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Summary

In this paper we discuss a method for construction of agebraic wavelet coefficients, i.e., wavelet coefficients lying in an algebraic
extensionfield of Q. The method relies on astrengthened version of atheorem dueto L. FEJER and F. RIESz. Asan application, we
prove that the Daubechies wavel ets have algebraic wavel et coefficients. We show that there exist uncountably many transcendent
scaling coefficient sequences. Furthermore, we prove that the set of parameters for algebraic wavelet coefficient sequences (up to
agiven length) is densein the parameter space of the Pollen parametrization. Algebraic wavelet coefficient sequences may lead to
faster processing unitsin VLS| implementations of the fast wavel et transform.

1 INTRODUCTION

First, weintroducethe notion of algebrai c wavel et coefficients,
i.e., wavelet coefficientslyingin an algebrai c extension field of
Q. For the sake of simplicity we restrict our attention to com-
pactly supported orthonormal wavelets in one dimension (for
the basic notions of wavelet analysis the reader is referred to
DAUBECHIES [1], or MEYER [2]).

Recall that an orthonormal compactly supported scaling
function p(z) € L*(R) satisfies adilation equation

plz) = Z ho V2022 —n), with h, €C. (1)

nez

The coefficients h,, are caled scaing coefficients. Note that
for compactly supported scaling functionsonly afinite number
of non-zero coefficients h,, isinvolved. Out of agiven scaling
function we can easily construct awavelet ¢ through

P(x) = Zgn \/5@(29: —n), with ¢, €C,

nez

where the wavelet coefficients ¢, may be obtained from the
scaling coefficients in the following way

In = (_1)n hl—n~

Definition 1 We call a sequence (k) of scaling coefficients
algebraic, if every coefficient ., isalgebraicover , otherwise
we call thissequence transcendent. Algebraic or transcendent
wavel et coefficient sequences are defined anal ogously.

We denote by Q¢ the algebraic closure of Q. Thefidd Q¢ is
interpreted as a subfield of C.

By dlight abuse of language we call a wavelet (resp. scaling
function) algebraic if its wavelet coefficient sequence (resp.
scaling coefficient sequence) isalgebraic.

Remark 2 Clearly, a wavelet coefficient sequence (g,,) isal-
gebraiciff the corresponding scaling coefficient sequence (£.,)
isalgebraic.

Hence it is enough to study the construction of scaling coeffi-
cent sequences.

2 CONSTRUCTION

The construction of wavelets in one dimension is now well
understood. Consider the following trigonometric polynomial
mg associated withacompactly supported scaling function :

1 —inw
mo(w) := ﬁ Zn: I € . 2

With the help of thistrigonometric polynomial we can rewrite
the dilation equation (1) in Fourier space as follows:

p(w) =mo(w/2) ¢(w/2).

Thetrigonometricpolynomial mg(w) playsacrucia roleinthe
construction of scaling functions.

From the orthonormality of the Z-trandated scaling func-
tionsp(z — n), withn € Z, we deduce the following simple
relation for the “squared version” M (w) := | mg(w) |* of the
trigonometric polynomial 1mg(w) :

M)+ M(w+7) = [ mofw) [ + [ mo(w +7) P = 1.

This relationship for M (w) is easy to satisfy. Moreover, al
possible functions M (w) are described in the book of DAuU-
BECHIES in Proposition 6.1.2 [1, p. 171].

We may make use of our full knowledge about the func-
tions M (w) in the construction of scaing functions. In afirst
step we choose such afunction M (w).



The following theorem assures that we can extract a
“sguare root” mg(w) out of M (w). Thetrigonometric polyno-
mial mq(w) characterizes ascaing function, whichin turncan
be defined in Fourier space viaan infinite product

G(w) == (2m)~4/? Hmo(Q_jw).

In order to assure the convergence of this product, we necessa-
rily have mq(0) = 1.

If we start from a trigonometric polynomia M (w) with
algebraic coefficients, the resulting trigonometric polynomial
mo(w) has algebraic coefficients too. Taking an appropriate
M (w) yieldsabonafide scaling function ¢ with algebraic sca-
ling coefficients.

Insignal processing applicationsit isoften desirableto use
wavelets with real valued coefficients. The following theorem
shows that we are able to construct real algebraic wavelets.
The proof of thistheorem is constructive.

Theorem 1 (Fejér-Riesz)

1. Let A(w) be a real nonnegative trigonometric polyno-
mial which is invariant under w — —w. Obvioudly,
A(w) may bewritten in the following form:

M
Alw) = Z ay, cosmw, With a,, € R

m=0

Then it is possibleto construct a real trigonometric po-
lynomial B(w) of the same order M, where B(w) is of
the form

M
B(w) = Z by, €™ with b, € R,
m=0

such that A(w) = | B(w) |2.

2. If the coefficients a,,, of the trigonometric polynomial
A(w) arereal algebraic, that is, a,, € Q% N R, then the
coefficients b,,, of B(w) are also real algebraic.

Thefirst part of thistheorem datesback to 1915. L. FEJER con-
jectured the first part of thistheorem and was able to prove it
for some specia cases. F. RIESz gave a generd proof of this
conjecture in the same year (cf. [3], see dso[4]).

