

rY
i=1

Li[z
�1]:

It follows from Theorem 11 that the components Li[z; z
�1] and Li[z

�1] are

GE2-rings, therefore B and C are GE2-rings as well. 2

Remark.

Note that Theorem 11 and Theorem 12 can be generalized to

show that B and C are GEn-rings for any positive integer n,

that is, for local or semilocal coe�cient rings with nil Jacobson

radical an n-channel perfect reconstructing �lter bank can be

realized with ladder steps (or lifting �lters).
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6 Conclusion

We studied two-channel �lter banks for signals with coe�cients in a com-

mutative ring. A straightforward extension is to consider �lter banks with

more channels. However, in some sense the two-channel case is the most

di�cult. For example, if A is a euclidean ring that contains a non-unit, then

we showed that A[z�1] is not a GE2-ring. In other words, in this case there

exist realizable perfect reconstructing �lter banks (in the sense of section 4)

that can not be implemented with causal ladder steps. This kind of obstacle

can not occur for �lter banks with at least three channels, since a theorem

by Suslin [9] shows that A[z�1] is a GEn-ring for n � 3. For a thorough

study of such phenomena the reader should refer to any standard text on

Algebraic K-Theory, e. g. [1].
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