Review

Andreas Klappenecker

Texas A&M University

© 2018–2019 by Andreas Klappenecker. All rights reserved.

Probability Theory

A σ -algebra \mathcal{F} is a collection of subsets of the sample space Ω such that the following requirements are satisfied:

S1 The empty set is contained in \mathcal{F} .

S2 If a set *E* is contained in \mathcal{F} , then its complement E^c is contained in \mathcal{F} .

S3 The countable union of sets in \mathcal{F} is contained in \mathcal{F} .

Let \mathcal{F} be a σ -algebra over the sample space Ω . A **probability measure** on \mathcal{F} is a function $\Pr: \mathcal{F} \to [0, 1]$ satisfying

- **P1** The certain event satisfies $Pr[\Omega] = 1$.
- **P2** If the events E_1, E_2, \ldots in \mathcal{F} are mutually disjoint, then

$$\Pr\left[\bigcup_{k=1}^{\infty} E_k\right] = \sum_{k=1}^{\infty} \Pr[E_k].$$

The smallest (with respect to inclusion) non-empty events belonging to a σ -algebra \mathcal{F} are called **atoms**. Show that if \mathcal{F} is a finite σ -algebra, then each event A in \mathcal{F} is the union of finitely many atoms.

Solution

Seeking a contradiction, suppose that C is an event in \mathcal{F} that is not a union of finitely many atoms.

Let \mathcal{A} denote the family of all atoms of \mathcal{F} . Let $B = \bigcup \mathcal{A}$.

Since \mathcal{F} is finite, the event $C \setminus B$ must contain an atomic event A. However, this is impossible, since B is the (finite) union of all atomic events.

Random Variables

Definition

Let \mathcal{F} be a σ -algebra over the sample space Ω . A random variable X is a function $X \colon \Omega \to \mathbf{R}$ such that the preimage $X^{-1}(B)$ of each Borel set B in \mathbf{R} is an event in \mathcal{F} .

It suffices to show that

$$\{z\in\Omega\,|\,X(z)\leqslant x\}$$

is an event contained in \mathcal{F} for all $x \in \mathbf{R}$.

Indicator Random Variables

Let (Ω, \mathcal{F}) be a measurable space.

Let *A* be a subset of Ω . Then the indicator function $I_A : (\Omega, \mathcal{F}) \to \mathbf{R}$ given by

$$I_{\mathcal{A}}(x) = egin{cases} 1 & ext{if } x \in \mathcal{A} \ 0 & ext{otherwise.} \end{cases}$$

is a random variable if and only if $A \in \mathcal{F}$. We call I_A the **indicator** random variable of the event A.

A random variable is called **simple** if and only if it is a linear combination of a finite number of indicator random variables with disjoint support.

In other words, if X is a simple random variable, then there exist pairwise disjoint events A_1, \ldots, A_n and real numbers s_1, \ldots, s_n such that

$$X = \sum_{k=1}^n s_k I_{A_k}.$$

Any nonnegative random variable can be approximated by a sequence of simple random variables.

A discrete random variable is a random variable with countable range, which means that the set $\{X(z) \mid z \in \Omega\}$ is countable.

The convenience of a discrete random variable X is that one can define events in terms of values of X, for instance in the form $X \in A$ which is short for

 $\{z\in \Omega\,|\,X(z)\in A\}.$

If the set A is a singleton, $A = \{x\}$, then we write X = x.

Let $\Omega = \{1, 2, 3, 4\}$ and $\mathcal{F} = \{\emptyset, \Omega, \{1\}, \{2, 3, 4\}\}$. Is X(x) = 1 + x a random variable with respect to the σ -algebra \mathcal{F} ?

Solution

The preimage of $\{3\}$ is

$$X^{-1}(\{3\}) = \{2\},\$$

but this is not an event in \mathcal{F} . So X is not a random variable.

Expectation and Variance

Definition

Let X be a discrete random variable over the probability space $(\Omega, \mathcal{F}, \Pr)$. The **expectation value** of X is defined to be

$$\mathsf{E}[X] = \sum_{\alpha \in X(\Omega)} \alpha \operatorname{Pr}[X = \alpha],$$

when this sum is unconditionally convergent in $\overline{\mathbf{R}}$, the extended real numbers.