The second part of this theorem is our agebraic reformu-
lation of thistheorem. The proof is given in appendix A.

Asan application, we briefly sketch the construction of the
famous Daubechies wavelets (cf. DAUBECHIES [5]). For the
construction of the Daubechies wavelet of order N we start
with the trigonometric polynomial

My (w) = (cosz(w/Q))N Py (sin®(w/2)),
where N1
Py(e) = l;) (N —kl—l—k’) ok

We can express M (w) asatrigonometricpolynomial incos w
with rational coefficients. Applying the Fejér-Riesz theorem,

we extract mo v (w) from My (w) = | mg v (w) |?. The corre-
sponding scaling functionis determined by the infinite product

on(w) == 2m) 2 T mon ().

j=1
Asaresult weimmediately get the following important

Corollary 3 Thewavel et coeffici ents of the Daubechi eswave-
letsare algebraic.

3 DENSITY

In the preceeding section, we found an infinite family of alge-
braic wavelets. It is natural to ask if there exist transcendent
wavel et coefficient sequences at all. Aswewill see, thereexist
uncountably many!

Note, that from now on, we are going to use the convenient
normalization ) ", h; = 2 for scaling coefficient sequences.

According to POLLEN [6] and WELLS [7] al real scaling
coefficient sequences of length four or less are given by

ho(8) = %(I—COSH-FSHIH),
h(f) = %(1+c0s9+sin9),
ho(8) = %(1+cos9—sin9),
hs(8) = %(1—cos€—sin9),

with @ € R (up to atrivia shift).
The difference of h1(6) with 2,(8) gives

sin = hy (0) — ho(0).

As the range of the sine functionistheinterva [—1, 1], there
are uncountably many transcendent values in the range of the
sinefunction. Hence there are uncountably many transcendent
scaling coefficient sequences of length four (or less).

Lemma4 Thereexist uncountably many transcendent scaling
coeffient sequences.

In spite of thisfact, it is part of the “folklore” among wa-
velet theorists that many compactly supported wavelets have
algebraic wavelet coefficients. To explain this, we prove the
following

Theorem 2 The set of parameters for algebraic scaling coef-
ficients (with prescribed maximal length) isdensein thecorre-
sponding parameter space of the Pollen parametrization.

For a proof see appendix B.

We end this section by an explicit construction of transcen-
dent scaling coefficient sequences. Again, we use the parame-
trization of al rea scaling coefficient sequences of length up
to four. It is easy to see that the scaling coefficient sequence
ho(9), ..., ha(6) istranscendent iff sin § is transcendent. As
a consequence of the Hermite-Lindemann theorem, the func-
tion sin ¢ is transcendent for all algebraic ¢ # 0 (seeeg. JA-
COBSON [8, p. 287]). Thus, for algebraic # # 0 the scaling
coefficient sequence hq(9), . . ., ha(#) istranscendent.



With the use of the parametrization of scaling coefficient
sequencesdueto D. POLLEN [6] itispossibleto extend thisre-
sult to arbitrary longer sequences (e.g., by taking an algebraic
number not equal to zero for one parameter and rational mul-
tiplesof 7 for all other parameters in this parametrization).

For further details the reader is referred to KLAPPEN-
ECKER [9, p. 67-73].

4 ANEXAMPLE

What does the construction of algebraic wavelets buy? Let us
demonstrate the basi ¢ techniques by an example.

In signal processing we often have to deal with sequences
over therationa sQ. The scaling coefficients of the Daubechies
scaling function of order 2 are given by

143 3+3
hOI 4 3 h1: 4 ;
— 1—
hy = 2 4ﬁ, hy = 4ﬁ.

For exact calculation with the scaling coefficients #; we need
to perform calculationsin afield extension of Q. Typicaly, the
field of real numbersR isused. In spiteof exaggerated arithme-
tical unitswe get round off errors by approximating e.g. /3.
Instead, we may compute in the field Q(v/3) by using the fol-
lowing field isomorphism

Q(V3) = Q[e]/ (42 _ 3

All calculations can now be performed with the help of mo-
dular polynomia arithmetic with coefficientsin Q. The resul-
ting arithmetical unitsare appealing for VLSI implementations
sinceitispossibleto avoid costly floating point units.

5 CONCLUSION

We have introduced the notion of algebraic scaling coeffi-
cients. Some properties of algebraic scaling coeffients have
been shown. The main techniques were briefly sketched in a
tiny example. Itisnoteworthy that VLS| implementationsmay
result in faster processing unitsthan conventiona techniques,
even when an exact calculation is not necessary.

A PROOF OF THEOREM 1

To prove the second part of the theorem, we mimic the proof
of thefirst part givenin DAUBECHIES [1].

First of al, note that we can write the nonnegativetrigono-
metric polynomia A(w) asapolynomia p4 incosw of same
degree over thefield F' := Q(ao, . . ., anr).

We denote by Ic(p) the leading coefficient of the polyno-
mial p. Furthermore, al fields in this proof are considered to
be subfiedldsof Q¢ C C.

