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Summary

In this paper we discuss a method for construction of algebraic wavelet coefficients, i.e., wavelet coefficients lying in an algebraic
extension field of Q: The method relies on a strengthened version of a theorem due to L. FEJÉR and F. RIESZ. As an application, we
prove that the Daubechies wavelets have algebraic wavelet coefficients. We show that there exist uncountably many transcendent
scaling coefficient sequences. Furthermore, we prove that the set of parameters for algebraic wavelet coefficient sequences (up to
a given length) is dense in the parameter space of the Pollen parametrization. Algebraic wavelet coefficient sequences may lead to
faster processing units in VLSI implementations of the fast wavelet transform.

1 INTRODUCTION

First, we introduce the notion of algebraic wavelet coefficients,
i.e., wavelet coefficients lying in an algebraic extension field of
Q: For the sake of simplicity we restrict our attention to com-
pactly supported orthonormal wavelets in one dimension (for
the basic notions of wavelet analysis the reader is referred to
DAUBECHIES [1], or MEYER [2]).

Recall that an orthonormal compactly supported scaling
function '(x) 2 L2(R) satisfies a dilation equation

'(x) =
X
n2Z

hn
p
2'(2x� n); with hn 2 C: (1)

The coefficients hn are called scaling coefficients. Note that
for compactly supported scaling functions only a finite number
of non-zero coefficients hn is involved. Out of a given scaling
function we can easily construct a wavelet  through

 (x) =
X
n2Z

gn
p
2'(2x� n); with gn 2 C;

where the wavelet coefficients gn may be obtained from the
scaling coefficients in the following way

gn = (�1)
n h1�n:

Definition 1 We call a sequence (hn) of scaling coefficients
algebraic, if every coefficient hn is algebraic overQ;otherwise
we call this sequence transcendent. Algebraic or transcendent
wavelet coefficient sequences are defined analogously.

We denote by Qa the algebraic closure of Q: The fieldQa is
interpreted as a subfield of C:

By slight abuse of language we call a wavelet (resp. scaling
function) algebraic if its wavelet coefficient sequence (resp.
scaling coefficient sequence) is algebraic.

Remark 2 Clearly, a wavelet coefficient sequence (gn) is al-
gebraic iff the corresponding scaling coefficient sequence (hn)
is algebraic.

Hence it is enough to study the construction of scaling coeffi-
cent sequences.

2 CONSTRUCTION

The construction of wavelets in one dimension is now well
understood. Consider the following trigonometric polynomial
m0 associated with a compactly supported scaling function' :

m0(!) :=
1p
2

X
n

hn e
�in!: (2)

With the help of this trigonometric polynomial we can rewrite
the dilation equation (1) in Fourier space as follows:

'̂(!) = m0(!=2) '̂(!=2):

The trigonometricpolynomialm0(!) plays a crucial role in the
construction of scaling functions.

From the orthonormality of the Z-translated scaling func-
tions '(x � n); with n 2 Z; we deduce the following simple
relation for the “squared version” M (!) := jm0(!) j2 of the
trigonometric polynomialm0(!) :

M (!) +M (! + �) = jm0(!) j2 + jm0(! + �) j2 = 1:

This relationship for M (!) is easy to satisfy. Moreover, all
possible functions M (!) are described in the book of DAU-
BECHIES in Proposition 6.1.2 [1, p. 171].

We may make use of our full knowledge about the func-
tions M (!) in the construction of scaling functions. In a first
step we choose such a functionM (!):



The following theorem assures that we can extract a
“square root”m0(!) out ofM (!): The trigonometric polyno-
mial m0(!) characterizes a scaling function, which in turn can
be defined in Fourier space via an infinite product

'̂(!) := (2�)�1=2
1Y
j=1

m0(2
�j!):

In order to assure the convergence of this product, we necessa-
rily have m0(0) = 1:

If we start from a trigonometric polynomial M (!) with
algebraic coefficients, the resulting trigonometric polynomial
m0(!) has algebraic coefficients too. Taking an appropriate
M (!) yields a bona fide scaling function'with algebraic sca-
ling coefficients.

