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ABSTRACT

Wavelet based compression schemes belong to the general class of transform coding schemes. We show how the
genetic programming approach can be used to optimize such a compression scheme in the sense of rate-distortion.
The results of optimized wavelet based compression schemes are compared with the JPEG compression standard.
A prototype implementation of the method is realized as a distributed, parallel implementation on a heterogeneous
Unix network.
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1 INTRODUCTION

Lossy image data compression is an impressive application of wavelet algorithms. The aim is to implement
an e�cient compression scheme, which is exible enough to cover a great variety of bit rates while achieving a
minimum of distortion. This goal can only be attained if the scheme is adapted to the human visual system
as well as to the image class considered. We show how the genetic programming paradigm8 can be used to
optimize wavelet based compression schemes in the sense of rate-distortion with an arbitrary computable distortion
function.

Wavelet based compression schemes belong to the general class of transform coding schemes. A transform
coding scheme can be divided into three major steps: transformation of the input signal, quantization of the
transform coe�cients, and entropy coding of the quantizer output. The transformation in our compression
scheme can be described by a decomposition tree (see below) or alternatively by the corresponding basis.

Coifman, Meyer, Quake, and Wickerhauser (CMQW)1 have developed an algorithm that allows to
choose a basis with minimum \information cost" from a library of bases. Unfortunately, in their approach the
information cost function has to be additive. The cost functions considered in CMQW1 include a bit counting
measure and an additive measure based on entropy. More recently, Ramchandran and Vetterli13 extended
this algorithm in order to optimize both rate and distortion. However, they still require the distortion measure
to be additive.

We propose a method to optimize wavelet based compression schemes in rate-distortion sense allowing an
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arbitrary (possibly non-additive) computable distortion function. Moreover, our procedure does not only adapt
the basis, but improves the whole compression scheme including the crucial point of choosing the appropriate
quantizers.

2 WAVELET COMPRESSION SCHEMES

Recently, there has been a lot of interest in wavelet based compression and many di�erent methods were
proposed. In this section, we briey describe the compression method used here and �x some notation. For
simplicity, we restrict our description to one-dimensional signals. The algorithms can easily be extended to higher
dimensions by using tensor products.3,7,12 The generalization to two-dimensional images is straightforward.

The input signal is transformed in order to decorrelate consecutive samples. To increase the compression
ratio, the entropy of the resulting coe�cients is reduced by quantization. We use simple scalar quantizers4,15

to allow e�cient implementation in hardware. Finally, the quantized coe�cients are passed through a simple
entropy coder like an arithmetic coder.9

Transform. Denote by Sk the shift operator Sk (sn)n2Z = (sn�k)n2Z: Recall that a pair of sequences G =
(gi)i2Z; H = (hi)i2Z 2 `2(Z) is called a Conjugate Quadrature Filter2,7,14 (CQF) pair i� fS2kG; S2kH j k 2 Z g

is an orthonormal basis of `2(Z); and the sequences G and H are related by gn = (�1)n �h1�n: Associated with
(G;H) are projectors FG; FH : `2(Z)! `2(Z) operating on an arbitrary sequence s = (si)i2Z 2 `2(Z) as follows:

FG s =

 X
m2Z

gm�2l sm

!
l2Z

and FH s =

 X
m2Z

hm�2l sm

!
l2Z

:

The operators FG; FH project a signal sequence s onto subspaces of `2(Z): We use this pair of projections as
a basic decomposition step. Of course, we may apply this decomposition recursively to the resulting subspaces.
For example, applying another pair of operators FD; FE to the subspace FG `2(Z) yields another two subspaces
FDFG `

2(Z); FEFG `2(Z); etc. We call the resulting hierarchy of subspaces a decomposition tree. As a consequence
of the CQF property, it is possible to perfectly reconstruct the signal s 2 `2(Z) from its projections onto the
leaves of the decomposition tree. These projections are called subbands.

Quantization and Coding. After projecting the signal onto the leaves of the decomposition tree, a quantiza-
tion operation is applied to each subband. Scalar quantization applies a non-linear mapping to each coe�cient
in a subband. This mapping approximates the coe�cients with a value chosen from a small �nite set.4,15 The
quantization has two e�ects: On the one hand, the entropy is reduced and thus the compression ratio is increased,
on the other hand distortion is introduced. The amount of distortion and the compression ratio depend on the
cardinality and the values of the quantizer output range.4,15 The actual coding is done by an adaptive arithmetic
coder.9,16

Representation. For illustration, we introduce a tree representation for a compression scheme including the
decomposition tree and the quantizers. We label the leaves of the tree with the quantizer names and the internal
nodes with the name of the corresponding CQF pair. Taking two CQF pairs (G;H) and (D;E); we can e. g.
project `2(Z) onto three subspaces FDFG `2(Z); FEFG `2(Z); and FH `2(Z); followed by quantization with the
scalar quantizers Q1; Q2; and Q3 respectively. The corresponding tree is shown in �gure 1 as tree (a).

