Quicksort

Andreas Klappenecker

Texas A&M University

© 2018–2019 by Andreas Klappenecker. All rights reserved.

Quicksort

Suppose that we want to sort an array A[1..n] of length n.

Quicksort picks a **pivot** element p uniformly at random.

Then partitions the array A into three parts: **left**, **pivot**, and **right**.

$$| \langle p | \langle p | \cdots | \langle p | p | > p | \cdots | > p |$$

Partition requires n-1 comparisons with the pivot element p.

Then quicksort recursively sorts left and right parts.

Analysis of Quicksort

Proposition

The expected number of comparisons made by randomized quicksort on an array of size n is at most 2n ln n.

Let P denote the random variable giving the sorting order of the pivot element p. Thus, P = k means that the pivot element is the k-th smallest element of the array.

Let X_n denote the number of comparison done by quicksort on an array of length n. Sorting an array of length n yields the expected number $E[X_n]$ of comparisons

$$\mathsf{E}[X_n] = \sum_{k=1}^n \mathsf{E}[X_n \mid P = k] \, \mathsf{Pr}[X = k].$$

Probability that Pivot is k-th Smallest Element

Since the pivot is chosen uniformly at random, we have

$$\Pr[P=k]=\frac{1}{n}.$$

Expected Number of Comparisons

Let $E[X_n]$ denote the expected number of comparisons for an array of length n. Then

$$E[X_n \mid P = k] = (n-1) + E[X_{k-1}] + E[X_{n-k}],$$

since we need n-1 comparisons with the pivot. If the pivot is the k-th smallest element, then the left partition has k-1 elements, and the right partition has n-k elements.

Let $T(n) = E[X_n]$ denote the expected number of comparisons for arrays of length n.

$$T(n) = E[X_n] = \sum_{k=1}^{n} (n - 1 + E[X_{k-1}] + E[X_{n-k}]) \Pr[P = k]$$

$$= \sum_{k=1}^{n} (n - 1 + T(k-1) + T(n-k)) \frac{1}{n}$$

$$= n - 1 + \frac{1}{n} \sum_{k=1}^{n} (T(k-1) + T(n-k)).$$

Let T(n) denote the expected number of comparisons in quicksort for arrays of length n.

$$T(n) = \begin{cases} n - 1 + \frac{2}{n} \sum_{k=1}^{n-1} T(k) & \text{if } n > 0, \\ 0 & \text{if } n = 0. \end{cases}$$

Our guess is that $T(n) \le cn \ln n$, since most pivots lead to splits that are not too imbalanced. It turns out that we can choose c = 2.

Proof by Induction

Proposition

$$T(n) \leq 2n \ln n$$
.

Proof.

Basis. The inequality holds for n = 0, since T(0) = 0 and $\lim_{x\to 0} x \ln x = 0$, so $n \ln n = 0$ for n = 0.

Inductive Step. We assume that $T(k) \le 2k \ln k$ holds for all k in the range $0 \le k < n$. We need to show that this implies

$$T(n) \leq 2n \ln n$$
.

Proof by Induction

$$T(n) = n - 1 + \frac{2}{n} \sum_{k=1}^{n-1} T(k)$$

$$\leq n - 1 + \frac{2}{n} \sum_{k=1}^{n-1} 2k \ln k$$

$$\leq n - 1 + \frac{2}{n} \int_{1}^{n} x \ln x \, dx$$

$$= n - 1 + \frac{2}{n} \left(n^{2} \ln n - \frac{n^{2}}{2} + \frac{1}{2} \right) \leq 2n \ln n. \square$$

Estimation of Sums

Since $2x \ln x$ is monotonically increasing on [1, n], we are allowed to bound the sum by the integral

$$\sum_{k=1}^{n-1} 2k \ln k \le \sum_{k=1}^{n-1} \int_{k}^{k+1} 2x \ln x \, dx$$
$$= \int_{1}^{n} 2x \ln x \, dx$$
$$= \left(x^{2} \ln x - \frac{x^{2}}{2} \right) \Big|_{1}^{n}$$