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Packet Routing

The Model

Consider a directed graph G “ pV ,E q of n nodes that models a
communication network.

A directed edge pu, vq means that u can send packets to v .

The goal is to transmit a set of packets through the network, where
each packet has a start node and a destination node.

The route of a packet is a path in the graph G .
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Packet Routing

The Model
1 A packet can travel at most one edge per timestep.

2 At most one packet can travel along any single edge.

3 Each node has sufficient buffer to store packets.

If the in-degree of a node v is larger than 1, then (2) implies that a
packet might get delayed at v .
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Packet Routing

Permutation Routing

We want to consider how the network performs under high but fair
load.

We assume that each node has one packet starting at it, and one
addressed to it. In other words, the routing problem is a
permutation π on the set of nodes V .
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Hypercube

As an example we consider the hypercube.

Definition

The n-dimensional hypercube Qn “ pV ,E q has 2n nodes,

V “ t0, 1un.

Two nodes u and v are connected by an edge if and only if the
Hamming distance between their labels dpu, vq “ 1, so

E “ tpu, vq P V ˆ V | dpu, vq “ 1u.

There is an edge between two nodes if and only if their labels differ
in exactly a single bit.
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Hypercube
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Hypercube

Properties

The hypercube Qn is a sparse graph, since it has N “ 2n vertices,
but just

ΘpN logNq

edges.
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Routing

Bit-Fixing Routing

The starting point for routing in an n-cube is the bit-fixing algorithm. A packet
starting from a node u “ pa1, a2, . . . , anq with destination b “ pb1, b2, . . . , bnq is
routed through

pa1, a2, a3, . . . , anq

;pb1, a2, a3, . . . , anq

;pb1, b2, a3, . . . , anq

...

;pb1, b2, b3, . . . , bnq

The actual path is obtained by removing from this the repetitions that occur
when ai “ bi .
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Congestion

Swap-Bottleneck

Consider the hypercube Q2n. Define the permutation

πpa1, a2, . . . , an, c1, c2, . . . , cnq “ pc1, c2, . . . , cn, a1, a2, . . . , anq.

Then every routing path reaches a node of the form

C “ pc1, c2, . . . , cn, c1, c2, . . . , cnq

with two repeated bit-patterns. There are N “ 22n nodes overall, but just?
N “ 2n nodes with repeated address labels.
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Congestion

Swap-Bottleneck

There are 22n packets that are routed through 2n bottleneck nodes such as C on
a route that is 2n steps long. This means that

Ω

ˆ

2n

2n

˙

“ Ω

˜ ?
N

logN

¸

steps are needed in the permutation routing problem π.
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Avoiding the Bottleneck

Two-Phase Randomized Routing
1 Pick for each packet from a to b a random intermediate

node c . Route from a to c using bit-fixing.

2 Route from c to b using bit-fixing.

Gain

We will show that all packets can be delivered in OplogNq steps
with high probability (meaning with probability 1´ Op1{Nq).
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Analysis

We will now give the analysis. There are a couple of difficulties that
could make the analysis very difficult (or perhaps even impossible).
Pay attention to the tricks that are used to circumvent problems.
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Analysis

Let T pMq denote the time the packet M takes to reach its
destination. In each of these T pMq steps,

1 the packet M crosses an edge, or

2 the packet M is in a queue (as some other packet crosses an
edge that M needs to cross).

Queuing Policy

The queuing policy has a significant impact on T pMq, but it is
difficult to analyze.
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Analysis

Let X peq denote the number of packets that have edge e on their
route.

Remark

If the route of packet M consists of the edges pe1, e2, . . . , emq, then

T pMq ď
m
ÿ

k“1

X pekq.

The bound seems loose, but does not depend on a particular
routing policy.
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Analysis

For a path P “ pe1, e2, . . . , emq, we define

T pPq “
m
ÿ

k“1

X pekq.

If R is the set of all paths used in routing, then

max
PPR

T pPq

is an upper bound on the routing time for all messages.
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Analysis

Let us consider just phase (1) of the routing algorithm. Let T1

denote time used to route to the intermediate node and X1 denote
the number of messages that use an edge in their route.

We will show that it is very likely that

T1pPq ď 30n

for all possible paths P .

Problem

We want to a high-probability bound for T1pPq “
řm

k“1 X1pekq, but
the random variables X1pekq are not independent. We cannot
directly apply a Chernoff bound.
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Analysis

Let P “ pe1, e2, . . . , emq be a path, and ek “ pvk´1, vkq.