In signal processing applications it is often desirable to use
wavelets with real valued coefficients. The following theorem
shows that we are able to construct real algebraic wavelets.
The proof of this theorem is constructive.

Theorem 1 (Fejér-Riesz)

1. Let A(!) be a real nonnegative trigonometric polyno-
mial which is invariant under ! 7! �!: Obviously,
A(!) may be written in the following form:

A(!) =

MX
m=0

am cosm!; with am 2 R:

Then it is possible to construct a real trigonometric po-
lynomial B(!) of the same order M; where B(!) is of
the form

B(!) =

MX
m=0

bm eim!; with bm 2 R;

such thatA(!) = jB(!) j2:

2. If the coefficients am of the trigonometric polynomial
A(!) are real algebraic, that is, am 2 Qa \ R; then the
coefficients bm of B(!) are also real algebraic.

The first part of this theorem dates back to 1915. L. FEJÉR con-
jectured the first part of this theorem and was able to prove it
for some special cases. F. RIESZ gave a general proof of this
conjecture in the same year (cf. [3], see also [4]).

The second part of this theorem is our algebraic reformu-
lation of this theorem. The proof is given in appendix A.

As an application, we briefly sketch the construction of the
famous Daubechies wavelets (cf. DAUBECHIES [5]). For the
construction of the Daubechies wavelet of order N we start
with the trigonometric polynomial

MN (!) =
�
cos2(!=2)

�N
PN
�
sin2(!=2)

�
;

where

PN (x) =

N�1X
k=0

�
N � 1 + k

k

�
xk:

We can expressMN (!) as a trigonometric polynomial in cos!

with rational coefficients. Applying the Fejér-Riesz theorem,

we extract m0;N (!) from MN (!) = jm0;N (!) j2: The corre-
sponding scaling function is determined by the infinite product

'̂N (!) := (2�)�1=2
1Y
j=1

m0;N (!):

As a result we immediately get the following important

Corollary 3 The wavelet coefficients of the Daubechies wave-
lets are algebraic.

3 DENSITY

In the preceeding section, we found an infinite family of alge-
braic wavelets. It is natural to ask if there exist transcendent
wavelet coefficient sequences at all. As we will see, there exist
uncountably many!

Note, that from now on, we are going to use the convenient
normalization

P
i hi = 2 for scaling coefficient sequences.

According to POLLEN [6] and WELLS [7] all real scaling
coefficient sequences of length four or less are given by

h0(�) =
1

2
(1� cos � + sin �) ;

h1(�) =
1

2
(1 + cos � + sin �) ;

h2(�) =
1

2
(1 + cos � � sin �) ;

h3(�) =
1

2
(1� cos � � sin �) ;

with � 2 R (up to a trivial shift).
The difference of h1(�) with h2(�) gives

sin � = h1(�) � h2(�):

As the range of the sine function is the interval [�1; 1]; there
are uncountably many transcendent values in the range of the
sine function. Hence there are uncountably many transcendent
scaling coefficient sequences of length four (or less).

Lemma 4 There exist uncountably many transcendent scaling
coeffient sequences.

In spite of this fact, it is part of the “folklore” among wa-
velet theorists that many compactly supported wavelets have
algebraic wavelet coefficients. To explain this, we prove the
following

Theorem 2 The set of parameters for algebraic scaling coef-
ficients (with prescribed maximal length) is dense in the corre-
sponding parameter space of the Pollen parametrization.

For a proof see appendix B.
We end this section by an explicit construction of transcen-

dent scaling coefficient sequences. Again, we use the parame-
trization of all real scaling coefficient sequences of length up
to four. It is easy to see that the scaling coefficient sequence
h0(�); : : : ; h3(�) is transcendent iff sin � is transcendent. As
a consequence of the Hermite-Lindemann theorem, the func-
tion sin � is transcendent for all algebraic � 6= 0 (see e.g. JA-
COBSON [8, p. 287]). Thus, for algebraic � 6= 0 the scaling
coefficient sequence h0(�); : : : ; h3(�) is transcendent.