The expectation value is also called the **mean** of X.

Proposition

For random variables X_1, X_2, \ldots, X_n , we have

$$E[X_1 + X_2 + \dots + X_n] = E[X_1] + E[X_2] + \dots + E[X_n]$$

For any real number a, we have

$$\mathsf{E}[aX_k] = a\mathsf{E}[X_k].$$

Pigeonhole Principle of Expectation

Proposition

A random variable cannot always be less than its expected value.

Pigeonhole Principle of Expectation

Proposition

A random variable cannot always be less than its expected value.

Proof.

Seeking a contradiction, suppose that X is a discrete random variable that has values always less than $\mu = E[X]$. Then

$$\mathsf{E}[X] = \sum_{\alpha \in X(\Omega)} \alpha \operatorname{Pr}[X = \alpha] < \sum_{\alpha \in X(\Omega)} \mu \operatorname{Pr}[X = \alpha] = \mathsf{E}[X],$$

contradiction.

Pigeonhole Principle of Expectation

Proposition

A random variable cannot always be less than its expected value.

Proof.

Seeking a contradiction, suppose that X is a discrete random variable that has values always less than $\mu = E[X]$. Then

$$\mathsf{E}[X] = \sum_{\alpha \in X(\Omega)} \alpha \operatorname{Pr}[X = \alpha] < \sum_{\alpha \in X(\Omega)} \mu \operatorname{Pr}[X = \alpha] = \mathsf{E}[X],$$

contradiction.

Similarly, a random variable cannot always be larger than its expected value.

Consider the complete graph K_n on n vertices. Show that there exists a tournament on K_n that has at least $n!/2^{n-1}$ Hamiltonian paths.

A **tournament** T_n is a directed graph that is obtained from K_n by orienting each edge. This is a round robin tournament with no draws, where an edge (u, v) in the graph T_n means that player u was beating player v.

A **Hamiltonian path** is a path of n-1 edges that visits each vertex of T_n precisely once, $v_1 \rightarrow v_2 \rightarrow v_3 \rightarrow \cdots \rightarrow v_n$.

The exercise asserts that some combinatorial structure exists that has a certain property. It asserts that there exists a tournament on n points that has many (namely $n!/2^{n-1}$) Hamiltonian paths.

For n = 10, the exercise asserts that there exists a tournament with

$$\frac{n!}{2^{n-1}} = \frac{10!}{2^9} > 7000$$

Hamiltonian paths. Of course, not all tournaments on n points will have that many Hamiltonian paths.

Solution

Construct a tournament on K_n by randomly orienting each edge in K_n with probability 1/2. Consider a random permutation π on n points. The vertices $(v_{\pi 1}, v_{\pi 2}, \ldots, v_{\pi n})$ form a Hamiltonian path if and only if $v_{\pi k}$ beats $v_{\pi(k+1)}$ for all k in the range $1 \le k \le n - 1$. Let X_{π} denote the indicator random variable for the event that π yields a Hamiltonian path. Then

$$\mathsf{E}[X_{\pi}] = \mathsf{Pr}[X_{\pi} = 1] = 1/2^{n-1}.$$

Let $X = \sum X_{\pi}$ be the random variable counting Hamiltonian paths. Since there are n! permutations, the expected number of Hamiltonian paths is

$$\mathsf{E}[X] = \sum_{\pi \in S_n} \mathsf{E}[X_{\pi}] = n!/2^{n-1}.$$

By the pigeonhole principle of expectation, it follows that some tournament must have at least $n!/2^{n-1}$ Hamiltonian paths.