1. Buildtheminimal splittingfield £ C Q* of pa(c). This
field isan algebraic extension field over . The polyno-
mia p4 can befactored over £ :

pa HC_CJ

j=1

2. By substituting(z+2~1)/2 for cinp(c) and multiply-

ingwith 2™ | we get a polynomial

Palz) = |C(pA)zMﬁ<Z+Z : cj)
= lc(pa) f[( c]z—l—lzz).

On the unit circle this polynomial coincideswith A(w),
ie, Aw) = eMwpy(emiv).

. The trigonometric polynomia B(w) is constructed with

thehelp of zeros of thepolynomia P4 . Beforegoing any
further, we need to collect some more informationon the
zeros of Py.

The zeros of afactor (4 — ¢;z + £2?) are of theform

. /.2 -1 ._ . fa_
zii=cj /-1, andz " i=¢ ci — L

(8 With ¢; not real, we necessarily also havec; as a
root of p 4, since the polynomid p4 has real coef -
f|C|ents Then we have four zeros z;, z;, ; ' and

! of the polynomial

1 1L\ /(1 1,
§—cjz—|—§z §—cjz—|—§z .

(b) If ¢; isreal and |¢;| > 1, then the polynomia
(3 —cjz+ $z7) hastwored rootsr; and r; *.

(€) If ¢j isred and |¢;| < 1, then the zeros of

(3 — cjz+ 327) are complex conjugate to each
other. Furthermore, they have an absol ute val ue of
1. These zeros must have even multiplicity in Pa,
otherwise we get a contradiction to the nonnegati-
vity of A. Wemay also group these zeros of P4 as

= 1
quadruples z;, z;, z; andz

4. Denote by E’ the minimal splitting field of P4 (z). Ac-

cording to the discussion of the rootsin the preceeding
step, the polynomia P, can be factorized over E’ into
the following specia form:

Pa(z) = oM lc(pa) - l (z—m)(z—m )]
~ [H <z—zn(z—zj)(z—z;l)(z—z;l)] ,

wherer; € Rand K + 2J = M.

. Themain trick isthat on the unit circle we have the fol -

lowing identity for the factors (= — z;)(z — z; ') :

[ =) (™™ =7 ) [ = g | e™™ — 5 %



6. In alast step, atrigonometric polynomia B(w) is con-
structed out of A(w) suchthat A(w) = | B(w)|*. Witha
judicious choice of zeros we can guarantee that the co-
efficients of B(w) arered. Let

J K
Pp(z):=v | [T =2z =z - lH (z — 7”1)]
j=1

=1

with a normalization factor

J K 1/2
V= [2_M||C(pA)| 111711 |rk|_1] .
j=1 k=1

Then B(w) = Pg(e~) isthedesired trigonometricpo-
lynomial of order M with real algebraic coefficients.

B PROOF OF THEOREM 2

The parametrization of all compactly supported wavelets due
toD. POLLEN [6] relies on abijection between theloop group
SUr(2,R[z,1/7]) and the set of real scaling coefficients. The
elementsof thisgroup are 2 x 2-matriceswith finite Laurent po-
lynomialsover R as entries. Moreover, POLLEN derives para-
metrizationsfor all scaling coefficient sequences up to agiven
length (the parametrization we use here is caled “characteri-
zation of noncentered < & systems’ in[6]).

First we need to introduce some notation. Let h(z) =
> nez hn 2" be afinite Laurent polynomial. We extend the
complex conjugation operation of the field C to a conjugation
operation on the ring of Laurent polynomials by defining

h,(;) = ZEZ_H
nez

Recall that thegroup SU; (2, R[z, 1/z]) isfreely generated
by aset InvFactors(R) (seee.g. [10], [6]). Theelements of this
set are of theform

ug(z)  wp(2)
Us(z) := o
( —vp(z)  ug(2) )
where ug (%) and vy (z) are defined as follows:
1 —cosf -1 1+ cosf
wi = () (R,

vo(z) = (‘SQM) + <sn219) .

Roughly speaking, all scaling coefficient sequences of length
k or less can be obtained by a product of (£ — 2)/2 matrices
of theform Uy or U;”", with @ € [0, 27) (again, see POLLEN

[6] for details). Notethat thisparametri zation describes scaling
coefficient sequences only up to atrivial 2Z-trandation.

From atopological point of view, the parameter space for
length & (or less) scaling coefficient sequences is given by a
torus T(*=2)/2 We describe a dense set of parameters in the
torus, which correspond to agebraic scaling coefficient se-
quences.

For rational multiplesof =, the coefficients of the polyno-
mialsug(z) and vy (z) are algebraic. The rational multiples of
m aredenseintheinterval [0, 27). From thisfact oneeasily de-
duces the theorem.

Remark 5 Note that in this parametrization several parame-
ters may give the same scaling coefficient sequence (modulo a
27-trandation). Of course, we may identify these pointsby an
obviousequivalencerelation R. Then the parameter space can
be viewed as a pinched torus T*=2)/2/ R Clearly, the density
argument carries over totheset T(*=2)/2 / R equipped with the
guotient topol ogy.
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