3 CROSSOVER AND MUTATION

Our method to optimize the parameters of our compression scheme in rate-distortion sense is based on the
principle of evolution. The idea is to have a big population of compression schemes and to generate new members
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Figure 1: Examples for crossover and mutation



by crossover andmutation operations from randomly selected members of the population. In this random selection
the �ttest members (in the sense of rate-distortion) are preferred.

Mutation. The crossover and mutation operations are best explained by example. The mutation operation
creates a new tree by changing an old tree at one randomly selected node. Four di�erent kinds of mutation may
occur. Trees (m1); : : : ; (m4) in �gure 1 show mutations of tree (a) and are examples for all kinds of mutation.
Tree (m1) is generated by substituting the CQF pair (D;E) in tree (a) by another randomly selected CQF pair
(K;L): Modifying some parameters of the quantizer Q2 in tree (a) yields tree (m2) with a new quantizer Q4:

These mutations do not alter the structure of the decomposition tree. In tree (m3) the structure is changed by
substituting quantizer Q3 with a new randomly generated subtree of depth one. As a result of the mutation
operation even a complete subtree may be substituted by a randomly chosen quantizer, as shown in tree (m4):

Crossover. The crossover operation uses two \parent" compression schemes to generate two \child" compression
schemes. First, the Greatest Common Tree (GCT) of the parents is determined. Roughly speaking, the GCT
represents the common structures of both parents. In a tree search starting at the root, all equally labelled nodes
are collected. A more detailed description is given in appendix A. For example, the GCT of the trees (m2) and
(m3) is shown in tree (gct) in �gure 1.

The nodes where the two parents di�er are marked with (1), (2) in the Greatest Common Tree (gct). These
nodes are called crossover nodes. The childs are composed of the Greatest CommonTree and the possible subtrees
found in the parents at the crossover nodes. To form the �rst child one of the two possible subtrees is randomly
chosen at each crossover node. If the Greatest CommonTree has N crossover nodes, then the two possible choices
at each crossover node result in 2N possibilities to form the �rst child tree. In order to use all structures present
in the parent trees, the second child is formed by selecting the alternative subtree at each crossover node. Thus,
the second child is completely determined once the �rst child is formed.

In �gure 1 the trees (c1) and (c2) are one possibility for selecting two childs of the parents (m2) and (m3):

4 FITNESS AND SELECTION

The selection of the �ttest plays a key role in evolutionary processes. The �tness of a particular compression
scheme depends on two quantities: the compression ratio and the distortion introduced. The compression ratio is
de�ned as the ratio of the size of the original signal to the size of the compressed signal (measured in bytes). The
distortion resulting from the quantization operation can be measured with an arbitrary computable distortion
function, for example, the distance measures induced by `p-norms. In our examples the signals are two-dimensional
images. A commonly used distortion measure for an original image (xi) and a distorted image (yi) is the peak-
to-peak signal-to-noise ratio (PSNR) measured in dB:

PSNR = 10 log10

�
d2

MSE

�
;

where d is the dynamic range, i. e. the di�erence between maximal and minimal value of the original image, and
MSE is the mean square error de�ned as

MSE =
1

n

n�1X
i=0

(xi � yi)
2:

Clearly, a distortion measure for images should reect the limitations of the human visual system.6 For
example, high frequency noise is not noticeable in smooth images. Several visually based distortion measures
have been proposed in literature, e. g. Macq10 or Mannos and Sakrisson.11 Due to non-linearities in the
human visual system, we cannot expect those measures to be additive. Unfortunately, there is currently no
common agreement on a particular measure.



Fitness. The calculation of �tness is best described by using the rate-distortion diagram in �gure 2. The
diagram shows a part of a population of compression schemes applied to the same image. Each compression
scheme is represented by one point in the diagram. A member of the population is called Pareto-optimal, if
there is no other member in the population with both higher PSNR value and higher compression ratio. The
Pareto-optimal members are the �ttest members in the population (marked with a line in the diagram).
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Figure 2: Fitness of a population.