Concentration Inequalities

Markov's Inequality

Theorem (Markov's Inequality)

If X is a nonnegative random variable and t a positive real number, then

$$\Pr[X \ge t] \le \frac{\mathsf{E}[X]}{t}$$

Corollary (Markov's Inequality) If X is a nonnegative random variable and t a positive real number, then

$$\Pr[X \ge t \mathsf{E}[X]] \le \frac{1}{t}.$$

Theorem (Chebychev's inequality)

If X is a random variable, then

$$\Pr[|X - E[X]| \ge t] = \Pr[(X - E[X])^2 \ge t^2] \le \frac{E[(X - E[X])^2]}{t^2} = \frac{\operatorname{Var}[X]}{t^2}.$$

Theorem (Chernoff Bounds)

Let X be the sum of n independent indicator random variables X_1, X_2, \ldots, X_n , where $E[X_k] = p_k$. Let $\mu = E[X] = \sum_{k=1}^n E[X_k]$. Then

$$\Pr[X > (1+\delta)\mu] \leqslant e^{-\delta^2 \mu/3},$$

 $\Pr[X < (1-\delta)\mu] \leqslant e^{-\delta^2 \mu/2}.$

Who first proved Markov's, Chebychev's, and Chernoff's inequality?

Who first proved Markov's, Chebychev's, and Chernoff's inequality?

Solution

• Markov's inequality was first proved by Chebychev.

Who first proved Markov's, Chebychev's, and Chernoff's inequality?

Solution

- Markov's inequality was first proved by Chebychev.
- Chebychev's inequality was first proved by Bienaymé.

Who first proved Markov's, Chebychev's, and Chernoff's inequality?

Solution

- Markov's inequality was first proved by Chebychev.
- Chebychev's inequality was first proved by Bienaymé.
- Chernoff's inequality was first proved by Rubin.

Conditional Expectation

Definition

The **conditional expectation** of a discrete random variable X given an event A is denoted as E[X | A] and is defined by

$$\mathsf{E}[X \mid A] = \sum_{x} x \operatorname{Pr}[X = x \mid A].$$

We can compute the expected value of X as a sum of conditional expectations. This is similar to the law of total probability.

Proposition If X and Y are discrete random variables, then $E[X] = \sum_{y} E[X | Y = y] \Pr[Y = y].$

Definition

Let X and Y be two discrete random variables.

The **conditional expectation** E[X | Y] of X given Y is the random variable defined by

$$\mathsf{E}[X \mid Y](\omega) = \mathsf{E}[X \mid Y = Y(\omega)].$$

Law of the Iterated Expectation

Proposition

$$\mathsf{E}[\mathsf{E}[X \mid Y]] = \mathsf{E}[X].$$

Proof.

$$E[E[X | Y]] = \sum_{y} E[E[X | Y]|Y = y] Pr[Y = y]$$
$$= \sum_{y} E[X | Y = y] Pr[Y = y]$$
$$= E[X]$$

Theorem

Suppose that $X_1, X_2, ...$ are independent random variables, all with the same mean. Suppose that N is a nonnegative, integer-valued random variable that is independent of the X_i 's. If $E[X_1] < \infty$ and $E[N] < \infty$, then

$$\mathsf{E}\left[\sum_{k=1}^{N} X_{i}\right] = \mathsf{E}[N]\mathsf{E}[X_{1}].$$

Probability Generating Functions

Definition

Let X be a discrete random variable defined on a probability space with probability measure Pr. Assume that X has non-negative integer values. The **probability generating function** of X is defined by

$$G_X(z) = \mathsf{E}[z^X] = \sum_{k=0}^{\infty} \mathsf{Pr}[X=k]z^k.$$

This series converges for all z with $|z| \leq 1$.

Expectation

The expectation value can be expressed by

$$\mathsf{E}[X] = \sum_{k=1}^{\infty} k \, \mathsf{Pr}[X = k] = G'_X(1), \tag{1}$$

where $G'_{X}(z)$ denotes the derivative of $G_{X}(z)$.

Indeed,
$$G'_X(z) = \sum_{k=0}^{\infty} k \Pr[X = k] z^{k-1} = \sum_{k=1}^{\infty} k \Pr[X = k] z^{k-1}.$$

Complexity Classes

The Class **RP** of Randomized Polynomial Time DP

Definition

Let ε be a constant in the range $0 \le \varepsilon \le 1/2$.