Let j be the bit on which vk´1 and vk differ. We say that a packet
M is active in node vk´1 if and only if

1 the packet M is routed through vk´1, and

2 when the packet M reaches vk´1, its j-th bit has not been
fixed yet, but the previous bits 1, 2, . . . , j ´ 1 have been
fixed or were correct to begin with.

An active packet at vk´1 has the potential to cross the edge ek .
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Analysis

Let HM be the indicator random variable that packet M is active in
at least one node on the path P . Let

H “
ÿ

MPt0,1un

HM .

The random variables HM are mutually independent, because HM

depends only on the intermediate destination of phase I, and these
choices are independent for each packet.
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Analysis
Proposition

ErHs ď m ď n.

Proof.

Let’s consider active packets at vk´1. Suppose that

vk´1 “ pb1, b2, . . . , bj´1, aj , aj`1, . . . , anq

vk “ pb1, b2, . . . , bj´1, bj , aj`1, . . . , anq

A packet that is active at vk´1 started in a node of the form p˚, . . . , ˚, aj , . . . , anq.
So there are 2j´1 possible start nodes.

By condition (1), if a packet is active in vk´1, then its destination must be of the
form pb1, . . . , bj´1, ˚, . . . , ˚q. Therefore, if we consider a fixed starting node, then
it will cross the edge ek with probability 2´pj´1q.

Therefore, the expected number of active packets at vk´1 is 1.
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Analysis

Proof. (Continued)

We only need to consider the m nodes on the path
P “ pe1, e2, . . . , emq, namely

v0, v1, . . . , vm´1.

Consequently, by linearity of expectation, we have

ErHs ď m ¨ 1 ď n. 2
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Analysis
Remark.
Since the random variables Hk are mutually independent, we may
apply Chernoff bounds

PrpH ě 6nq ď 2´6n,

since 6n ě 6ErHs.

Strategy

We choose the events A “ tT1pPq ě 30nu and B “ tH ě 6nu in
the estimate

PrrAs “ PrrA|BsPr rBs ` Pr rA|BsPr rBs

ď PrrBs ` Pr rA|Bs.
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Analysis

Corollary

For the events A “ tT1pPq ě 30nu and B “ tH ě 6nu, we get the
estimate

PrrT1pPq ě 30ns ď PrrBs ` Pr rA|Bs

ď 2´6n ` PrrT1pPq ě 30n|H ă 6ns.

We will next estimate the latter conditional probability. In other
words, given that there are less than 6n active packets on the path
P , we need to bound the number of transitions that they make
through the path P .
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Analysis

Assume that packet M is active in vk´1.

For M to actually cross the edge pvk´1, vkq, we require its j-th
address bit to be bj . This has probability 1{2.

However, the packet should not fix any earlier bits 1, . . . , j ´ 1.
Thus, the actual probability for a packet that is active in vk´1 to
actually cross pvk´1, vkq is at most 1{2.
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Analysis

Assume that there are a total of h active packets for the nodes of P . What is the
probability that together they make a total of at least 30n steps along path P?

Consider as an individual trial a situation where a given active packet is in some
given node on P . With probability at most 1{2 we get success, meaning that
the packet proceeds along an edge on P. At least with probability 1{2 we get
failure, so the packet leaves path P and never returns. When a failure occurs,
we move to considering the next active packet. Hence, each success contributes
one transition along P , but each failure removes one packet from consideration.
To get 30n transitions, the first 30n ` h trials may have at most h failures.
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Analysis

The desired conditional probability

PrpT1pPq ě 30n|H ď 6ns

is therefore the probability that in the repeated trials we get at
most 6n failures in 36n iterations. Since each success probability is
at most 1{2, we easily see that

PrrT1pPq ě 30n | H ď 6ns ď PrrZ ď 6ns,

where Z „ Binp36n, 1{2q. We have ErZ s “ 18n.
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Analysis

By applying the Chernoff bound, we get

Pr rT1pPq ě 30n|H ě 6ns ď PrrZ ď p1´ 2{3q18n
loooooomoooooon

“6n

s

ď exp

˜

´18n

ˆ

2

3

˙2
M

2

¸

“ e´4n ď 2´3n´1 since 23n`1 ď e4n

Hence,

PrrT1pPq ě 30ns ď 2´6n ` PrpT1pPq ě 30n|H ă 6nq

ď 2´6n ` 2´3n´1

ď 2´3n.
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Conclusions

There are at most 22n possible packet paths in the hypercube Qn.
Thus, the probability that there is any possible packet path P with
T1pPq ě 30n is bounded by

22n2´3n “ 2´n “ Op1{|V |q,

where V “ t0, 1un.

We can conclude that both phase I and Phase II will take at most
Oplog |V |q steps with high probability.
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