A �tness value is assigned to each member of the population by the following algorithm:

1. Set f := 1:

2. Assign fitness f to all Pareto-optimal members.

3. Increase f by one.

4. Continue with step 2, but do not consider members with fitness value already assigned.

This algorithm partitions the population in classes of the same �tness values.

Selection. The evolutionary process uses an operation that randomly selects a member for reproduction. In
this selection the �tter members should be preferred. We �rst select a �tness class. In this random selection the
probability distribution is adapted such that the �tter classes have higher probability. Then a member out of this
class is selected. Here we use a probability distribution which is uniform with respect to compression ratio. This
policy avoids clustering of individuals around a speci�c compression ratio.

5 EVOLUTION

We are now able to describe the complete optimization strategy. The method uses a simple model of an
evolutionary process. Essentially, this method incorporates an adaptive search mechanism. Starting with a
randomly generated population, the mutation and crossover operations described in section 3 are used to generate
new members of the population. Fitness proportionate selection of the parent members leads eventually to an
overall improvement of the �tness of the whole population.

In order to control the size of the population, some \bad" members are deleted after adding the newly
generated members. To select the bad members, we use the same selection as described in section 4, but with
the complementary probability distribution of the �tness values. The optimization procedure can be stated
algorithmically as in �gure 4. In each iteration step about 5% of the population are removed and newly generated
by reproduction.

Due to the random operations, evolutionary methods require large populations. The computation of the �tness
values for these large populations is computationally expensive, as a complete compression/decompression run
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Figure 3: Some snapshots of the evolution.



1. Generate a random initial population.

2. Compute the fitness values (cf. section 4).

3. Randomly select parents for crossover and mutation operations. The resulting compression

schemes are added to the population.

The probability distribution is adapted according to �tness in rate distortion sense (cf. section 4).

4. Compute the fitness values.

5. Remove randomly chosen members from the population.

The probability distribution is adapted according to inverse �tness.

6. Continue with step 2.

Figure 4: The evolution procedure

is necessary for each member. However, this big number of independent �tness evaluations can be computed in
parallel. Our implementation runs on a Unix-cluster with 18 workstations. This allows the calculation of up to
100 �tness values per minute.

To give an idea of the progress of evolution, �gure 3 from top to bottom shows some snapshots from the initial
population to the 700th iteration step. The left diagrams show a part of the population (each member plotted
as a cross). The diagrams on the right show the corresponding Pareto-optimal members in comparison with the
JPEG compression standard.5 The improvement of the whole population is obvious.

6 RESULTS

We compare the results of the proposed method for three test images with the JPEG compression standard5

(with di�erent levels of quality and optimized Hu�man tables). A constant population size of 1800 members
was used in all examples. The procedure in �gure 4 was iterated about 500 times. In each iteration 5% of the
population were renewed.

The Pareto-optimal wavelet compression schemes perfom better than the JPEG compression standard in the
whole range of compression ratios. For higher compression ratios the advantage of the wavelet based compression
schemes is even more striking. The corresponding original and compressed images at the compression ratios 10,
20, 40 and 80 can be obtained from our WWW server http://iaks-www.ira.uka.de/iaks-beth/wavelet.
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7 CONCLUSION

We have proposed an optimization method for wavelet based compression schemes. Our method is not depen-
dend on speci�c features of the distortion function, nor on particular choices of the wavelet bases, the quantizers
or the coder. Therefore, our optimization method is particularly well-suited for evaluating the performance of
di�erent designs of wavelet based coders/decoders. Our wavelet based compression schemes perform better than
the JPEG compression standard.

A THE GREATEST COMMON TREE

In this section we de�ne the Greatest Common Tree of two given binary trees. We denote the root of tree
(x) by root(x). The left and right subtrees are denoted by l subtree(x) and r subtree(x) respectively. This is
illustrated in the following �gure.

(x) root(x)

{{x
x
x
x
x
x

##
F
F
F
F
F
F

l subtree(x) r subtree(x)

A new tree is constructed with a constructor tree from a new node and two existing subtrees such that the
following identity holds:

(x) = tree(root(x); l subtree(x); r subtree(x)):

A leaf is a subtree created from a node l and two empty subtrees nil, i. e. tree(l, nil, nil). Using these notations,
the Greatest Common Tree can be de�ned recursively as follows:

gct(a, b) ::=
if a = nil or b = nil

then gct(a, b) = nil

else if root(a) = root(b)�

then gct(a, b) = tree(root(a),
gct(l subtree(a), l subtree(b)),
gct(r subtree(a), r subtree(b)))

else gct(a, b) is a crossover node.

�Two nodes are considered equal if they represent the same CQF pair or the same quantizer.
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