The class **RP** consists of all languages L that do have a polynomial-time randomized algorithm A such that

•
$$x \in L$$
 implies $\Pr[A(x) \text{ accepts}] \ge 1 - \varepsilon$,

•
$$x \notin L$$
 implies $\Pr[A(x) \text{ rejects}] = 1$.

One-Sided Error

Randomized algorithms in **RP** may err on 'yes' instances, but not on 'no' instances.

The Class **co-RP** of Randomized Polynomial Time DP

Definition

Let ε be a constant in the range $0 \le \varepsilon \le 1/2$. The class **co-RP** consists of all languages *L* whose complement \overline{L} is in **RP**. In other words, *L* is in **co-RP** if and only if there exists a polynomial-time randomized algorithm *A* such that

- $x \in L$ implies Pr[A(x) accepts] = 1,
- $x \notin L$ implies $\Pr[A(x) \text{ rejects}] \ge 1 \varepsilon$.

One-Sided Error

Randomized algorithms in **co-RP** may err on 'no' instances, but not on 'yes' instances.

The Class **ZPP** of Zero-Error Probabilistic Polynomial Time DP

Definition

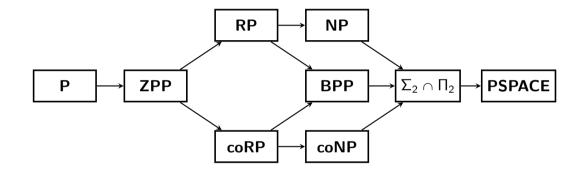
The class **ZPP** consists of all languages L such that there exists a randomized algorithm A that always decides L correctly and runs in expected polynomial time.

Definition

Let ε be a constant in the range $0 \leqslant \varepsilon < 1/2$.

The class **BPP** consists of all languages L such that there exists a polynomial-time randomized algorithm A such that

- $x \in L$ implies $\Pr[A(x) \text{ accepts}] \ge 1 \varepsilon$,
- $x \notin L$ implies $\Pr[A(x) \text{ rejects}] \ge 1 \varepsilon$.



Randomized Algorithms

Contract(G)

Require: A connected loopfree multigraph G = (V, E) with at least 2 vertices.

- 1: while |V| > 2 do
- 2: Select $e \in E$ uniformly at random;
- $\quad \quad \mathbf{G}:=\mathbf{G}/\mathbf{e};$
- 4: end while
- 5: return |E|.

Ensure: An upper bound on the minimum cut of G.

Iterated conditional probabilities:

$$\Pr\left[\bigcap_{\ell=1}^{n} E_{\ell}\right] = \left(\prod_{m=2}^{n} \Pr\left[E_{m} \middle| \bigcap_{\ell=1}^{m-1} E_{\ell}\right]\right) \Pr[E_{1}].$$

Karger's contraction algorithm is the prototypical example of a Monte Carlo type algorithm. Study it carefully!

Suppose that we want to sort an array A[1..n] of length n.

Quicksort picks a **pivot** element *p* uniformly at random.

Then partitions the array A into three parts: left, pivot, an d right.

$$\langle p | \langle p | \cdots | \langle p | p | \rangle p | \rangle p | \cdots | \rangle p$$

Partition requires n-1 comparisons with the pivot element p.

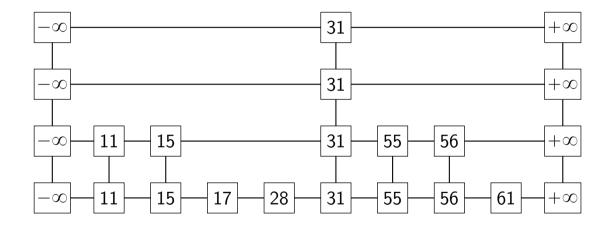
Then quicksort recursively sorts left and right parts.

Proposition

The expected number of comparisons made by randomized quicksort on an array of size n is at most $2n \ln n$.

Randomized quicksort is the prototypical example of a Las Vegas algorithm. Study the analysis carefully!

Randomized Data Structures



Probabilistic Method

We just discussed this method, so you probably still remember ...