With the use of the parametrization of scaling coefficient
sequences due to D. POLLEN [6] it is possible to extend this re-
sult to arbitrary longer sequences (e.g., by taking an algebraic
number not equal to zero for one parameter and rational mul-
tiples of � for all other parameters in this parametrization).

For further details the reader is referred to KLAPPEN-
ECKER [9, p. 67-73].

4 AN EXAMPLE

What does the construction of algebraic wavelets buy? Let us
demonstrate the basic techniques by an example.

In signal processing we often have to deal with sequences
over the rationalsQ:The scaling coefficients of the Daubechies
scaling function of order 2 are given by

h0 =
1 +

p
3

4
; h1 =

3 +
p
3

4
;

h2 =
3�

p
3

4
; h3 =

1�
p
3

4
:

For exact calculation with the scaling coefficients hi we need
to perform calculations in a field extension of Q: Typically, the
field of real numbersR is used. In spite of exaggerated arithme-
tical units we get round off errors by approximating e.g.

p
3:

Instead, we may compute in the field Q(
p
3) by using the fol-

lowing field isomorphism

Q(
p
3) �= Q[x]=hx2� 3i :

All calculations can now be performed with the help of mo-
dular polynomial arithmetic with coefficients in Q: The resul-
ting arithmetical units are appealing for VLSI implementations
since it is possible to avoid costly floating point units.

5 CONCLUSION

We have introduced the notion of algebraic scaling coeffi-
cients. Some properties of algebraic scaling coeffients have
been shown. The main techniques were briefly sketched in a
tiny example. It is noteworthy that VLSI implementations may
result in faster processing units than conventional techniques,
even when an exact calculation is not necessary.

A PROOF OF THEOREM 1

To prove the second part of the theorem, we mimic the proof
of the first part given in DAUBECHIES [1].

First of all, note that we can write the nonnegative trigono-
metric polynomial A(!) as a polynomial pA in cos ! of same
degree over the field F := Q(a0; : : : ; aM):

We denote by lc(p) the leading coefficient of the polyno-
mial p: Furthermore, all fields in this proof are considered to
be subfields of Qa � C:

1. Build the minimal splitting field E � Qa of pA(c): This
field is an algebraic extension field over F: The polyno-
mial pA can be factored over E :

pA(c) = lc(pA)
MY
j=1

(c� cj):

2. By substituting (z+z�1)=2 for c in pA(c) and multiply-
ing with zM ; we get a polynomial

PA(z) = lc(pA) zM
MY
j=1

�
z + z�1

2
� cj

�

= lc(pA)
MY
j=1

�
1

2
� cjz +

1

2
z2
�
:

On the unit circle this polynomial coincides withA(!);
i.e., A(!) = eiM!PA(e

�i!):

3. The trigonometric polynomialB(!) is constructed with
the help of zeros of the polynomialPA:Before going any
further, we need to collect some more informationon the
zeros of PA:

The zeros of a factor
�
1
2
� cjz +

1
2
z2
�

are of the form

zj := cj +
q
c2j � 1; and z�1j := cj �

q
c2j � 1:

(a) With cj not real, we necessarily also have cj as a
root of pA; since the polynomial pA has real coef-
ficients. Then we have four zeros zj ; zj ; z

�1
j ; and

z�1j of the polynomial

�
1

2
� cjz +

1

2
z2
��

1

2
� cjz +

1

2
z2
�
:

(b) If cj is real and j cj j � 1; then the polynomial�
1
2
� cjz +

1
2
z2
�

has two real roots rj and r�1j :

(c) If cj is real and j cj j < 1; then the zeros of�
1
2
� cjz +

1
2
z2
�

are complex conjugate to each
other. Furthermore, they have an absolute value of
1. These zeros must have even multiplicity in PA;
otherwise we get a contradiction to the nonnegati-
vity ofA: We may also group these zeros of PA as
quadruples zj; zj; z�1j ; and z�1j :

4. Denote by E0 the minimal splitting field of PA(z): Ac-
cording to the discussion of the roots in the preceeding
step, the polynomial PA can be factorized over E0 into
the following special form:

PA(z) = 2�M lc(pA) �
"
KY
l=1

(z � rl)(z � r�1l )

#
�

�

2
4 JY
j=1

(z � zj)(z � zj)(z � z�1j )(z � z�1j )

3
5 ;

where rj 2 R and K + 2J = M:

5. The main trick is that on the unit circle we have the fol-
lowing identity for the factors (z � zj)(z � z�1j ) :

j (e�i! � zj)(e
�i! � z�1j ) j = j zj j�1 j e�i! � zj j2:



6. In a last step, a trigonometric polynomial B(!) is con-
structed out ofA(!) such that A(!) = jB(!)j2:With a
judicious choice of zeros we can guarantee that the co-
efficients of B(!) are real. Let

PB(z) := �

2
4 JY
j=1

(z � zj)(z � zj)

3
5 �
"
KY
l=1

(z � rl)

#

with a normalization factor

� :=

2
42�M j lc(pA) j

JY
j=1

j zj j�2
KY
k=1

j rk j�1
3
5
1=2

:

ThenB(!) = PB(e
�i!) is the desired trigonometricpo-

lynomial of order M with real algebraic coefficients.

B PROOF OF THEOREM 2

The parametrization of all compactly supported wavelets due
to D. POLLEN [6] relies on a bijection between the loop group
SUI (2;R[z; 1=z]) and the set of real scaling coefficients. The
elements of this group are 2�2-matrices with finite Laurent po-
lynomials over R as entries. Moreover, POLLEN derives para-
metrizations for all scaling coefficient sequences up to a given
length (the parametrization we use here is called “characteri-
zation of noncentered � k systems” in [6]).

First we need to introduce some notation. Let h(z) =P
n2Z hn z

n be a finite Laurent polynomial. We extend the
complex conjugation operation of the field C to a conjugation
operation on the ring of Laurent polynomials by defining

gh(z) :=X
n2Z

hn z
�n:

Recall that the group SUI (2;R[z; 1=z]) is freely generated
by a set InvFactors(R) (see e.g. [10], [6]). The elements of this
set are of the form

U�(z) :=

0
@ u�(z) v�(z)

�]v�(z) ]u�(z)

1
A

where u�(z) and v�(z) are defined as follows:

u�(z) :=

�
1� cos �

2

�
z�1 +

�
1 + cos �

2

�
;

v�(z) :=

�� sin �

2

�
+

�
sin �

2

�
z:

Roughly speaking, all scaling coefficient sequences of length
k or less can be obtained by a product of (k � 2)=2 matrices
of the form U� or U�1� ; with � 2 [0; 2�) (again, see POLLEN

[6] for details). Note that this parametrization describes scaling
coefficient sequences only up to a trivial 2Z-translation.

From a topological point of view, the parameter space for
length k (or less) scaling coefficient sequences is given by a
torus T(k�2)=2: We describe a dense set of parameters in the
torus, which correspond to algebraic scaling coefficient se-
quences.

For rational multiples of �; the coefficients of the polyno-
mials u�(z) and v�(z) are algebraic. The rational multiples of
� are dense in the interval [0; 2�):From this fact one easily de-
duces the theorem.

Remark 5 Note that in this parametrization several parame-
ters may give the same scaling coefficient sequence (modulo a
2Z-translation). Of course, we may identify these points by an
obvious equivalence relationR: Then the parameter space can
be viewed as a pinched torus T(k�2)=2=R:Clearly, the density
argument carries over to the set T(k�2)=2=R equipped with the
quotient topology.

References

[1] DAUBECHIES, I. Ten Lectures on Wavelets. CBMS-
NSF Reg. Conf. Series Appl. Math. SIAM, 1992.

[2] MEYER, Y. Les Ondelettes – Algorithmes et applicati-
ons. Armand Colin, 1992.
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